NOTICE

All drawings located at the end of the document.

Final Phase III RFI/RI

Rocky Flats Plant 881 Hillside Area

(Operable Unit No. 1)

June 1994

ederate Reco

ERRATA

Text within Appendix B was xerographically reproduced in anticipation of a March submittal date and, therefore, reflects a footer date of March 1994. The appendix is as intended for this June 1994 submittal.

OVERVIEW TABLE OF CONTENTS

VOLUME I

SECTION 1—INTRODUCTION (Text, Tables, and Figures)

SECTION 2—OU1 FIELD INVESTIGATION (Text, Tables, and Figures)

SECTION 3—PHYSICAL CHARACTERISTICS OF OU1 (Text, Tables, and Figures)

VOLUME II

SECTION 4—NATURE AND EXTENT OF CONTAMINATION (Text, Tables, and Figures)

SECTION 5—CONTAMINANT FATE AND TRANSPORT (Text, Tables, and Figures)

SECTION 6—BASELINE RISK ASSESSMENT (Text, Tables, and Figures)

SECTION 7—SUMMARY AND CONCLUSIONS

SECTION 8—REFERENCES

VOLUME III

APPENDIX A — GEOLOGIC DATA
A1 DRILLING AND SAMPLING DATA

VOLUME IV

APPENDIX A — GEOLOGIC DATA

- A2 GEOTECHNICAL DATA
- A3 SURVEYING DATA
- A4 FRENCH DRAIN GEOLOGIC DATA

OVERVIEW TABLE OF CONTENTS (continued)

VOLUME V

APPENDIX A — GEOLOGIC DATA

- A4 FRENCH DRAIN GEOLOGIC DATA (continued)
- A5 HOT SPOT INVESTIGATION

VOLUME VI

APPENDIX B — HYDROGEOLOGIC DATA

- B1 BOREHOLE AND SINGLE WELL TEST DATA
- B2 MULTIPLE WELL TEST DATA
- B3 GROUNDWATER ELEVATION DATA
- B4 FRENCH DRAIN HYDROGEOLOGIC ASSESSMENT
- B5 SURFACE WATER FLOW DATA
- B6 GROUNDWATER CONTAMINANT MIGRATION VELOCITY CALCULATIONS

VOLUME VII

$\mathbf{APPENDIX} \ \mathbf{C} - \mathbf{ANALYTICAL} \ \mathbf{DATA}$

- C1 BACKGROUND SOIL DATA
- C2 STATISTICAL SUMMARIES
- C3 PHASE III SUBSURFACE SOIL SAMPLES
- C4 SURFACE SOIL SAMPLES
- C5 SURFACE WATER
- C6 SEEP/SPRING WATER
- C7 SEDIMENTS
- C8 GROUNDWATER
- C9 FIELD PARAMETER DATA FOR OU1 GROUNDWATER MONITORING
- C10 BIOLOGICAL TISSUE SAMPLES
- C11 PHASE III FIELD PROGRAM UNIQUE SAMPLES
- C12 AIR QUALITY
- C13 SUBSURFACE SOIL CONTAMINANT SUMMARY

VOLUME VIII

OVERVIEW TABLE OF CONTENTS (continued)

VOLUME IX

APPENDIX E — ENVIRONMENTAL EVALUATION

VOLUME X

APPENDIX F — PUBLIC HEALTH EVALUATION

VOLUME XI

APPENDIX G — QUALITY ASSURANCE

APPENDIX H — TECHNICAL MEMORANDA

VOLUME XII

APPENDIX I — RESPONSES TO AGENCY COMMENTS

APPENDIX J — DISTRIBUTION LIST

APPENDIX B-HYDROGEOLOGIC DATA

TABLE OF CONTENTS

B1—BOREHOLE AND SINGLE-WELL TEST DATA (Text, Tables, and Figures) Attachment B1-1—Field Data and Calculations

B2—MULTIPLE-WELL TEST DATA (Text, Tables, and Figures)

Attachment B2-1—Field Activities Chronology

Attachment B2-2—Single-Well Test Equipment

Attachment B2-3—Single-Well Field Data Sheets

Attachment B2-4—Single-Well Time-Drawdown Measurements

Attachment B2-5-Multiple-Well Test Equipment

Attachment B2-6-Multiple-Well Field Data Sheets

Attachment B2-7—Multiple-Well Pumping Test Time-Drawdown Data and Graphical Solutions

Attachment B2-8—Bromide Analytical Methods

Attachment B2-9—Single-Well Tracer Evaluation Tests -

Test Parameters and Results

Attachment B2-10-Multiple-Well Tracer Test - Test Parameters and Results

Attachment B2-11—Surveyed Well Locations

B3—GROUNDWATER ELEVATION DATA

Attachment B3-1—Groundwater Elevation Data Table (1989-1992)

Attachment B3-2—Well Hydrographs

B4—FRENCH DRAIN HYDROGEOLOGIC ASSESSMENT

B5—SURFACE WATER FLOW DATA

B6—GROUNDWATER CONTAMINATION MIGRATION VELOCITY CALCULATIONS

APPENDIX B1—BOREHOLE AND SINGLE WELL TEST DATA TABLE OF CONTENTS

Section		<u>Title</u>	<u>Page</u>
B1.1	INTRO	DUCTION	B1-1
B1.2	PACKE	R TESTS (IN SITU PUMP-IN TESTS)	
	B1.2.1	General Description	
	B1.2.2	Data Collection Methods	
	B1.2.3	Data Reduction Methods	
	B1.2.4	Data Analysis Methods	B1-7
B1.3	SINGLE	E-WELL TESTS	B1-8
	B1.3.1	General Description	
	B1.3.2	Data Collection Methods	
	B1.3.3	Data Reduction Methods	B1-12
	B1.3.4	22 did 1 midijala 1 vi	
		B1.3.4.1 Bouwer and Rice Method	B1-14
		B1.3.4.2 Hyorslev Method	B1-18
B1.4	RESUL'	TS	B1-21
	B1.4.1	Location-Specific Test Summary	B1-21
	B1.4.2	Conclusions	B1-34
B1.5	REFER	ENCES	B1-36
		LIST OF TABLES	
Table	No.	<u>Title</u>	
B1-1	Fourth (Quarter 1991 Well Status Summary	
B1-2		ry of Packer Test Information and Results	
B1-3		Well Test Summary	
B1-4		ry of Input Parameters for AQTESOLV	
B1-5		SOLV Output Summary for Bouwer and Rice Analysis	
B1-6		v Analysis Parameters and Results	
B1-7		lic Conductivity and Field Permeability Summary	
B1-8		rison of Phase III RFI/RI Results to Previous Results at OU1	
B1-9		ry of Aquifer Test Results at OU1	

APPENDIX B1 - TABLE OF CONTENTS

(continued)

LIST OF FIGURES

Figure No.

Title

B1-1 Borehole and Well Location Map for OU1 Phase III RFI/RI Field Investigation

ATTACHMENT B1-1 FIELD DATA AND CALCULATIONS

APPENDIX B2-MULTIPLE-WELL TEST DATA

TABLE OF CONTENTS

Section		<u>Title</u>	
B2.1	INTROD	DUCTION	B2-1
B2.2	PUMPIN	NG TESTS	B2-4
	B2.2.1	Single-Well Step-Drawdown Tests	B2-4
		B2.2.1.1 Well Installation	B2-4
		B2.2.1.2 Well Development and Sampling	B2-5
		B2.2.1.3 Test Procedures	B2-7
		B2.2.1.4 Analysis of Test Data	B2-9
	B2.2.2	Multiple-Well Tests	B2-12
	,	B2.2.2.1 Well Installation	B2-12
		B2.2.2.2 Well Development	B2-13
		B2.2.2.3 Test Procedures	B2-14
		B2.2.2.4 Analysis of Test Data	B2-16
na a		A TUD CITIC	B2-24
B2.3		R TESTS	B2-24 B2-24
	B2.3.1	Single-Well Tracer Tests	B2-24 B2-25
		B2.3.1.1 Test Procedures	
	D0 0 0	B2.3.1.2 Analysis of Test Data	B2-39
	B2.3.2	Multiple-Well Tests	B2-30
		B2.3.2.1 Test Procedures	B2-31
		B2.3.2.2 Analysis of Test Data	B2-39
		B2.3.2.3 Well Abandonment and Decontamination	B2-48
B2.4	SUMMA	RY OF RESULTS AND CONCLUSIONS	B2-49
	B2.4.1	Pumping Tests	B2-49
	B2.4.2	Tracer Tests	B2-52
		LIST OF TABLES	
Table	No.	<u>Title</u>	

B2-1	Wellpoint Installation Summary
B2-2	Wellpoint Development Summary
B2-3	Water Quality Sample Results
B2-4	Data Logger Standard Log Schedule
B2-5	Multiple-Well Pumping Test Analysis - Cooper-Jacob, Neuman, and Theis
	Recovery Methods
B2-6	Distance-Drawdown Method

APPENDIX B2 - TABLE OF CONTENTS

(continued)

B2-7	Summary of Multiple-Well Pumping Test Analyses	
B2-8	Summary of Average Linear Velocity and Longitudinal Dispersion Values	
B2-9	Summary of Effective Porosity Values	
	LIST OF FIGURES	
Figure	No. <u>Title</u>	
B2-1	Pumping and Tracer Test Locations	
B2-2	General Wellpoint Construction	
B2-3	Single-Well Step-Drawdown Test Setup	
B2-4	Step-Drawdown Test Results December 3, 1991	
B2-5		
B2-6	1	
B2-7	Multiple-Well Pumping Test Setup	
B2-8		
B2-9	Single-Well Tracer Evaluation Test - Bromide Tracer Test Setup	
B2-10	Single-Well Tracer Evaluation Tests Breakthrough Curves	
B2-11	Multiple-Well Tracer Test Setup 1	
B2-12	Multiple-Well Tracer Test Setup 2	
B2-13	Multiple-Well Tracer Test Bromide Concentration vs. Time for Wells E1-E5	
B2-14	Type Curves for Velocity = 0.1 ft/min	
B2-15	Type Curves for Velocity = 0.05 ft/min	
B2-16	Type Curves for Velocity = 0.01 ft/min	
B2-17	Type Curves for Velocity = 0.001 ft/min	
B2-18	Multiple-Well Tracer Test Breakthrough Curve for Wells I1 - E1	
	Multiple-Well Tracer Test Breakthrough Curve for Wells I2 - E2	
B2-20	Multiple-Well Tracer Test Breakthrough Curve for Wells I3 - E3	
B2-21	Multiple-Well Tracer Test Breakthrough Curve for Wells I4 - E4	
B2-22	Multiple-Well Tracer Test Breakthrough Curve for Wells I5 - E5	
	Multiple-Well Tracer Test Breakthrough Curve for Wells I1 - E1	
B2-24	Multiple-Well Tracer Test Breakthrough Curve for Wells I2 - E2	

B2-25 Multiple-Well Tracer Test Breakthrough Curve for Wells I3 - E3 B2-26 Multiple-Well Tracer Test Breakthrough Curve for Wells I4 - E4 B2-27 Multiple-Well Tracer Test Breakthrough Curve for Wells I5 - E5 B2-28 Summary of Estimated Hydraulic Conductivities by Wellpoint B2-29 Estimated Specific Yields vs. Distance from Pumping Wellpoint

APPENDIX B2 - TABLE OF CONTENTS

(continued)

ATTACHMENT B2-1 FIELD ACTIVITIES CHRONOLOGY

ATTACHMENT B2-2 SINGLE-WELL TEST EQUIPMENT:

Well Installation

Well Development and Sampling

Step-Drawdown Test Tracer Evaluation Tests

ATTACHMENT B2-3 SINGLE-WELL FIELD DATA SHEETS:

Well Installation

Well Development and Sampling

Step-Drawdown Test

ATTACHMENT B2-4 SINGLE-WELL TIME-DRAWDOWN MEASUREMENTS:

Table 1. Step-Drawdown Test December 3, 1991

Table 2. Step-Drawdown Test December 6, 1991

ATTACHMENT B2-5 MULTIPLE-WELL TEST EQUIPMENT:

Well Installation
Well Development
Pumping Test

Tracer Test

Well Abandonment

ATTACHMENT B2-6 MULTIPLE-WELL FIELD DATA SHEETS:

Well Installation
Well Development
Pumping Test
Tracer Test

Well Abandonment

ATTACHMENT B2-7 MULTIPLE-WELL PUMPING TEST TIME-DRAWDOWN

DATA AND GRAPHICAL SOLUTIONS:

Table 1. Multiple-Well Pumping Test Time-Drawdown

Data

Table 2. Multiple-Well Pumping Test Recovery Data

ATTACHMENT B2-8 BROMIDE ANALYTICAL METHODS:

Table 1. Bromide ISE Calibration Data

Table 2. Comparison of Laboratory and Field Bromide

Concentrations

Figure 1. Effect of Temperature on Bromide Calibration

Curves

APPENDIX B2 - TABLE OF CONTENTS

(continued)

ATTACHMENT B2-9	SINGLE-WELL TRACER EVALUATION TESTS - TEST
	PARAMETERS AND RESULTS:

Table 1. Summary of Test ParametersTable 2. Distilled Water Tracer Results

Table 3. Bromide Tracer Results

ATTACHMENT B2-10 MULTIPLE-WELL TRACER TEST - TEST PARAMETERS AND RESULTS:

Table 1. Corrected Flow Accumulator Readings (gallons)

Table 2. Injection and Extraction RatesTable 3. Relative Water Column Heights

Table 4. Summary of Relative Water Column Heights

Table 5. Bromide Tracer Results

Figure 1. Pumping Rates

Figure 2. Gradient for Wells I1, 01, E1
Figure 3. Gradient for Wells I2, 02, E2
Figure 4. Gradient for Wells I3, 03, E3
Figure 5. Gradient for Wells I4, 04, E4
Figure 6. Gradient for Wells I5, 05, E5

ATTACHMENT B2-11 SURVEYED WELL LOCATIONS

APPENDIX B3—GROUNDWATER ELEVATION DATA TABLE OF CONTENTS

B3 GROUNDWATER ELEVATION DATA
ATTACHMENT B3-1—GROUNDWATER ELEVATION DATA TABLE (1989-1992)
ATTACHMENT B3-2—WELL HYDROGRAPHS

APPENDIX B1

BOREHOLE AND SINGLE-WELL TEST DATA

B1.1 INTRODUCTION

During the Operable Unit No. 1 (OU1) Phase III Resource Conservation and Recovery Act (RCRA) Facility Investigation/Remedial Investigation (RFI/RI) field investigation at the Rocky Flats Plant (RFP) a total of 26 monitoring wells and 5 piezometers were installed at the 881 Hillside area. Packer tests (*in situ* pump-in tests) were performed to estimate the hydraulic conductivity of specific depth intervals in four bedrock boreholes in which wells and piezometers were subsequently constructed. Single-well tests were performed in 11 monitoring wells and three piezometers to estimate the hydraulic conductivity of surficial and bedrock materials in the vicinity of these wells and piezometers. Figure B1-1 presents a borehole and well location map.

Environmental and borehole drilling conditions encountered at OU1 precluded the estimation of bedrock formation parameters during packer testing with the exception of one borehole. However, hydraulic conductivity estimates were obtained for the bedrock formation from single-well tests performed in bedrock monitoring wells subsequently installed in the packer-tested boreholes. Single-well tests also provided hydraulic conductivity estimates for alluvial and colluvial materials. Table B1-1 is a fourth quarter 1991 well status summary, listing boreholes, monitoring wells and piezometers in which packer and single-well tests were conducted.

This appendix presents procedures and results for tests conducted at OU1 during the Phase III RFI/RI field investigation. Section B1.2 of this appendix focuses on the procedures and applications of the packer tests. Section B1.3 discusses the single-well slug injection, slug withdrawal, and bail down/recovery tests. Section B1.4 summarizes and compares the results of all tests at each borehole, well, and piezometer. Section B1.5 presents references for literature and software used in the determination of results. Attachment B1-1 presents all supporting raw field data, reduced data, analytical methods, calculations, and results for each test.

B1.2 PACKER TESTS (IN SITU_PUMP-IN TESTS)

To collect aquifer parameter data, the OU1 Phase III RFI/RI Work Plan (EG&G, 1991b) required that packer tests be conducted in boreholes drilled for bedrock monitoring well construction. The advantage of using packer tests to estimate aquifer characteristics is that well effects do not influence the resulting estimate as they do in slug tests and bail down/recovery tests performed in cased wells and piezometers. However, disadvantages of packer tests (e.g., lack of development and difficulty in obtaining good packer seals) often offset the advantages of performing such tests.

B1.2.1 General Description

During the field program, packer tests were attempted at four bedrock boreholes to determine in situ hydraulic conductivities using methods provided in the Environmental Management Department Standard Operating Procedure (SOP) for Ground Water (SOP GW.03) (EG&G, 1991a). As specified by the sampling requirements in the chemical analysis plan (DOE, 1991), bedrock boreholes at OU1 were drilled by auger methods. The packer tests, performed in open boreholes, were designed so that water could be injected at a constant pressure into the test interval. This design reflects equipment performance standards as presented in American Society for Testing and Materials (ASTM) D4630-86 (1987). By analyzing the response of flow rates with time, an estimate of hydraulic conductivity would be determined using an analytical method presented by Jacob and Lohman (1952).

Five boreholes were originally scheduled for constant head packer tests prior to completion of the wells or piezometers. These boreholes were drilled for installation of monitoring wells 37891 (MW27), 37991 (MW29), 39191 (MW28), and piezometers 38991 (PZ03) and 39291 (PZ01). Due to potentially hazardous access during bad weather conditions, packer tests at the borehole for piezometer 38991 (PZ03) were canceled to complete construction of the piezometer as quickly as possible. Of the four remaining boreholes originally designated for packer testing, borehole conditions allowed only one test to be completed within the equipment performance standards. That test at well 39191, however, was completed in an interval above the water table, which resulted in an estimate of field permeability rather than an estimate of hydraulic

conductivity. The conditions that contributed to the inability to collect satisfactory data at 37891 (MW27), 37991 (MW29), and 39291 (PZ01) were borehole collapse, excessive borehole diameters, and rough and irregular borehole walls. In addition, the presence of drilling-induced or natural high-permeability material in the borehole did not permit adequate seals between the test interval and the intervals above the packer.

The following section describes the test methods followed and discusses the factors influencing equipment performance.

The original Work Plan required the use of a straddle packer (two packer) configuration, but after the first few test attempts it was determined that a single packer configuration would be more successful and yield comparable data for these relatively shallow boreholes. Tests were therefore conducted at each of the four boreholes using the simplest test configuration, a single packer. Based on geophysical logging results, the geologic borehole log and the drill core, two or three intervals were selected as the most favorable to seat the packer in each borehole.

After the interval was selected and the equipment configured, the packer was lowered to the appropriate zone and inflated. Packer inflation pressures up to 200 pounds per square inch (psi) were expected to be sufficient, but the only adequate seal was attained at an inflation pressure of approximately 350 psi. After the packer was inflated and physically seated (i.e., allowed to stand free in the borehole after inflation), the test was initiated by slowly pressurizing the test interval at pressures below anticipated test pressures. The pressures in the test interval and the zone above the test interval were monitored during pressurization. As required by Ground Water SOP GW.03, if pressures increased in both of these zones, the seal was determined to be inadequate. During every test below the water table, in each borehole, the packer seal appeared to be inadequate based on the indication of quickly rising pressure above the packer.

For low-conductivity material, the packer seal is considered critical to accurately determine hydraulic conductivities because very low flow rates are used. Several conditions encountered in the OU1 bedrock boreholes may have precluded an adequate seal: disruption and fracturing of the localized area around the borehole during auger drilling, naturally occurring fractures in the claystone material, and excessive borehole diameters (the packers were designed to seal a

7-inch borehole at 200 psi or less.) During attempts to reseat and seal the packer at other intervals, the borehole wall typically caved in, which made accurate determination of borehole dimensions impossible without relogging. If an adequate seal could not be attained once a well was constructed, single-well slug injection, slug withdrawal, or bail down/recovery tests were conducted instead. This action was appropriate, since retrofitting the packer or constructing additional packer equipment would not have necessarily rectified the problem and allowed a successful test under the conditions encountered. Other options (e.g., drilling an offset well) were also not considered feasible.

For the only successful test, conducted in the borehole for monitoring well 39191 (MW28), a packer inflation pressure of approximately 350 psi was used to seat the packer just below the surface casing. An adequate seal was apparently attained, although unsaturated conditions may have merely made the seal appear to be adequate. This is because the unsaturated material "takes" the water pumped into the test interval into void spaces until the material is saturated rather than transmit the pressure elsewhere in the flow system. In this instance, a U.S. Department of the Interior analytical method (1974) was used to estimate field permeability of the tested unsaturated material. Table B1-2 is a summary of the packer test information and results.

B1.2.2 Data Collection Methods

ASTM D4630-86, with the exception of the drilling method constraints required by the chemical analysis plan (DOE, 1991). After auger drilling a borehole to the specified total depth, geophysical logging was conducted in the borehole using a caliper tool and a natural gamma tool. The geophysical logs, geologic borehole logs, and core were evaluated to determine favorable intervals within which to conduct the packer test. Initially favorable intervals included the following: below water table zones, sand-bearing zones, distinctly weathered zones and, if possible, unweathered zones. Two or three zones were typically selected for testing in each borehole based on the use of a straddle packer test configuration to isolate the test zone. However, single packer configurations became necessary after initial test attempts resulted in the collapse of the borehole and in the inadequate packer seals. Thereafter, test intervals were

selected where borehole diameters were small and integrity was good enough to allow an adequate seal for a valid test.

After the test interval was selected, all of the equipment necessary to conduct the test was transported to the test location. This equipment included the packer, riser pipes, reservoir and nitrogen tanks, rotameter panel, as well as all fittings, gages, and tools necessary to build, operate, and disassemble the packer. Initial water level and total depth measurements were collected with a water level meter and weighted tape. Based on this information, the packer was assembled to appropriate dimensions to perform the test. These dimensions were recorded on the Packer Test Setup Form; test parameters were recorded on the Packer Test Data Form. This information included anticipated test pressures, packer inflation pressure, reservoir water temperature and water level, air temperature, aquifer water temperature (measured from a small volume of bailed water), gages used, transducers used, and borehole dimensions. Attachment B1-1 includes the completed Packer Test Setup and Packer Test Data Forms.

The Hermit SE 2000 data logger (INSITU, Inc., 1990) was programmed so that transducer readings would be collected every minute. All transducer-specific parameters such as scale, offset, linearity, and mode were programmed into the logger for each transducer. The transducers were attached to the data logger and the packer above and within the test interval and referenced to zero while at the surface. The assembled packer was then lowered into the borehole and the riser pipe attached to reach the test depth. Once at depth, a water level was measured to make certain the packer was submerged. If the packer was not submerged, water was slowly added to the borehole through the packer's downhole shut-in valve until the entire packer was submerged. Once submerged, transducers were read and water levels verified against the water level meter. These readings were used to verify the test depth and the appropriate operation of the transducers set above and below the packer.

Next, the packer was slowly inflated to the previously calculated inflation pressure. Once inflated to the appropriate pressure, the packer was checked to verify that it was physically seated by letting it stand freely in the borehole. If it did not stand freely, the inflation pressure was increased by 10 to 20 percent until the packer was physically seated. Once seated, the

transducers were read until pressures had stabilized to expected pressures based on new water level readings collected after seating the packer.

When pressures had equilibrated a constant head test was initiated. This was done by pressurizing the reservoir to an initial pressure of about 5 to 10 psi. The rotameter was purged of air bubbles and the initial readings on the rotameter were verified to be zero, which indicated that there were no leaks in the flow system. The logger was started and the downhole shut-in valve opened. After a few seconds the pressure readings from both transducers were checked on the logger. If increases were noted in the upper interval, the packer was inflated another 10 to 20 percent to preclude any leaks. This process continued at pressures below anticipated injection test pressures until an appropriate seal was achieved. If an appropriate seal was achieved, the reservoir pressure and downhole injection pressure was increased to yield the predetermined test pressure and a test was started. If a seal was not attained at less than anticipated test pressures, the test was curtailed and the packer moved to a new test interval. This latter situation was the case at boreholes 37891, 37991, and 39291, which also experienced borehole collapse after an attempt was made to move the packer to a new test interval.

For the test at borehole 39191, a seal was apparently attained at a packer inflation pressure of approximately 350 psi (about twice the calculated inflation pressure). A test was conducted by pressurizing the test interval to roughly 24.8 feet of water head (not more than 0.07 psi per foot above gravity head to the center of the test interval). The transducers were read as continuously as possible and the test pressure maintained by adjusting the appropriate flow meter on the rotameter. Flow data were recorded at 1-minute intervals for the first 10 minutes of the test, and at 5-minute intervals for the remainder of the test. The test was continued for 60 minutes, at which time air bubbles in the most sensitive flow meter started to appear, causing wide fluctuation in flow readings. Best results would typically be achieved for such a test after a period of several hours.

Once the test was completed, all remaining test data were recorded on the Packer Test Data Form. These data include time of test completion, reservoir water temperature, aquifer water temperature, and air temperature. The data logger was shut off, the rotameter shut down, and hoses to the packer disconnected. The packer was removed from the borehole and all downhole

parts and tools used were wrapped in plastic for transport to the decon pad for decontamination. Head (pressure) versus time data from the data logger were downloaded to a diskette and printed on the field printer as backup. Copies of all recorded data were also made.

B1.2.3 Data Reduction Methods

Two data files were downloaded from the data logger for each attempted and completed packer test. One file, identified by the extension .DAT, consisted of head versus time data and was produced in a flat ASCII two-column format. The other file, identified by the extension .TST, consisted of programmed test and transducer information, as well as head versus time data. The .TST file format was specific to the data logger and was used to print data in the field.

The .DAT files were loaded into a spreadsheet program that was used to summarize and graph head versus time data to illustrate both the constant head maintained during the test and the flow rates (injection rates). These output were used to calculate parameters for data analysis.

Files were named according to the well or piezometer number and an added suffix of "_1A." For example, data files associated with the packer test at borehole 39191 are designated as 39191_1A.DAT and 39191_1A.TST.

B1.2.4 Data Analysis Methods

Data from the test conducted at 39191 were evaluated using a method presented by the U.S. Department of the Interior (1974) for constant head packer injection tests performed in unsaturated materials. Since this test was performed in unsaturated materials above the water table, this method of data analysis yielded an estimate of field permeability for the materials tested. If tests had been successfully conducted below the water table, the curve-matching technique presented by Jacob and Lohman (1952) would have been used to determine hydraulic conductivities as required by Ground Water SOP GW.03 (EG&G, 1991a).

March 1994 Page B1-7 The U.S. Department of the Interior (1974) analytical method is based on an equation that relates borehole geometry and test parameters (e.g., injected flow and the head applied to the test interval) to a field permeability. This equation is presented below:

$$k = \frac{Q}{2 L \pi H} \ln \left(\frac{L}{r}\right) \tag{1}$$

where:

k = permeability in feet/minute

Q = constant injection flow rate in cubic feet/minute

L = length of test interval in feet

H = total head applied to test interval in feet of water

r = radius of the borehole in the test interval in feet

The flow rate (Q) is the injection rate, as measured on the rotameter panel, minus any identified and quantified leaks. The length of the test interval (L) is obtained from measurements of the packer after inflation and the bottom of the borehole (for the single packer configuration). The total head applied to the test interval (H) is generally determined as the sum of the pressures applied to the test interval throughout the test. For the single packer test configuration used, however, H is taken as the reading on the test interval transducer. Finally the radius of the borehole within the test interval (r) is best determined as an average dimension from the caliper log since borehole diameters varied significantly in OU1 boreholes.

B1.3 SINGLE-WELL TESTS

All 14 single-well tests conducted during the OU1 Phase III RFI/RI field investigation were performed according to the procedures documented in the OU1 Phase III RFI/RI work plan (EG&G, 1991b) and Ground Water SOP GW.04 (EG&G, 1991a). Tests were conducted after well development, ground water sampling, and apparent stabilization of the water level (24 to 48 hours after sampling).

B1.3.1 General Description

Slug injection, slug withdrawal, and bail down/recovery tests were performed to estimate

horizontal hydraulic conductivities in the vicinity of well and piezometer screens because

previously determined hydraulic conductivities for aquifer materials at OU1 were too low to

sustain reasonable pumping rates for single-well pumping tests. Since water table (unconfined)

conditions were exhibited at each well tested, estimates of hydraulic conductivity were obtained

from the slug test and bail down/recovery test data using conventional methods presented by

Bouwer (1989), Bouwer and Rice (1976), and Hvorslev (1951). These analytical methods yield

"order of magnitude" estimates of hydraulic conductivity.

Slug injection and withdrawal tests are most appropriate for those conditions where the water

level in the well or piezometer is above the screened interval, whereas bail down/recovery tests

are applicable for those conditions where the water level is within the screened interval. To

determine the most appropriate testing procedure for each well or piezometer, water levels

collected during the fourth quarter of 1991 were evaluated. Water levels were above screened

intervals for monitoring wells 31891, 34791, 35691, 37191, and 37891 and for piezometers

38191 and 39291, so procedures for slug injection and withdrawal tests were used in these holes.

For wells 36191, 37591, 37791, 37991, 38591 and 39191 and piezometer 38991, bail

down/recovery test procedures were used because water levels at these locations were not above

the top of the screen. All other wells installed during the Phase III RFI/RI field investigation

did not exhibit water levels above or within their screened intervals and, therefore, were not

tested.

Table B1-3 lists the wells and piezometer tested along with tested intervals, water levels,

lithologies, and the types of tests performed at each location.

B1.3.2 Data Collection Methods

After removing the well or piezometer slip cap, followed by screening and clearance by health

and safety personnel, the static water level at the well or piezometer was measured and verified

to the nearest one-hundredth of a foot from the measuring point using a previously

Final Phase III RFI/RI Report EG&G, Operable Unit Number 1 eg&g\ou1\rfi-ri\append b\b1-text.mar decontaminated SolinstTM water level meter. The total depth of the well or piezometer was measured and verified using a previously decontaminated weighted tape. The water level and total depth measurements were recorded and compared to well installation, development, and sampling records to confirm that water levels had stabilized. When it was determined that the water level had stabilized, the type of test was selected and the test setup was initiated.

As part of the test setup for either of the slug or bail down test procedures, a transducer (sensitive within the 0 to 10 psi range) was connected to the Hermit SE 2000 data logger. Transducers with this sensitivity can be read by the logger to approximately three thousandths of a foot of head. The data logger was programmed to sample water levels within the well or piezometer in a logarithmic mode so that the sample interval after 100 minutes was 10 minutes. All transducer specifications provided by the manufacturer such as serial number, linearity, scale, and offset were programmed into the data logger. The previously decontaminated transducer was referenced to zero at the surface and lowered to its predetermined depth within the well or piezometer (below the depth at which the bottom of the slug would be during a slug injection test or below the bottom of the screen for a bail down test). Because the transducer and the transducer line displaces water within the well, the water level meter was used to measure the new water level in the well. The transducer reading was then checked against the water level meter reading; the reference level on the data logger was then set to the new water level. Next, the transducer line was secured to the well casing and marked with electrical tape to maintain the referenced depth.

A 10-minute calibration test (pre-run check-out test) was performed in each well or piezometer tested. This test consisted of starting the data logger and moving the transducer up approximately 1 foot once every minute for 5 minutes. After the first 5 minutes, the transducer was moved down 1 foot once every minute for 5 minutes. If the water column in the well or piezometer was less than 5 feet, the transducer was moved down 1 foot once every minute until it reached bottom. After the transducer had reached the bottom of the well it was moved up 1 foot once every minute until it reached the water level. This process was repeated until 10 minutes had elapsed. The water level meter was sed to measure water levels from the measuring point and verify the transducer readings. The well test was begun only after these

calibration results were reviewed and the data logger and transducer were determined to be functioning properly.

For the slug injection test, a previously decontaminated 4-foot-long by 1.625-inch-diameter stainless steel slug was attached to an appropriate length of unused or previously decontaminated nylon rope. A strip of electrical tape was attached to the rope at a location that ensured that the slug would hang just above the water in the well. Another strip of tape was attached to the rope at a location measured to ensure full submersion of the slug as close to 2 feet below the water as well conditions permitted. The slug was lowered into the well until the first tape marker lined up with the top of the casing. The rope was tied off to secure the slug in a position above the water in the well or piezometer. The data logger was then set up for another test with the same programmed variables as the previous 10-minute test. Water levels were re-verified using the water level meter and the transducer referenced, if necessary, to the new water level. With all equipment in place and the data logger and transducer operating properly, the logger was started and the slug lowered as smoothly as possible to its position marked by the second piece of tape on the rope. Once the slug was in place, the rope was tied off at the top to secure the position of the slug in the well. The data logger was read periodically as it recorded data during the test. Readings were checked against readings collected periodically with the water level meter to verify that all equipment was functioning properly. The start time and initial test displacement were also recorded.

Once water levels had recovered to within 10 percent of the static water level measured prior to the slug injection or when 48 hours had elapsed, the slug injection test was terminated. The water level versus time data from the data logger were reviewed. Data collection was terminated by stopping the test on the data logger, and a new test was then programmed into the data logger with all programmed variables the same as the injection test. This new test was set up for the slug withdrawal. Although not specifically outlined in the SOPs, this test was performed to provide additional data to verify the slug injection test results.

After programming the new test on the data logger, the data logger was started as the slug was smoothly removed from the well. As with the slug injection test, water levels were periodically measured with the water level meter and verified against the readings of the data logger. The

slug withdrawal test was terminated when water levels returned to within 10 percent of the static water levels recorded prior to the test or when 48 hours had elapsed, whichever came first.

The same setup procedures used for the slug injection/slug withdrawal tests were used for the bail down/recovery tests. Once the test was set up and a calibration test performed, a previously decontaminated 3-foot-long by 1.5-inch-diameter stainless steel bailer was attached to unused or previously decontaminated nylon rope. The bailer was used to bail water out of the well until a water level was at or slightly below the bottom of the screened interval of the well or piezometer. Bailed water was containerized for disposal. When the appropriate water level was achieved, the data logger was started. The hydrogeologist monitored the water level recovery by reading the logger and the water level meter. Bailing rates and initial displacement were recorded and recovery allowed to continue until water levels had recovered to within 10 percent of the static water level measured prior to the bailing or when 48 hours had elapsed, whichever occurred first.

For slug injection/slug withdrawal, or bail down/recovery tests that continued for more than 2 or 3 hours, water level recovery was recorded automatically by the data logger. The well head was secured and marked to allow the test to continue without the hydrogeologist present. Periodically, the hydrogeologist returned to read the data logger until the test was complete.

After each test, all down-hole equipment (slug, rope, bailer, transducers, and water level meter) was decontaminated or disposed. Once a test was completed, data files were printed out on the field printer and data files downloaded from the data logger.

B1.3.3 Data Reduction Methods

Two data files were downloaded from the data logger for each test; a file designated by its extension ".DAT" and a file designated by the extension ".TST". The ".DAT" file consists of time versus water level data and is in an flat ASCII two column format. The ".TST" file is in a format specific to the data logger and consists of the programmed information for the test and transducer as well as the time versus water level data.

Files were given a time-sequential suffix, depending on the type of test performed. Files associated with the initial 10-minute calibration test were named according to the well (MW) or piezometer (PZ) number with an added suffix "_1A". Slug injection test files were named according to the well or piezometer number and an added suffix "_1B," and slug withdrawal tests were named according to the well number followed and an added suffix "_1C". Bail down recovery test files were named according to the well number and an added suffix "_1B".

For example, data files associated with a slug injection/slug withdrawal test at well 31891 (MW02) are designated as follows:

```
MW02_1A.DAT, MW02_1A.TST Ten-minute calibration test data MW02_1B.DAT, MW02_1B.TST Slug injection test data MW02_1C.DAT, MW02_1C.TST Slug withdrawal test data
```

The following data files are associated with the bail down/recovery test at 36191 (MW05):

```
MW05_1A.DAT, MW05_1A.TST Ten-minute calibration test data MW05_1B.DAT, MW05_1B.TST Bail down recovery test data
```

The ".TST" files were printed out in the field, while the ".DAT" files were loaded into a computerized spreadsheet that summarizes the data in a format comparable to the Slug Test Data Form (Form No. GW.4A). The spreadsheet program was also used to graph the excess head versus time data to illustrate the water level recovery response in the well or piezometer. The data contained in these spreadsheets were used to estimate hydraulic conductivities.

B1.3.4 Data Analysis Methods

Two methods of data analysis were used to estimate hydraulic conductivities, the Bouwer and Rice method and the Hyorslev method.

The Bouwer and Rice analytical method introduces less error than other methods, such as the Hvorslev method. Estimates of error based on comparison between different methods of hydraulic conductivity estimation indicate error of up to 30 percent for Bouwer and Rice

(Kruseman and deRidder, 1991). This error is based on error in determining unitless parameters derived from the electrical models that allow the Theim equation to be solved.

Estimates of potential error in the Hvorslev method can exceed 50 percent (Bouwer and Rice, 1976). Most error in using the Hvorslev method is due to application (or inappropriateness) of general assumptions (e.g., the infinite vertical extent of the borehole). Although both estimation methods are presented, it is recommended that the Hvorslev estimates be used as approximations to verify Bouwer and Rice estimates in cases where the Hvorslev method can be applied.

B1.3.4.1 Bouwer and Rice Method

The primary method used to estimate hydraulic conductivity values for the slug injection/slug withdrawal and bail down/recovery tests was the method presented by Bouwer and Rice (1976). This method yields an "order of magnitude" estimate of hydraulic conductivity, and was developed specifically for slug withdrawal tests for wells and piezometers of specified geometries from the Theim equation (Kruseman and deRidder, 1991). According to an update on the methodology (Bouwer 1989), this method is also applicable to slug injection tests if the static water level in the well is above the screened interval and water table conditions prevail. The Bouwer and Rice method can easily be adapted for fully and partially penetrating conditions.

Assumptions for the appropriate use of the Bouwer and Rice method are best summarized by Kruseman and deRidder (1991). The assumptions include standard Theim equation assumptions, which require the aquifer to be unconfined, infinite in areal extent, homogeneous, isotropic, and of uniform thickness; the water table is also assumed to be horizontal in the vicinity of the test well. Additional assumptions include the following: the head in the well is changed instantaneously at the start of the test, the well diameter is assumed to be finite, and flow to the well is under steady state conditions.

The Bouwer and Rice equation, which requires well geometries similar to those for wells installed at OU1, determines hydraulic conductivity (K) as follows:

Final Phase III RFI/RI Report EG&G, Operable Unit Number 1 eg&g\ou1\rfi-ri\append_b\b1-text.mar

$$K = \frac{r_c^2 \ln (R_e/r_w)}{2 L_e} \frac{1}{t} \ln (y_0/y_t)$$
 (2)

where:

r_c = radius of casing or riser pipe where the head is rising (or falling)
r_w = horizontal distance to the undisturbed aquifer (bore hole radius)
R_c = effective radial distance over which the head is dissipated

 L_e = length of open section (screen) y_0 = head at time t_0 (start of test)

 y_t = head at time t (t>t₀)

t = time

The parameters r_w and L_e were determined from the well construction geometry. For slug injection/withdrawal tests and bail down/recovery tests, the radius of the well (r_w) was taken as the radius of the borehole. L_e was taken as the vertical length between the top slot and bottom slot of the slotted-screen section of polyvinyl chloride (PVC). If the top and bottom slot depths were not identified on the well construction diagram, 0.4 feet was subtracted from the screen length to compensate for the unslotted portion of the screen at the top and bottom of the PVC section. For bail down/recovery tests, L_e was taken as the length of saturated screen interval to the bottom slot of the screen.

In general, the parameter r_c was taken as the radius of the screen when the screen was fully saturated. This was the case for wells subjected to slug injection and withdrawal tests. For bail down/recovery tests, r_c was taken as an effective radius of the screen. An adjustment was made to the value used for the casing radius (r_c) to compensate for the relatively large, more permeable sand pack around the well screen. The sand pack drains at a faster rate than the surrounding aquifer during a withdrawal or bail down recovery test because the sand pack and screen are not fully saturated. The effective screen radius was calculated based on the equation presented by Bouwer (1989) with an estimated sand pack porosity of 30 percent. The 30 percent sand pack porosity is based on well development assumptions rather than the reported laboratory permeability of 38 to 45 percent for the 16-40 gradation sand because the laboratory permeability of this material is expected to decrease when mixed with the fine-grained native materials around the borehole.

The parameters y_0 , t, and y_t were obtained from semi-logarithmic plots of excess head or displaced head (h) (on the logarithmic scale) versus time (t) (on the linear scale). A straight line was fitted through the plotted points and y_0 was read as the y intercept. Parameters y_t and t were read at a convenient point along the straight line through the plotted points. With these parameters determined, a value of $(1/t) \ln (y_0/y_t)$ was evaluated.

Bouwer (1989) indicates that in some cases, the displacement versus time graph illustrates an initially steep straight line response followed by a less steep straight line. This second straight line is more indicative of aquifer conditions because the first straight line represents the relatively quick draining of the sand pack or most developed zone around the well. This effect was apparent for all bail down/recovery tests except for the test in well 39191 (MW28). Therefore, the straight line was fitted through the second definitive straight line for all bail down/recovery test data except for test data from well 39191 (MW28). For all bail down/recovery tests, the parameter r_c was also adjusted to yield an effective radius dimension as described above.

To determine R_e , empirical equations developed from electrical analog flow models were used (Bouwer and Rice, 1976). These equations allow for analysis of test data from partially and fully penetrating wells. Equation (3) was used for determination of $ln(R_e/r_w)$ under fully penetrating conditions and Equation (4) was used for partially penetrating conditions.

$$\ln \frac{R_e}{r_w} = \left[\frac{1.1}{\ln (L_w / r_w)} + \frac{C}{L_e / r_w} \right]^{-1}$$
 (3)

$$\ln \frac{R_e}{r_w} = \left[\frac{1.1}{\ln (L_w / r_w)} + \frac{A + B \ln [(H - L_w)/r_w]}{L_e / r_w} \right]^{-1}$$
 (4)

where:

R_e = effective radial distance over which the head is dissipated r_w = horizontal distance to undisturbed aquifer (borehole radius)

L_w = depth to bottom of screen below water table

L_e = length of open section (screen)

A,B,C = dimensionless parameters

For each of these equations, L_w is the depth below the water table of the bottom of the intake or screened section of the well. The parameter H represents the depth from the water table to the base of the water table aquifer. For Equation (3), L_w equals H, and represents fully penetrating conditions. Equation (4) was used for partially penetrating wells where L_w is less than H. Parameters A, B, and C are dimensionless and are determined graphically from empirical curves developed by Bouwer and Rice (1976).

For wells screened in surficial materials (i.e., Rocky Flats Alluvium, colluvium, and Woman Creek valley fill alluvium), screens were installed at or partially penetrating the bedrock contact and are therefore considered to fully penetrate surficial materials. For these wells, L_w and H are equal and values were taken as the interval from the static water level to the bottom slot of the well screen. For wells installed in bedrock materials, partially penetrating conditions prevail since the bedrock aquifer is expected to be at least 100 feet or more in depth. However, because of the extremely low permeabilities exhibited by previously tested bedrock wells and the relatively small displacement achieved during these slug tests, significant aquifer effects are not expected below the depth of bottom of the borehole. Therefore, for bedrock wells, L_w was taken as the interval from the static water level to the bottom slot of screen, while H was taken as the interval from the static water level to the bottom of the sand pack.

Using graphical methods to solve for $1/t \ln(y_0/y_t)$ and $\ln(R_e/r_w)$, Equation (3) and (4) were solved manually for K. This manual procedure was used to determine an initial value for each test, although a computer program was used to generate the final estimate presented for each test.

To reduce possible calculation errors and assist with data management, processing, and presentation, the AQTESOLV computer program was used to estimate hydraulic conductivities for slug injection/slug withdrawal, and bail down/recovery tests. AQTESOLV has a module specifically designed to accommodate data management, evaluation, and presentation of slug test data analyzed using the Bouwer and Rice method (Geraghty and Miller, 1989, updated 1991). Although the program can automatically calculate hydraulic conductivity values using well geometry input values and iterative numerical methods to perform curve fitting, this automation is most effective on ideal time versus displacement data sets. Because most of the OU1 data are not ideal, the automated, curve-fitting aspect of AQTESOLV was not used. Instead, hydraulic

conductivity values were calculated with the user-assisted visual curve fitting application of the AQTESOLV program after well geometry parameters were input. Output values and plots prepared in this manner compared favorably to calculations and plots generated manually.

Table B1-4 summarizes all inputs for running the Bouwer and Rice hydraulic conductivity analysis used in the AQTESOLV program, and Table B1-5 presents the intermediate parameters and output values. Output summaries and plots generated by AQTESOLV are included in Attachment B1-1 and illustrate input values, output values, and the visual curve fit used during analysis. Parameter names presented above for the Bouwer and Rice equations (Equations 3 and 4) differ slightly from those used and presented as output by AQTESOLV. The following is a list of parameters as used by Bouwer and Rice (1976) and the AQTESOLV program and their corresponding definitions.

Parameter Descriptions	Bouwer and Rice Parameters	AQTESOLV Parameters
Screen length	L _e	L
Static water level in well (above bottom of screen)	L _w	Н
Aquifer saturated thickness	Н	ь
Initial displacement (read as y intercept after curve fitting)	Уо	y_0
Radius of casing	r _c	\mathbf{r}_{c}
Radius of well	r _w	$ m r_w$

B1.3.4.2 Hvorslev Method

The Hvorslev method of evaluating slug injection or withdrawal data was used as a secondary method to estimate hydraulic conductivity of the aquifer materials around each tested well or piezometer. This method is described in detail in the original paper (Hvorslev, 1951) and in numerous hydrogeological text books such as Fetter (1988), Freeze and Cherry (1979), and Cedergren (1967). Due to testing and analytical approach limitations, this method yields an "order of magnitude" approximation of hydraulic conductivity around a tested well or piezometer, and is considered valid for specific well or piezometer geometries (Kraemer et al.,

1990) if the qualifying test assumptions are met. Sevee (1991) points out that "the lack of conceptual rigor limits the accuracy of this method." Therefore, estimates determined using the Hvorslev method were used for general validation of the estimates determined using the more rigorous Bouwer and Rice method. For example, the Hvorslev analysis method requires that the intake portion of the tested well (i.e., sand pack and screen) is below the water table. This prerequisite limited the applicability of this estimation method at all but three wells and piezometers tested at OU1 during the Phase III RFI/RI program.

The derivation of the Hvorslev equation used to estimate hydraulic conductivity includes the following assumptions: the material tested is assumed to be homogeneous, isotropic and infinite in extent; the water and soil are incompressible; the water table around the well is not influenced by the test; and the intake is a cylinder of infinite vertical extent. For alluvial wells at OU1, the relatively less permeable bedrock zone directly below the screen was not expected to satisfy the assumption of an intake of infinite vertical extent and therefore the Hvorslev equation results in erroneously low conductivity estimates.

In general, the geometry of the wells and piezometers installed at OU1 correspond to that presented by Hvorslev as a well point filter in uniform soil. The major difference is the presence of the sediment sump in OU1 wells. However, the sump does not introduce significant error in the determination of hydraulic conductivities at OU1 wells and piezometers since the Hvorslev method can accommodate adjustment of the sand pack length parameter (i.e., intake length).

Based on the above assumptions, Hvorslev-derived formulas can be used to estimate hydraulic conductivity for wells or piezometers under water table conditions. Equation (5) is an adaptation of the Hvorslev formula for well geometries where the length of the screen is at least eight times the radius of the well (L/R > 8). This formula was used for estimating hydraulic conductivities at three wells, which meets the qualifying assumptions required by the Hvorslev method:

$$K = \frac{r^2 \ln (L/R)}{2 L T_0}$$
 (5)

where:

r = radius of casing in borehole

L = length of intake

R = radius of intake

 T_0 = basic lag time

All parameters except T_0 were obtained from the well construction and installation records reflecting the geometry of the tested well or piezometer. Values of r, R, and L were assigned values analogous to those used in the Bouwer and Rice analysis so results from the two analytical methods could be compared effectively. The parameter (r), radius of casing, was taken as the radius of the PVC casing and is analogous to the parameter (r_c) used in the Bouwer and Rice method. The radius of the intake (R) was taken as the radius of the borehole and is analogous to the parameter (R_w) used in the Bouwer and Rice method. The value for the length of the intake was analogous to the length of the screened interval (L_c) used in the Bouwer and Rice method and represents the distance from the top slot to the bottom slot of screened section of PVC in the well.

 T_0 is the basic time lag or time required for the water level to completely equilibrate after water is injected or withdrawn, assuming that the original rate of outflow or inflow was maintained. The basic time lag is derived graphically from a semilogarithmic plot of excess head divided by initial head (H/H₀) of the test (on the logarithmetic scale) versus time (on the linear scale). As done with other parameters used in the Hvorslev analysis method, the initial head H_0 was taken as an analogous value presented as y_0 or initial displacement in the Bouwer and Rice analysis. For an ideal aquifer response, a straight line is fitted through the plotted data so that the line extends from the point where H/H_0 equals 1.0 (100 percent) and time (t) equals 0 through the remaining data points. T_0 is read from the graph at the point on the time axis where H/H_0 equals 0.37 (see H/H_0 versus time plots in Attachment B1-1 for examples). For plots that did not exhibit a distinct straight line, the data was adjusted so that the line passed "through the origin $[H/H_0 = 1.0$ and t = 0] of the diagram and parallel to the lower [straight line] portions of the diagram (Hvorslev 1951)."

Table B1-6 is a summary of all parameters used for each test in estimating hydraulic conductivities using the Hvorslev method. This table also illustrates that conditions at only three

wells allowed the valid use of the Hvorslev method. Attachment B1-1 contains tables of displacement and time data, graphs of H/H_0 versus time used to calculate T_0 , and calculations showing parameters and resulting conductivity estimates for well tests that were analyzed using the Hvorslev method.

B1.4 RESULTS

This section presents a summary of results from aquifer parameter tests for the OU1 Phase III RFI/RI field investigation. Summaries of tests conducted at each borehole, well, or piezometer are presented to illustrate the significance of the results. Subsequent discussion includes an overall summary of results in which test and analytical methods are evaluated by comparing results obtained during this investigation and previous investigations.

B1.4.1 Location-Specific Test Summary

31891 (MW02)

Monitoring well 31891 (MW02) is located along the southern berm of the South Interceptor Ditch downgradient of Individual Hazardous Substance Site (IHSS) 102. According to the well construction diagram (Appendix A1), the well is screened at a depth of 16.6 to 18.6 feet below ground surface and the sand pack ranges from 14.6 to 19.0 feet below ground surface. Based on the borehole log (Appendix A1), the screened interval consists of colluvial sandy clay and bedrock clayey sandstone that is bounded below by bedrock claystone at 18.6 feet. The water level prior to testing was 15.51 feet below ground surface and indicates water table conditions at the time of the test. Hydraulic conductivity estimates derived using the Bouwer and Rice method for the slug injection and withdrawal tests yield the same value of 2 x 10⁴ centimeters/second (cm/sec) (4 x 10⁴ feet/minute [ft/min]) (Table B1-5). A valid estimate using the Hvorslev method could not be determined since the water level was within the sand pack interval.

The hydraulic conductivity estimates are within the range of values for bedrock sandstones at OU1 determined during previous investigations. However, the values presented for well

31891 (MW02) appear to represent the high portion of this range. This is most likely due to the degree of weathering of this shallow sand zone and the presence of overlying colluvial material tested in conjunction with the bedrock sand zone. All estimates fall within general hydraulic conductivity range for silty sand presented by Freeze and Cherry (1979) and are within the range for silty sand and fine sand presented by Fetter (1980).

34791 (MW13)

Monitoring well 34791 (MW13) is located along the southeastern border of IHSS 119.2. According to the well construction diagram (Appendix A1), the well is screened at a depth of 6.0 to 8.0 feet below ground surface and the sand pack ranges from 5.9 to 9.5 feet below ground surface. Based on the borehole log (Appendix A1), the screened interval consists of colluvial silty, sandy gravel that is bounded below by bedrock claystone at 8.0 feet. The water level prior to testing was 2.44 feet below ground surface and indicates water table conditions at the time of the test. Hydraulic conductivity estimates range from 6 x 10^6 to 1 x 10^{-5} cm/sec (1 x 10^{-5} to 2 x 10^{-5} ft/min), derived using the Bouwer and Rice method for the slug injection and withdrawal tests, respectively (Table B1-5). Estimates could not be obtained using the Hvorslev method since L/R < 8.

The slug withdrawal test estimate is approximately 50 percent lower than the slug injection test estimate. This most likely results from elevation of the localized water table in the vicinity of the well such that the unsaturated sand pack becomes saturated relatively quickly during the injection test. Alternatively, inadequacies in well construction may result in void spaces in the sand pack, well seal, and the localized area around the borehole that rapidly fill with water during the slug injection. This is exhibited in the steep initial slope of the drawdown versus time plot for this test. The slug withdrawal test plot does not exhibit this tendency.

Both estimates fall within general hydraulic conductivity ranges for colluvial materials at OU1 determined during previous investigations and within ranges for silty sand presented by Freeze and Cherry (1979). These estimates are also within the range for silt, sandy silts, and clayey sand presented by Fetter (1980).

35691 (MW17)

Monitoring well 35691 (MW17) is located south of Building 881, east of IHSS 107. According to the well construction diagram (Appendix A1), the well is screened at a depth of 15.6 to 26.6 feet below ground surface and the sand pack ranges from 13.4 to 30.3 feet below ground surface. Based on the well construction diagram and borehole log (Appendix A1), the screened interval consists of disturbed colluvial silty clay with some sand, gravelly sandy clay, and clayey gravel. This mixture of materials may result from construction activities in the area since the well is located on a berm. Below 25.2 feet is weathered bedrock claystone. The water level prior to testing was 9.34 feet below ground surface and indicates water table conditions at the time of the test. Hydraulic conductivity estimates derived using the Bouwer and Rice method result in values of 1 x 10-6 cm/sec (2 x 10-6 ft/min) and 9 x 10-7 cm/sec (2 x 10-6 ft/min) for the slug injection test and slug withdrawal test, respectively (Table B1-5). Estimates derived using the Hvorslev method result in hydraulic conductivity estimates of 8 x 10-7 cm/sec (2 x 10-6 ft/min) and 6 x 10-7 cm/sec (1 x 10 ft/min) for the slug injection and withdrawal tests, respectively (Table B1-6).

For both analytical methods, estimates for the injection and withdrawal tests are approximately the same; however, the estimates derived using the Hvorslev method are slightly lower than those determined using the Bouwer and Rice analytical method. All estimates seem low compared to estimates for colluvial materials from previously conducted investigations at OU1. Estimates are within the range for clay presented by Fetter (1980) and within the range for silt presented by Freeze and Cherry (1979), but the presence of sands and gravel within the test interval indicate that hydraulic conductivities should be higher.

The low estimates may be due to ineffective well development, low-permeability skin effects, or emplacement and compaction of non-native materials during construction of Building 881 and roads in the vicinity of the well. Also, water levels at this well indicate that the colluvial aquifer is recharged by water from the nearby skimming pond in IHSS 107. The water table near this well may be more steeply sloped in this area than in the vicinity of other tested wells. The slope in the water table limits the directions which water moves into or out of the well and may reduce estimates derived using either the Hvorslev or the Bouwer and Rice analytical method.

36191 (MW05)

Monitoring well 36191 (MW05) is located east of Building 881, outside the fence and downgradient of IHSS 103. According to the well construction diagram (Appendix A1), the well is screened at a depth of 9.5 to 14.6 feet below ground surface and the sand pack ranges from 7.4 to 14.9 feet below ground surface. Based on the borehole log (Appendix A1), the screened interval consists of a colluvial, well-graded gravelly sand with a 0.6-foot layer of clay from 12.2 to 12.8 feet below ground surface. Below 14.0 feet is bedrock claystone. The water level prior to testing was 11.94 feet below ground surface and indicates water table conditions at the time of the test. Hydraulic conductivity estimates derived using the Bouwer and Rice method for the bail down/recovery test yield a value of 1 x 10-6 cm/sec (2 x 10-6 ft/min) (Table B1-5). A valid estimate could not be obtained using the Hvorslev method since the water level was not above the sand pack interval.

The Bouwer and Rice estimate required a correction to r_c and a curve match on the second distinct straight line of the displacement versus time plot to accommodate the fast draining sand pack. This estimate seems low compared to other estimates for colluvial materials from previously conducted investigations at OU1. The results for well 36191 (MW05) also appear low for the types of materials tested compared to ranges presented by Fetter (1980) and Freeze and Cherry (1979). This may be due to the small amount of head displacement applied during the test, less extensive well development, or low-permeability skin effects. Alternatively, near-surface materials may have been compacted during construction of Building 881 and the roads in the vicinity of the well, reducing hydraulic conductivities in the localized area surrounding the well. Also, because this well is located near an identified surface seep or alluvial recharge area, the water table may be more steeply sloped than in the vicinity of other colluvial wells. This steeply sloped water table could be responsible for the low values of hydraulic conductivity estimated at this well.

37191 (MW16)

Monitoring well 37191 (MW16) is located along the southeastern boundary of IHSS 130. According to the well construction diagram (Appendix A1), the well is screened at a depth of

11.1 to 21.1 feet below ground surface and the sand pack ranges from 9.2 to 22.0 feet below ground surface. Based on the borehole log (Appendix A1), the screened interval consists of colluvial gravelly sandy clay and is bounded below by bedrock claystone at 20.6 feet. The water level prior to testing was 7.13 feet below ground surface and indicates water table conditions at the time of the test. Hydraulic conductivity estimates derived using the Bouwer and Rice method for slug injection and withdrawal tests yield values of 1 x 10⁴ cm/sec (2 x 10⁴ ft/min) and 4 x 10⁻⁵ cm/sec (8 x 10⁻⁵ ft/min) for the slug injection and slug withdrawal tests, respectively (Table B1-5). Estimates derived using the Hvorslev method indicate hydraulic conductivities of 1 x 10⁻⁴ cm/sec (2 x 10⁻⁴ ft/min) and 5 x 10⁻⁵ cm/sec (1 x 10⁻⁴ ft/min) for the slug injection and withdrawal tests, respectively (Table B1-6).

The agreement between the results derived from the two methods is very good, although the results of the slug withdrawal test are approximately 50 percent of those of the injection test. This difference arises from faster recovery during the slug injection test than during the slug withdrawal test. The faster recovery most likely resulted from localized elevation of the water table in the vicinity of the well such that the capillary fringe above the water table became saturated relatively quickly during the injection test. Alternatively, inadequacies in well construction may result in void spaces in the sand pack, well seal, or the localized area surrounding the borehole that rapidly filled with water during the slug injection. It should also be noted that during the slug withdrawal test the slower response may be due to the water level being displaced to a level below the sand pack. This results in slower recovery while the water level rises to fully resaturate the sand pack.

All estimates fall within general hydraulic conductivity ranges for silty sand presented by Freeze and Cherry (1979) and for silt, sandy silts, and clayey sands presented by Fetter (1980). Also, all estimates are within the range presented for alluvial and colluvial materials obtained during previous OU1 investigations.

37591 (MW22)

Monitoring well 37591 (MW22) is located in the contractor yard north of OU1 and east of Building 881. According to the well construction diagram (Appendix A1), the well is screened

at a depth of 7.6 to 12.6 feet below ground surface and the sand pack ranges from 5.6 to 14.6 feet below ground surface. Based on the borehole log (Appendix A1), the screened interval consists of an alluvial gravel-sand-clay mixture in the Rocky Flats Alluvium. Below 12.0 feet is bedrock claystone. The water level prior to testing was 11.19 feet (3.41 meters) below ground surface and indicates water table conditions at the time of the test. Hydraulic conductivity estimated using the Bouwer and Rice method for the bail down/recovery test yielded a value of 7×10^{-6} cm/sec (1 x 10^{-5} ft/min) (Table B1-5). A valid estimate using the Hvorslev method could not be obtained since the water level was within the sand pack interval.

The Bouwer and Rice estimate required a correction to r_c and a curve match on the second distinct straight line of the displacement versus time plot to accommodate the fast-draining sand pack.

Since well tests have not been conducted in RFP alluvial materials in the vicinity of OU1 prior to this investigation, no comparative values of hydraulic conductivity exist from previous investigations. However, the estimated value appears low for the types of materials tested compared to values presented by Fetter (1980) and Freeze and Cherry (1979). This may be due to the small amount of head displacement applied during the test and/or insufficient well development. Alternatively, near-surface materials may have been compacted during construction and heavy usage of the contractor's yard. The well recovered to a level 0.3 feet above the static water level measured before the bail down/recovery test. This indicates that the initial static water level measurement may have been inaccurate, that the well may not have fully recovered after sampling, or that the water table was rising since heavy snows occurred roughly one week before the test was conducted.

37791 (MW21)

Monitoring well 37791 (MW21) is located near the northwestern corner of Building 881. According to the well construction diagram (Appendix A1), the well is screened at a depth of 10.6 to 20.6 feet below ground surface and the sand pack ranges from 8.8 to 22.6 feet below ground surface. Based on the borehole log (Appendix A1), the screened interval consists of colluvial clay with varying amounts of silt, sand, and gravel in the Woman Creek valley fill

alluvium. Bedrock claystone is at 20.0 feet. The water level prior to testing was 20.01 feet below ground surface and indicates water table conditions at the time of the test. Due to limited access to the well and discrepancies in reported water levels, a test was conducted in spite of low observed water levels. Although a bail down/recovery test was performed, estimates of hydraulic conductivity could not be reliably obtained. For the Bouwer and Rice method, $ln(R_e/r_w)$ values were negative, indicating that water level displacement was not sufficient to allow estimation of hydraulic conductivity. It is recommended that bail down tests be performed in this well when there is at least 3.6 feet of water in the monitoring well.

37891 (MW27)

Monitoring well 37891 (MW27) is located along the southern boundary of IHSS 119.1. Packer tests were attempted in the borehole drilled for this well (Table B1-2). The borehole collapsed prior to the first test and had to be reamed. After reaming, the packer was set up at depth to test the interval from 37.2 to 56.3 feet (the top of the water table). An effective seal could not be attained. The packer was then moved to test the interval from 29.2 to 57.0 feet and again an adequate seal could not be attained. The borehole collapsed again, and no further packer tests were attempted. A single-well slug test was recommended after the well was completed in this borehole.

According to the well construction diagram (Appendix A1), the well is screened at a depth of 43.2 to 53.2 feet below ground surface and the sand pack ranges from 40.0 to 55.2 feet below ground surface. Based on the borehole log (Appendix A1), the screened interval consists of weathered bedrock silty claystone, clayey siltstone, and siltstone with clay and trace sand. The water level prior to testing was 41.90 feet below ground surface and indicates water table conditions at the time of the test. Hydraulic conductivity estimates derived using the Bouwer and Rice method yield values of 5 x 10⁻⁷ cm/sec (1 x 10⁻⁶ ft/min) and 1 x 10⁻⁶ cm/sec (3 x 10⁻⁶ ft/min) for the slug injection and slug withdrawal tests, respectively (Table B1-5). A valid estimate could not be obtained using the Hvorslev method since the water level was not above the sand pack interval.

The estimate for the slug injection test is approximately 50 percent lower than that for the slug withdrawal test. This is the only slug injection/slug withdrawal test for which the results for the injection test are less than the results for the withdrawal test. This may be because the recovery of the injection test was less than the static water level prior to the test, indicating that the water level in the well may not have been equilibrated since sampling. Alternatively, the well may have been better developed by the surging effect of the slug injection. Regardless, the results obtained are consistent with those of previously performed tests in the weathered bedrock at OU1 and the determined values fall within the high portion of the general conductivity range for unweathered marine clay presented by Freeze and Cherry (1979). These estimates also fall within the general range for clay as presented by Fetter (1980).

37991 (MW29)

Monitoring well 37991 (MW29) is located in the western section of IHSS 119.1. Packer tests were attempted at the borehole drilled for this monitoring well even though the borehole was dry (Table B1-2). The first test was set up to test the interval from 42.1 to 51.9 feet. For this interval, an adequate seal was not attained and the packer was moved to another interval. During the movement of the packer, the borehole collapsed and had to be reamed. A second test was set up at the interval from 42.1 to 57.5 feet. Again, an adequate seal was not attained. A single-well test was recommended if the subsequently installed monitoring well had adequate water levels.

According to the well construction diagram (Appendix A1), the well is screened at a depth of 45.2 to 55.2 feet below ground surface and the sand pack ranges from 43.0 to 57.2 feet below ground surface. Based on the borehole log (Appendix A1), the screened interval consists of weathered bedrock claystone, clayey siltstone, sandy clayey siltstone, and silty claystone. The water level prior to testing was 48.78 feet below ground surface and indicates that the sandy clayey siltstone and silty claystone were saturated under water table conditions at the time of the test. Hydraulic conductivity estimated using the Bouwer and Rice method for the bail down/recovery test yield a value of 7 x 10-6 cm/sec (1 x 10-5 ft/min) (Table B1-5). A valid estimate using the Hvorslev method could not be obtained since the water level was not above the sand pack interval.

The Bouwer and Rice estimate required a correction to r_c and a curve match was made on the second distinct straight line on the displacement versus time plot to accommodate for the fast-draining sand pack.

The estimate obtained is within the range of conductivity values presented for weathered claystone during previous investigations. The estimate is also within the range of hydraulic conductivities for silt as presented by Freeze and Cherry (1979) and the range for clay and silt as presented by Fetter (1980).

38191 (PZ05)

Piezometer 38191 (PZ05) is located near the southern border of IHSS 119.1. According to the well construction diagram (Appendix A1), the piezometer is screened at a depth of 10.0 to 15.0 feet below ground surface and the sand pack ranges from 8.1 to 14.9 feet below ground surface. Based on the borehole log (Appendix A1), the screened interval consists of colluvial sand-silt-clay mixture with gravel and silty gravelly sand. Weathered bedrock claystone is located below at 14.7 feet. The water level prior to testing was 9.38 feet below ground surface and indicates water table conditions at the time of the test. Hydraulic conductivity estimates derived using the Bouwer and Rice method yield values of 1 x 10⁻⁵ cm/sec (2 x 10⁻⁵ ft/min) and 2 x 10⁻⁶ cm/sec (4 x 10⁻⁶ ft/min) for the slug injection and slug withdrawal tests, respectively (Table B1-5). A valid estimate could not be obtained using the Hvorslev method since the water level was not above the sand pack interval.

The results of the slug injection test are approximately ten times greater than those of the withdrawal test. This difference arises from faster recovery during the slug injection test than during the slug withdrawal test. The faster recovery most likely results from localized elevation of the water table in the vicinity of the well such that unsaturated sandpack becomes saturated relatively quickly during the injection test. Also, the displacement versus time plots of the slug injection test indicate that full recovery after the slug injection was not achieved, and that the well may not have fully stabilized after sampling or that the water table was rising during the injection test.

The results are consistent with those of tests conducted in colluvial materials during the OU1 Phase III RFI/RI field investigation, but are slightly low compared to results of tests previously performed in colluvial wells at OU1. This may have occurred because development of piezometers is not as extensive as development of sampled wells, or because the static water level was not accurately determined before the slug was withdrawn for the slug withdrawal test. However, the estimated values are in the general range for hydraulic conductivities for silt and silty sand presented by Freeze and Cherry (1979) and for clay and silt, silty sand, and clayey sand presented by Fetter (1980).

38591 (MW34)

Monitoring well 38591 (MW34) is located in the southern portion of OU1, on the northern bank of Woman Creek. According to the well construction diagram (Appendix A1), the well is screened at a depth of 5.7 to 7.7 feet below ground surface and the sand pack ranges from 5.0 to 8.0 feet below ground surface. Based on the borehole log (Appendix A1), the screened interval consists of alluvial silty sand with clay and gravel in the Woman Creek valley fill alluvium. Below 7.3 feet is weathered bedrock claystone. The water level prior to testing was 6.50 feet below ground surface and indicates water table conditions at the time of the test. Hydraulic conductivity estimated using the Bouwer and Rice method for the bail down/recovery test yield a value of 4 x 10⁴ cm/sec (7 x 10⁴ ft/min) (Table B1-5). A valid estimate could not be obtained using the Hvorslev method since the water level was not above the sand pack interval.

The Bouwer and Rice estimate required a correction to r_c and a curve match on the second distinct straight line of the displacement versus time plot to accommodate the fast-draining sand pack.

The result is within the range of hydraulic conductivity values presented for Woman Creek valley fill alluvium obtained during previous investigations. The estimate is also within the general ranges for clean sands and silty sands presented by Freeze and Cherry (1979) and silty sands and fine sands presented by Fetter (1980).

38991 (PZ03)

Piezometer 38991 (PZ03) is located south of the french drain in the central portion of OU1.

The borehole for 38991 (PZ03) was scheduled for packer testing because it was drilled into

weathered bedrock materials (Table B1-2). However, access to the borehole was limited during

the construction of the french drain. This limited access, as well as winter storm conditions

when the borehole was drilled, precluded conducting packer tests at this location. It was

recommended that a single-well test be conducted in the subsequently installed piezometer after

completion of the french drain.

According to the well construction diagram (Appendix A1), the piezometer is screened at a depth

of 26.8 to 36.8 feet below ground surface and the sand pack ranges from 24.8 to 37.8 feet below

ground surface. Based on the borehole log (Appendix A1), the screened interval consists of

weathered bedrock claystone, siltstone with clay and sand, silty claystone, and clayey siltstone.

The water level prior to testing was 27.80 feet below ground surface and indicates water table

conditions at the time of the test. Hydraulic conductivity estimated using the Bouwer and Rice

method for the bail down/recovery test yield a value of 1 x 10⁻⁶ cm/sec (3 x 10⁻⁶ ft/min)

(Table B1-5). A valid estimate could not be obtained using the Hvorslev method since the water

level was not above the sand pack interval.

The Bouwer and Rice estimate required a correction to r_c and a curve match on the second

distinct straight line of the displacement versus time plot to accommodate the fast-draining sand

pack.

The estimate obtained is within the range of conductivity values presented for weathered

claystone during previous investigations, and is within the ranges of hydraulic conductivities for

silt as presented by Freeze and Cherry (1979) and clay and silt as presented by Fetter (1980).

39191 (MW28)

Monitoring well 39191 (MW28) is located south of IHSS 119.1 and north of the french drain.

A packer test was conducted in the borehole for this bedrock monitoring well (Table B1.2-1).

Due to borehole collapse, this test was performed in an interval above the water table and, therefore, only a field permeability estimate of the material tested was obtained. For the test at well 39191, the injection rate (Q) was determined as the time weighted average of the measured flow rate. The length of the test interval (L) was based on the depth of the packer seal and bottom of the borehole during the test. The time weighted average of the head measured by the data logger in the test interval was used for H. The radius of the borehole (r) was determined from the caliper log by estimating an average borehole diameter within the test interval. The resulting estimate of field permeability is 1.7×10^{-6} cm/sec (3.3 x 10^{-6} ft/min). Attachment B1-1 presents a summary of these parameters and the calculation of field permeability.

This estimate is based on the assumption that all of the injected flow was "taken" by the tested interval. Based on the graph of head versus time, a small increase in head observed in the zone above the packer may indicate a small leak around the packer seal. The presence of this leak would diminish the estimated field permeability value, which was calculated using Equation (1) in Section B1.2.4. Also, because the borehole collapsed after geophysical logging with the caliper tool, the radius of the borehole within the test interval (r) may be underestimated, which may have resulted in a slightly increased value of field permeability. Furthermore, because the borehole collapsed to fill the depths below 26.8 feet, the collapsed material in the bottom of the borehole is not native and may have contained void spaces that may have been filled with injected water during the test. This condition would effectively result in underestimating the test interval length (L) in Equation (1). A larger test interval would have diminished the estimate of field permeability originally calculated. Because of these unquantified sources of error due to the conditions encountered in the field, the field permeability value should be used with caution, although it represents the best and only estimate determined from packer testing for the OU1 Phase III RFI/RI field investigation. It was therefore recommended that single-well tests be performed in the bedrock monitoring well installed in this borehole.

According to the well construction diagram (Appendix A1), the well is screened at a depth of 32.8 to 42.8 feet below ground surface and the sand pack ranges from 30.0 to 45.0 feet below ground surface. Based on the borehole log (Appendix A1), the screened interval consists of weathered bedrock clayer siltstone with organics, claystone with silt, and siltstone with clay.

The water level prior to testing was 35.36 feet below ground surface and indicates water table conditions within the various lithologies identified within the screened interval at the time of the test. Hydraulic conductivity estimated using the Bouwer and Rice method for the bail down/recovery test yielded a value of 2 x 10⁻⁵ cm/sec (4 x 10⁻⁵ ft/min) (Table B1-5). A valid estimate could not be obtained using the Hyorslev method since the water level was not above the sand pack interval.

The Bouwer and Rice estimate required a correction to r_c and a curve match on the first distinct straight line of the displacement versus time plot since no secondary straightline curve was noted. The estimate obtained is within the range of hydraulic conductivity values determined for weathered claystone during previous investigations at OU1. The hydraulic conductivity is an order of magnitude above the upper portion of the general range of conductivities for unweathered marine clay as presented by Freeze and Cherry (1979) and within the range presented for silt. The estimate is also within the upper portion of the clay range and the lower portion of the ranges for silt, sandy silt, and clayey sand ranges specified by Fetter (1980).

39291 (PZ01)

Piezometer 39291 (PZ01) is located south of IHSS 119.1 and north of the french drain. A packer test was attempted in the borehole for this piezometer, but an adequate seal was not attained and the borehole collapsed. Since reaming boreholes had not been shown to enhance conditions for an adequate seal, additional packer tests were not performed. It was recommended that a single-well test be conducted in the subsequently installed piezometer.

According to the well construction diagram (Appendix A1), the piezometer is screened at a depth of 34.0 to 44.0 feet below ground surface and the sand pack ranges from 31.7 to 46.0 feet below ground surface. Based on the borehole log (Appendix A1), the screened interval consists of weathered bedrock claystone, silty claystone, clayey siltstone. The water level prior to testing was 30.25 feet below ground surface and indicates water table conditions at the time of the test. Hydraulic conductivity estimates derived using the Bouwer and Rice method for the slug injection and withdrawal tests yield values of 3×10^{-5} cm/sec (7×10^{-5} ft/min) for the slug injection and 3×10^{-5} cm/sec (5×10^{-5} ft/min) for the slug withdrawal tests (Table B1-5).

Estimates obtained using the Hvorslev method indicate a hydraulic conductivity of 3×10^{-5} cm/sec (6 x 10^{-5} ft/min) for the slug injection and withdrawal tests also (Table B1-6).

The agreement between the results derived from the two methods for the two tests is very good. These results are consistent with those of previously performed tests in the weathered bedrock at OU1, although they are within the high portion of this range. This may be indicative of the degree of weathering or fracturing in the localized area. The estimates are also within the range for silt presented by Freeze and Cherry (1979) and within the upper portion of the clay range and the lower portion of the ranges for silt, sandy silt, and clayey sands specified by Fetter (1980).

B1.4.2 Conclusions

Table B1-7 presents all results obtained during the OU1 Phase III RFI/RI borehole and single-well slug injection/withdrawal, and bail down/recovery tests conducted at OU1. Although it is difficult to ascertain specific sources of error in these estimates, some generalizations can be made for future applications.

All estimates of hydraulic conductivity calculated during this study fall within the material-specific ranges presented by Freeze and Cherry (1979) and Fetter (1980). The Hvorslev method estimates of hydraulic conductivity are in agreement with the Bouwer and Rice method estimates for tests for which the Hvorslev analysis method was valid. The variability between the two analytical techniques can generally be attributed to the difference in the assumptions and possible error associated with each method (see Sections B1.3.4 and B1.4.1). Hydraulic conductivity estimates derived from slug injection (falling head) tests are generally equal to or higher than results of slug withdrawal (rising head) tests for both analytical methods used. This relationship is expected (Sevee 1991) and adds credence to the OU1 Phase III RFI/RI results.

Tables B1-8 and B1-9 illustrate that, with few exceptions, all estimated hydraulic conductivities obtained during the OU1 Phase III RFI/RI field investigation fall within ranges determined during previous investigations. The exceptions include results of two single-well tests conducted in monitoring wells 35691 and 36191, which are screened in disturbed colluvial materials that

exhibit uncharacteristically low hydraulic conductivities. These low estimates may be due to

specific conditions surrounding these wells: low-permeability borehole skin effects, compaction

of colluvial material by construction activities, the presence of roads, and a drastically sloped

water table surface in the vicinity of these wells.

From these results, the Bouwer and Rice method appears suitable to analyze the single-well test

data because of its adaptability, rigor, and acceptance in the literature. The Hvorslev method

does provide a good initial verification of field data and a relative check of the hydraulic

conductivity estimate derived using Bouwer and Rice for test configurations that meet the

required method application criteria.

If conditions permit, it is recommended that future single-well tests include the additional slug

withdrawal (rising head) step as a verification of the slug injection (falling head) test since

discrepancies between results at any well or piezometer can be evaluated to determine the degree

of well integrity or confidence in the test data. Also, results indicate that water levels at a few

wells may not have fully stabilized 48 hours after sampling. After sampling or development,

therefore, a period of 72 hours should be allowed for water level stabilization before tests are

conducted.

Since single-well tests do not require much time or equipment, repetitive tests can be conducted

on existing wells. This would allow evaluation of monitoring well and piezometer performance

through time and would permit statistical evaluation of results that could be used in a

contamination assessment.

Wells that were dry or exhibited water levels too low to warrant testing should be periodically

evaluated to determine whether single-well tests could be conducted in the future. Hydraulic

conductivities derived at these locations would also enhance contamination assessment results at

OU1.

March 1994 Page B1-35

B1.5 REFERENCES

- ASTM (American Society for Testing and Materials), 1987. ASTM Method D4630-86 and D4631-86, Annual Book of Standards, ASTM, Philadelphia, PA.
- Bouwer, H. and R.C. Rice, 1976. A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resources Research. V. 12, pp. 423-428.
- Bouwer, H., 1989. The Bouwer and Rice slug test an update. Ground Water. V. 27, No. 6, pp. 304-309.
- Cedergren, H.R., 1967. Seepage, Drainage, and Flow Nets, (2nd Edition), John Wiley and Sons, Inc., NY.
- DOE (U.S. Department of Energy), 1991. Technical Memorandum 1, Addendum to Final Phase III RFI/RI Work Plan, Chemical Analysis Plan OU1, Rocky Flats Plant, August 1, 1991.
- EG&G (EG&G Rocky Flats, Inc.), 1991a. Rocky Flats Plant Environmental Restoration Standard Operating Procedures, August 1991.
- EG&G (EG&G Rocky Flats, Inc.), 1991b. Final, Phase III RFI/RI Work Plan, Rocky Flats Plant, 881 Hillside Area (OU1), U.S. Department of Energy Rocky Flats Plant, Revision 1, March 1991.
- EG&G (EG&G Rocky Flats, Inc.), 1990. French Drain Geotechnical Investigation for U.S. Department of Energy, Rocky Flats Plant, Golden, Colorado, September 1990.
- Fetter, C.W., Jr., 1980. Applied Hydrogeology. Merrill Publishing Company, Columbus, OH.
- Fetter, C.W., Jr., 1988. Applied Hydrogeology, 2nd edition. Merrill Publishing Company, Columbus, OH.
- Freeze, R.A. and J.A. Cherry, 1979. Ground Water. Prentice Hall, Englewood Cliffs, NJ.
- Geraghty and Miller, Inc., 1989 (updated 1991). AQTESOLV (Aquifer Test Solver). Aquifer Test Design and Analysis Computer Software, Version 1.1. Geraghty and Miller Modeling Group, Reston, VA.
- Hvorslev, J.M., 1951. Time lag and soil permeability in ground water observations, Bulletin 36, 55 pp., U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS.
- INSITU, Inc., 1990. HERMIT 2000™ Environmental Data Logger Model SE2000 Operator's Manual Version 2. INSITU, Inc., Laramie, WY.

- Jacob, C.E. and S.W. Lohman, 1952. Nonsteady flow to a well of constant drawdown in an extensive aquifer. American Geophysical Union. V. 33, No. 4, pp. 559-569.
- Kraemer, C.A., J.B. Hankins, and C.J. Mohrbacher, 1990. Selection of single-well hydraulic test methods for monitoring wells. <u>In</u>: D.M. Nielsen and A.I. Johnson (eds.), pp. 125-137. *Ground Water and Vadose Zone Monitoring*. American Society for Testing and Materials, Ann Arbor, MI.
- Kruseman, G.P. and N.A. deRidder, 1991. Analysis and Evaluation of Pumping Test Data (2nd Edition completely revised), International Institute for Land Reclamation and Improvement (ILRI), Publication 47, The Netherlands.
- Rockwell International, 1988, Draft Final [Phase II] Remedial Investigation Report for the High Priority Sites (881 Hillside), U.S. Department of Energy, Rocky Flats Plant, Golden, Colorado, March 1988.
- Sevee, J., 1991. Methods and procedures for defining aquifer parameters. <u>In</u>: D.M. Nielsen (ed.), pp. 397-447. *Practical Handbook of Ground Water Monitoring*. Lewis Publishers, Inc., Chelsea, MI.
- U.S. Department of the Interior, Bureau of Reclamation, 1974. "Designation E-18, Field Permeability Tests in Boreholes" in *Earth Manual*, 2nd edition, U.S. Government Printing Office, No. 2403-00079.

Table R1-1 Fourth Quarter 1991 Well Status Summary	urth Ouarter 1	991 Well Stati	ıs Summary				Page 1 of 2
Well/Piezometer Number	Work Plan Designation	*Screened Interval (feet BGS)	**4th Quarter 1991 WL (feet BGS)	Date Developed	Date Sampled	Date Tested	Comments
30991	MW35	5.1-9.9	Dry	N/A	N/A	N/A	
31491	MW30	13.9-18.9	Dry	N/A	N/A	N/A	
31791	MW36	6.8-11.8	13.61	N/A	A/A	N/A	Well developed 2/5/92
31891	MW02	16.6-18.6	15.42	10/16/91	11/11/91	12/6/91	
32591	MW24	11.5-16.5	17.7	N/A	N/A	N/A	
33491	WW09	6.7-8.7	Dry	N/A	N/A	N/A	
33691	MW10	6.2-8.1	10.42	N/A	A/A	N/A	
33891	MW08	6.7-8.1	Dry	N/A	N/A	N/A	
34591	MW12	6.8-8.9	Dry	N/A	N/A	N/A	
34791	MW13	6.0-8.0	3.15	11/4/91	12/16/91–12/18/91	12/20/91	
35391	MW19	6.1-8.1	8.52	10/21/91 (1)	12/17/91	N/A	
35691	MW17	15.6-26.6	9.40	10/21/91	11/11/01	12/1/91	
35991	MW18	8.7-13.7	Dry	N/A	V/A	N/A	
36191	MW05	9.5-14.6	12.37	(I) 10/21/91	11/11/91	12/9/91	
36391	MW14	17.4-27.4	29.58	N/A	A/X	N/A	
36691	MW15	15.8-25.8	Dry	N/A	N/A	N/A	Well developed 2/20/92
N/A BGS • •		the to insufficient was urface d bottom of slotted P	Not applicable due to insufficient water in well (piezometer) Below ground surface Depth of top and bottom of slotted PVC section from well construction diagram Highest reported WL in fourth quarter 1991	r) construction diagram	(P) = Indicates be installation (I) = Developme	Indicates bedrock boreholes in whiinstallation Development by injection methods	Indicates bedrock boreholes in which packer tests were performed prior to well installation. Development by injection methods

Well/Piezometer Work Plan Number Designation 36991 MW04 37191 MW16 37591 MW22 37691 MW23 37791 MW21 37891 (P) MW27 offset	*Screened Interval (feet BGS) 6.6-8.6 11.1-21.1 7.6-12.6 6.5-16.5	##4th Quarter 1991 WL (feet BGS) Dry 7.18	Date Developed N/A 10/22/91 12/14/91 N/A	Date Sampled N/A 11/12/91	Date Tested N/A	Comments
<u> </u>	6.6-8.6 11.1-21.1 7.6-12.6 6.5-16.5	Dry 7.18 7.22 16.14	N/A 10/22/91 12/14/91 N/A	N/A 11/12/91	N/A	
<u>@</u>	11.1-21.1 7.6-12.6 6.5-16.5 10.6-20.7	7.18 7.22 16.14	10/22/91 12/14/91 N/A	11/12/91		
9	7.6-12.6 6.5-16.5 10.6-20.7	7.22	12/14/91 N/A		12/1/91	
6	6.5-16.5	16.14	N/A	12/16/91-12/18/91	12/21/91	
<u>@</u>	10.6-20.7			N/A	N/A	
(F)		19.86	12/16/91	12/19/91	12/24/91	
	et 43.2-53.2	40.52	12/12/91	12/14/91-12/16/91	12/20/91	
17001 (P) MW29	45.2-55.2	47.46	12/12/91	12/14/91-12/16/91	12/18/91	
	10.0-15.0	8.30	12/12/91	Not required	12/14/91	Piezometer
	6.7-8.7	Dry	N/A	Not required	N/A	Piezometer
		6.43	12/16/91	12/17/91	12/20/91	
		Dry	N/A	Not required	N/A	Piezometer
é	26.8-36.8	27.80	12/14/91	Not required	12/16/91	Piezometer
\$		32.10	12/13/91	12/17/91	12/21/91	
		30.32	12/13/91	Not required	12/15/91	Piezometer
M		Dry	N/A	N/A	N/A	Well developed 2/5/92

Indicates bedrock boreholes in which packer tests were performed prior to well installation
Development by injection methods (b) ε Not applicable due to insufficient water in well (piezometer)
Below ground surface
Depth of top and bottom of slotted PVC section from well construction diagram
Highest reported WL in fourth quarter 1991 SS • :

OUI Phase I

s Information and Results	
f Packer Test	
Table B1-2 Summary o	

Page 1 of 1

Comments	Borehole collapsed before test; inadequate seal after reaming	Inadequate seal after reaming; recommended single well test in water producing zone	Inadequate seal; borehole collapse	Inadequate seal after reaming; recommended single well test in water producing zone	Recommended single well test in water producing zone	Borehole collapsed prior to test; not reamed; recommended single well test in water producing zone	Inadequate seal; borehole collapsed after first attempt; recommended single well test in water producing zone
Hydraulic Conductivity/Field Permeability in cm/sec (ft/min)	N/A	N/A	N/A	N/A		1.7x10 ⁻⁶ (3.3x10 ⁻⁶)	N/A
Lithology	Claystone, clayey siltstone, silty claystone, silty trace clay and sand	Claystone, clayey siltstone, silty claystone, siltstone with trace clay and sand	Clayey siltstone, claystone, sandy clayey siltstone, claystone	Clayey siltstone, claystone, sandy clayey siltstone, claystone	No test due to possibly hazardous access and poor weather conditions	Claystone with varying amounts of silt	Silty claystone
Test Interval (feet BGS)	37.2-56.3	29.2-57.0	42.1-51.9	42.1-57.5	ossibly hazardous access	17.6–26.8	43.2-47.6
Water Level (feet BGS)	40.50		Dry		No test due to pa	Dry	43.17
Borehole Number	37891		37991		38991	*39191	39291

^{*} Field permeability calculated using method presented by U.S. Department of the Interior (1974)

N/A = Not applicable due to environmental conditions

BGS = Below ground surface

cm/sec = centimeters per second

ft/min = feet per minute

Page 1 of 1	Comments	Borehole collapsed before test; inadequate seal after reaming	Inadequate seal after reaming; recommended single well test in water producing zone	Inadequate seal; borehole collapse	Inadequate seal after reaming; recommended single well test in water producing zone	Recommended single well test in water producing zone	Borehole collapsed prior to test; not reamed; recommended single well test in water producing zone	Inadequate seal; borehole collapsed after first attempt; recommended single well test in water producing zone
	Hydraulic Conductivity/Field Permeability in cm/sec (ft/min)	N/A	N/A	N/A	N/A		1.7x10-6 (3.3x10-6)	N/A
Information and Results	Lithology	Claystone, clayey siltstone, silty claystone, silty trace with trace clay and sand	Claystone, clayey siltstone, silty claystone, siltstone with trace clay and sand	Clayey siltstone, claystone, sandy clayey siltstone, silty claystone	Clayey siltstone, claystone, sandy clayey siltstone, claystone	No test due to possibly hazardous access and poor weather conditions	Claystone with varying amounts of silt	Silty claystone
er Tests Information	Test Interval (feet BGS)	37.2-56.3	29.2-57.0	42.1-51.9	42.1-57.5	ossibly hazardous acces	17.6–26.8	43.2-47.6
Table B1-2 Summary of Packer Tests	Water Level (feet BGS)	40.50		Dry		No test due to po	Dry	43.17
Table B1-2	Borehole Number	37891		37991	٠,	38991	*39191	39291

Page 1 of 1

^{*} Field permeability calculated using method presented by U.S. Department of the Interior (1974)

N/A = Not applicable due to environmental conditions

BGS = Below ground surface

cm/sec = centimeters per second

ft/min = feet per minute

	Type of Test	Slug injection/slug withdrawal	Slug injection/slug withdrawal	Slug injection/slug withdrawal	Bail down/ recovery	Slug injection/slug withdrawal	Bail down/ recovery	Bail down/ recovery	Slug injection/slug withdrawal
	Saturated Lithology Tested	Alluvial sandy clay; bedrock clayey sandstone	Silty sand, gravel	Silty clay with some sand and gravel; sandy clay and clayey gravel	Well graded gravelly sand with a 0.06 foot layer of clay	Gravelly, sandy clay	Gravel-sand-clay	Clay with silt sand and gravel	Silty claystone, clayey siltstone; siltstone with clay, trace sand
	Lithologic Zone	Disturbed Sandstone	Colluvium	Disturbed Colluvium	Disturbed Colluvium	Colluvium	Rocky Flats Alluvium	Colluvium	Weathered Bedrock
	Static Water Level for Test (feet BGS)	15.51	2.44	9.34	11.94	7.13	11.19	20.01	41.90
	Screened** Interval (feet BGS)	16.6-18.6	6.0-8.0	15.6-26.6	9.5-14.6	11.1-21.1	7.6-12.6	10.6-20.6	43.2-55.2
nmary	Sand Pack* Interval (feet BGS)	14.6-19.0	5.9-9.5	13.4-29.0	7.4-14.9	9.2-22.0	5.6-14.6	8.8-22.6	40.0-55.2
le Well Test Sun	Work Plan Designation	MW02	MW13	MW17	MW05	MW16	MW22	MW21	MW27
Table B1-3 Single Well Test Summary	Well/Piezometer Number	31891	34791	35691	36191	37191	37591	37791	37891

BGS = Below ground surface

• = Depth of top and bottom of sand pack

• = Depth of top and bottom of slotted PVC section

ummary	
II Test S	
le Wel	
3 Single	
le B1-	
Tab	

Type of Test	Bail down/ recovery	Slug injection/slug withdrawal	Bail down/ recovery	Bail down/ recovery	Bail down/ recovery	Slug injection/slug withdrawal
Saturated Lithology Tested	Claystone, sandy clayey siltstone	Sand-silt-clay mixture with gravel and silty gravelly sand	Silty sand with clay and gravel	Claystone, siltstone with clay and sand, silty claystone and clayey siltstone	Clayey siltstone with organics (lignite?); claystone with silt, siltstone with clay	Claystone, silty claystone, clayey siltstone
Lithologic Zone	Weathered Bedrock	Colluvium	Woman Creek Valley Fill Alluvium	Weathered Bedrock	Weathered Bedrock	Weathered Bedrock
Static Water Level for Test (feet BGS)	48.78	9.38	6.50	27.80	35.36	30.25
Screened** Interval (feet BGS)	45.2-55.2	10.0-15.0	5.7-7.7	26.8-36.8	32.842.8	34.0-44.0
Sand Pack* Interval (feet BGS)	43.0-57.2	8.1-14.9	5.0-8.0	24.8-37.8	30.0-45.0	31.7-46.0
Work Plan Designation	MW29	PZ05	MW34	PZ03	MW28	PZ01
Well/Piezometer Number	37991	38191	38591	38991	39191	39291

BGS = Below ground surface

* = Depth of top and bottom of sand pack

** = Depth of top and bottom of slotted PVC section

NU1.9/92 pf

. 1
2
5
2
흸
Ĕ
اڠ
핔
림
Ę.
Σ
ma
ımma
Summa
1-4 Summa
B1-4 Summa
rable B1-4 Summary of Input Parameters for AQ1ESOLY

Well/Piezometer Work Plan Type	Work Plan	Type of Test	Radius of casing (rc) in feet	Radius of well (rw) in feet	Saturated Thickness (b) in feet	*Screen Length (L) in feet	Height of Static Water Level Above Bottom of Screen (H) in feet
Number	Designation						
31891	MW02	Slug injection	0.0863	0.458	3.09	1.60	2.89
34791	MW13	Slug injection	0.0863	0.458	5.56 5.56	1.54	5.28 5.28
35691	MW17	Slug injection/	0.0863	0.458	17.02 17.02	10.52	17.02
		Sing winimawa	0.261**	0.458	2.46	2.46***	2.46
36191	MW05 MW16	Slug injection	0.0863	0.458	13.74	9.55 9.55	13.74 13.74
		slug wimdiawai		0.458	121	1.21***	1.21
37591	MW22	Bail down/recovery	0.261**	0.458	0.39	0.39***	0.39
37791	MW21	Bail down/recovery	0.0863	0.292	13.30	9.60	11.10
37891	MW27	slug withdrawal	0.0863	0.292	13.30	6.22***	6.22
37991	MW29	Bail down/recovery	0.1755**	0.292		60 4	5.52
38191	PZ05	Slug injection/	0.0863	0.458 0.458	5.52 5.52	4.80	5.52
Cico	W34		0.261**	0.458	1.16	1.16***	1.16
38591	1.5 vy 1vl					Total to hottor	the for the follow sold or water level to bottom

^{* =} For use in calculations, screen lengths presented in this table and Table B1.3-4 are precisely determined as length from top slot to slot. In Tables B1.1-1 and B1.3-1, screen lengths are less precisely presented as the length of the slotted section of PVC.

^{** =} Corrected as presented in Bouwer and Rice (1976). A value of 0.261 indicates correction to an 11-inch borehole in alluvial wells; a value of 0.1755 indicates correction to a 7-inch borehole in bedrock wells.

^{*** =} Saturated screen length (water level to bottom slot)

Table B1-4 Summary of Input Parameters for AQTESOLV

Well/Piezometer Number	Work Plan Designation	Type of Test	Radius of casing (rc) in feet	Radius of well (rw) in fect	Saturated ') Thickness (b) in *So	reen Length (L) in feet	Height of Static Water Level Above Bottom of Screen (H) in feet
	•	manage/march 1. G	0.1755**	0.292	10.00	8.80***	8.80
38991	PZ03	Ball downyiccovery			į	****	7.20
20101	MW28	Bail down/recovery	0.1755**	0.292	9.64	1.20	3
39291	1024	Slug injection/ slug withdrawal	0.0863	0.292 0.292	15.40 15.40	9.60	13.5 13.5

^{• =} For use in calculations, screen lengths presented in this table and Table B1.3-4 are precisely determined as length from top slot to bottom slot or water level to bottom siot. In Tables B1.1-1 and B1.3-1, screen lengths are less precisely presented as the length of the slotted section of PVC.

^{** =} Corrected as presented in Bouwer and Rice (1976). A value of 0.261 indicates correction to an 11-inch borehole in alluvial wells; a value of 0.1755 indicates correction to a 7-inch borehole in bedrock wells.

^{*** =} Saturated screen length (water level to bottom slot)

•			or Bouw	for Bouwer and Rice Analysis	ce Anal	ysis				Page 1 of 2
Table B1-5 AQ Well/Piezometer Number	Vork Plan Designation	Table B1-5 AQTESOL V Output Summary as Vell/Piezometer Work Plan Number Designation Type of Test	4	Ф	ဎ	In(Re/rw)	Calculated* Initial Test Displacement yo (feet)	Calculated* Hydraulic Conductivity K (ft/min)	Hydraulic Conductivity Estimate K (cm/sec)	Curve Match
31891	MW02	Slug injection/	1.668	0.253	1 1	0.986	1.472	4.064x10-4 4.802x10-4	2x10 ⁴ 2x10 ⁴	First straight line
34791	MW13	slug withdrawal Slug injection/ slug withdrawal	1.663	0.253	1 1	1.102	1.404	1.875×10-5 1.273×10-5	1x10 ⁻⁵ 6x10 ⁻⁶	Second straight line for slug injection; first straight line for slug withdrawal test
35691	MW17	Slug injection/	1	1 1	1.751	2.628	1.505	1.885x10-6 1.749x10-6	1x10-6 9x10-7	First straight line
36191	MW05	slug withdrawai Bail down/	1	1	0.916	1.212	1.454	2.192x10-6	1x10-6	Second straight line
37191	MW16	recovery Slug injection/	ı	1 1	1.687	2.473	1.645	2.266x10-4 7.946x10-5	1x10-4 4x10-5	First straight line
37591	MW22	ing I	1 1	1	0.623		996:0	1.472x10 ⁻⁵	7x10-6	Second straight line
37791	MW21	recovery Bail down/ recovery	1	1.	0.400	4.340	1	1		N/A (not adequate displacement for valid test)
37891	MW27	Slug injection/ slug withdrawal	2.534	0.413	1 1	2.470 2.470	1.506	1.011x10 ⁻⁶ 2.684x10 ⁻⁶	5x10-7 1x10-6	Second straight line
		A OTTES OF IVE SOftware				cm/sec = cent	cm/sec = centimeters per second	P		

* = Calculated by AQTESOLV software N/A = Not applicable Refrw = Effective radius/radius of well

ft/min = feet per minute 1 ft/min = 0.508 cm/sec (unit conversion factor)

OUI. 9/92 pf

			Post Doug	or and R	ice Anal	lvsis				Page 2 of 2
Table B1-5 AQ	TESOLV O	Table B1-5 AQTESOLV Output Summary for Bouwer and recommy	anog ioi				Calculated* Initial Test Displacement	Calculated* Hydraulic Conductivity	Hydraulic Conductivity Estimate	Curve
Well/Piezometer Number	Work Plan Designation	Type of Test	∢	В	၁	In(Re/rw)	yo (feet)	K (ft/min)	K (cm/sec)	Match
37991	MW29	Bail down/ recovery	2.186	0.346	ı	1.799	4.027	1.338x10 ⁻⁵	7x10-6	Second straight line
38191	PZ05	Slug injection/	1 1	! 1	1.308	1.765	1.641	2.183x10 ⁻⁵ 3.888x10 ⁻⁶	1x10-5 2x10-6	First straight line
38591	MW34	Bail down/	ı	1	0.618	0.700	4.624	7.439x10-4	4x10-4	Second straight line
38991	PZ03	Bail down/	2.448	0.398	ł	2.365	4.493	2.680×10-6	1x10-6	Second straight line
39191	MW28	Bail down/	2.282	0.367	1	2.140	7.371	4.178x10 ⁻⁵	2x10 ⁻⁵	First straight line
39291	1024	Slug injection/ slug withdrawal	2.534	0.413 0.413	i 1	2.581	1.495	6.639x10 ⁻⁵ 5.240x10 ⁻⁵	3x10 ⁻⁵ 3x10 ⁻⁵	Second straight line

cm/sec = centimeters per second ft/min = feet per minute 1 ft/min = 0.508 cm/sec (unit conversion factor)

^{• =} Calculated by AQTESOLV software N/A = Not applicable Roftw = Effective radius/radius of well

				•					Page 1 of 2
Table B1-6 Well/ Piczometer	Hvorslev A Work Plan	ig i	*Radius of *I Intake Casing S	*Radius of Intake Sand Pack R (feet)	*Length of Intake Sand Pack L (feet)	7	To From Graph (minutes)	*Initial Displacement Ho (feet)	Hydraulic Conductivity Estimate K in cm/sec (ft/min)
Number	Designation	type of rest		,					
31891	MW02	Slug injection/	ì	ţ ł	1 1	t t	į 1	į į	4 7 7 7
		slug withdrawal	0.0863	0.458	1.54	3.36	i I	i i	A/N A/A
34791 12	CIAIM	slug withdrawal	0.0863	0.458	1.54	22.97	745	1.505	$8x10^{7} (2x10^{4})$
35691	MW17	Slug injection/ slug withdrawal	0.0863	0.458	10.52	7297	000	C+7.1	4 /Z
36191	MW05	Bail down/ recovery	ŧ	1	I	1	ı	1	1-104 (0-104)
37191	MW16	Slug injection/	0.0863	0.458	9.55 9.55	20.85 20.85	4.5 12.5	1.922	5x10 ⁻⁵ (1x10 ⁻⁴)
37591	MW22	Bail down/	ı	i	1	ļ	i	1	∀/Z
1977	MW21	recovery Bail down/	l	1		l		1	A/Z
	COXYX	recovery Sho injection/	i	1	١	1	į 1	1-1	A/Z A/A
3/891	MAC	slug withdrawal	ı	i	١	I	i i	1	Y/Z
37991	MW29	Bail down/ recovery	l	ſ	1	1		,	N/A
38191	PZ05	Slug injection/ slug withdrawal		1 1	1 1	1 1	1 1	1 1	N/A

L/R = Length of intake divided by radius of intake: Hvorslev analysis equation only valid for L/R >8

N/A = Not applicable because L/R <8 or intake is not below water table

* = dimensions same as for Bouwer and Rice analysis (see Tables B1.3-2 and B1.3-3)

1 ft/min = 0.508 cm/sec (unit conversion factor)

ivorslev A	Table B1-6 Hyorslev Analysis Parameters and Results	ters and Resi	ults					Page 2 of 2
-	Type of Test	*Radius of Intake Casing r (feet)	*Radius of Intake Sand Pack R (feet)	*Length of Intake Sand Pack L (feet)	L/R	To From Graph (minutes)	*Initial Displacement Ho (feet)	Hydraulic Conductivity Estimate K in cm/sec (ft/min)
	Bail down/	1	1	ı	1	ı	ŧ	N/A
	Bail down/	t	1	i	ı	1	1	N/A
	recovery Bail down/	ı	ı	1	ł	1	1	N/A
S. L.	recovery Slug injection/ slug withdrawal	0.0863	0.292	9.60	32.88 32.88	25.7 26.3	1.479	3x10°5 (6x10°5) 3x10°5 (6x10°5)

OUI Phase III RFI/RI Rep

L/R = Length of intake divided by radius of intake: Hvorslev analysis equation only valid for L/R >8

N/A = Not applicable because L/R <8 or intake is not below water table

= dimensions same as for Bouwer and Rice analysis (see Tables B1.3-2 and B1.3-3)

				Estimate K in cm/sec	Estimate K in cm/sec	Field Permeability k in cm/sec*
Well/Piezometer Number D	Work Plan Designation	Type of Test	Lithologic Zone	(ft/min)	(Il/min)	
31891	MW02	Slug injection Slug withdrawal	Bedrock Sandstone Bedrock Sandstone	N/A N/A	2x10 ⁴ (4x10 ⁴) 2x10 ⁴ (5x10 ⁴)	
34791	MW13	Slug injection Slug withdrawal	Colluvium Colluvium	N/A N/A	1x10 ⁻⁵ (2x10 ⁻⁵) 6x10 ⁻⁶ (1x10 ⁻⁵)	1
35691	MW17	Slug injection Slug withdrawal	Disturbed Colluvium Disturbed Colluvium	8x10 ⁻⁷ (2x10 ⁻⁶) 6x10 ⁻⁷ (1x10 ⁻⁶)	$1x10^6 (2x10^6)$ $9x10^{-7} (2x10^6)$	1
. 10176	MW05	Bail down/recovery	Disturbed Colluvium	N/A	1x10-6 (2x10-6)	t .
	MW16	Slug injection Slug withdrawal	Colluvium Colluvium	$1x10^{-4} (2x10^{-4})$ $5x10^{-5} (1x10^{-4})$	1x10 ⁴ (2x10 ⁴) 4x10 ⁻⁵ (8x10 ⁵)	1
37591	MW22	Bail down/recovery	Rocky Flats Alluvium	N/A	7x10-6 (1x10-5)	i
10000	1CWM	Bail down/recovery	Colluvium	N/A	N/A	1
37891	MW27	Slug injection Slug withdrawal	Weathered Bedrock Weathered Bedrock	N/A N/A	5x10 ⁻⁷ (1x10 ⁻⁶) 1x10 ⁻⁶ (3x10 ⁻⁶)	i
27001	MW29	Bail down/recovery	Weathered Bedrock	N/A	7x10-6 (1x10-5)	1
38191	PZ05	Slug injection Slug withdrawal	Colluvium Colluvium	N/A N/A	1x10 ⁵ (2x10 ⁵) 2x10 ⁻⁶ (4x10 ⁶)	1

Table D1 7 Had	ranlic Condu	Table B1.7 Hudramlic Conductivity and Field Per	Permeability Summary			Page 2 of 2
Well/Piezometer Number	Work Plan Designation		Lithologic Zone	Hvorslev Conductivity Estimate K in cm/sec (ft/min)	Bouwer & Rice Conductivity Estimate K in cm/sec (ft/min)	Field Permeability k in cm/scc* (ft/min)
38591	MW34	Bail down/recovery	Woman Creek Valley Fill Alluvium	N/A	4x104 (7x104)	
38991	PZ03	Bail down/recovery	Weathered Bedrock	N/A	1x10-6 (2x10-6)	1
39191	MW28	Bail down/recovery Packer	Weathered Bedrock Weathered Bedrock	N/A NA	2x10 ⁵ (4x10 ⁻⁵)	1.7x10-6 (3.3x10-6) (unsaturated interval)
39291	PZ01	Slug injection Slug withdrawal	Weathered Bedrock Weathered Bedrock	3x10 ⁵ (6x10 ⁵) 3x10 ⁻⁵ (6x10 ⁻⁵)	3x10 ⁻⁵ (7x10 ⁻⁵) 3x10 ⁻⁵ (5x10 ⁻⁵)	

* = U.S. Department of Interior, Bureau of Land Management method (U.S. Department of Interior 1974) used to evaluate packer test data in unsaturated material.

K = Hydraulic conductivity

k = Field permeability

N/A = Not applicable - analytical results not valid due to violation of required analytical method assumptions

m/sec = centimeters per second

t/min = feet per minute

OUI Phase III RFI/RI Report

cm/sec =

Work Plan Type of Test Lithologic Zone Hyrorslev Conductivity Estimate K in cm/sec Rice Conductivity Estimate Conductivity (I/min) Rice Conductivity Conductivity (I/min) MW02 Slug injection Bedrock Sandstone N/A Slug injection Bedrock Sandstone N/A Slug injection N/A Slug injection Colluvium N/A Slug injection N/A Slug injection Colluvium N/A Slug injection Disturbed Colluvium St. 107 (2x10*) Slug withdrawal Disturbed Colluvium St. 107 (1x10*) Slug withdrawal Disturbed Colluvium St. 107 (1x10*) Slug withdrawal N/A Slug injection N/A Slug in	ble B1-7 Hyd	raulic Condu	ctivity and Field Pen	meability Summary			
MW02 Slug injection Bedrock Sandstone N/A 2x10 ⁴ (4x10 ⁴) MW13 Slug withdrawal Bedrock Sandstone N/A 1x10 ⁴ (5x10 ⁴) MW13 Slug withdrawal Colluvium N/A 1x10 ⁴ (2x10 ⁴) MW17 Slug withdrawal Disturbed Colluvium 8x10 ⁻⁷ (1x10 ⁴) 9x10 ⁻⁷ (2x10 ⁴) MW16 Slug withdrawal Colluvium N/A 1x10 ⁴ (2x10 ⁴) MW16 Slug injection Colluvium 5x10 ⁻⁷ (1x10 ⁴) 4x10 ⁻⁷ (2x10 ⁴) MW22 Bail down/recovery Rocky Flats Alluvium N/A 7x10 ⁻⁶ (1x10 ⁵) MW27 Slug injection Weathered Bedrock N/A 7x10 ⁻⁶ (1x10 ⁵) MW27 Slug withdrawal Weathered Bedrock N/A 7x10 ⁻⁶ (1x10 ⁵) MW27 Slug withdrawal Weathered Bedrock N/A 7x10 ⁻⁶ (1x10 ⁵) MW29 Bail down/recovery Weathered Bedrock N/A 7x10 ⁻⁶ (1x10 ⁵) MW29 Slug withdrawal Colluvium N/A 7x10 ⁻⁶ (1x10 ⁵)	Well/Piczometer Number	Work Plan Designation	Type of Test	Lithologic Zone	Hvorslev Conductivity Estimate K in cm/sec (ft/min)	Bouwer & Rice Conductivity Estimate K in cm/sec (ft/min)	Field Permeability k in cm/sec* (ft/min)
MW13 Slug injection Colluvium N/A 6x10 ⁵ (1x10 ⁵)	31891	MW02	Slug injection Slug withdrawal	Bedrock Sandstone Bedrock Sandstone	N/A A/N	2x10 ⁴ (4x10 ⁴) 2x10 ⁴ (5x10 ⁴)	ı
MW17 Slug injection Slug injection Disturbed Colluvium St 10 ⁻⁷ (1x10 ⁻⁶) 1x10 ⁻⁶ (2x10 ⁻⁶) MW05 Bail down/recovery Disturbed Colluvium Disturbed Colluvium St 10 ⁻⁷ (1x10 ⁻⁴) 1x10 ⁻⁶ (2x10 ⁻⁶) MW16 Slug injection Slug withdrawal Colluvium Colluvium N/A 1x10 ⁻⁴ (2x10 ⁻⁴) 1x10 ⁻⁶ (2x10 ⁻⁶) MW22 Bail down/recovery Rocky Flats Alluvium N/A N/A N/A MW21 Bail down/recovery Colluvium N/A N/A N/A MW22 Slug withdrawal Slug withdrawal Weathered Bedrock N/A N/A 1x10 ⁻⁶ (1x10 ⁻⁶) MW23 Bail down/recovery Weathered Bedrock N/A N/A 1x10 ⁻⁶ (1x10 ⁻⁶) MW24 Bail down/recovery Weathered Bedrock N/A N/A 7x10 ⁻⁶ (1x10 ⁻⁶) MW25 Slug withdrawal Colluvium N/A 7x10 ⁻⁶ (4x10 ⁻⁶)	34791	MW13	Slug injection Slug withdrawal	Colluvium Colluvium	N/A N/A	1x10 ⁵ (2x10 ⁵) 6x10 ⁶ (1x10 ⁵)	ı
MW05Bail down/recoveryDisturbed ColluviumN/A1x10 ⁻⁴ (2x10 ⁻⁴)MW16Slug injectionColluvium1x10 ⁻⁴ (2x10 ⁻⁴)1x10 ⁻⁴ (2x10 ⁻⁴)MW22Bail down/recoveryRocky Flats AlluviumN/A7x10 ⁻⁶ (1x10 ⁻⁵)MW21Bail down/recoveryColluviumN/AN/AMW29Bail down/recoveryWeathered BedrockN/A5x10 ⁻⁷ (1x10 ⁻⁶)MW29Bail down/recoveryWeathered BedrockN/A7x10 ⁻⁶ (1x10 ⁻⁵)NW29Bail down/recoveryWeathered BedrockN/A7x10 ⁻⁶ (1x10 ⁻⁵)NW29Slug injectionColluviumN/A7x10 ⁻⁶ (4x10 ⁻⁶)N/ASlug withdrawalColluviumN/A2x10 ⁻⁶ (4x10 ⁻⁶)	35691	MW17	Slug injection Slug withdrawal	Disturbed Colluvium Disturbed Colluvium	$8x10^{-7}$ ($2x10^{-6}$) $6x10^{-7}$ ($1x10^{-6}$)	$1x10^{-6} (2x10^{-6})$ $9x10^{-7} (2x10^{-6})$	ı
MW16Slug injection Slug withdrawalColluvium Colluvium1x10-4 (2x10-4) 5x10-5 (1x10-4)1x10-4 (2x10-4) 4x10-5 (1x10-5)1x10-6 (1x10-5)MW22Bail down/recoveryRocky Flats AlluviumN/A7x10-6 (1x10-5)MW21Bail down/recoveryColluviumN/A5x10-7 (1x10-6)IMW29Bail down/recoveryWeathered Bedrock N/AN/A5x10-6 (1x10-5)IPZ05Slug injection Slug withdrawalWeathered Bedrock Weathered BedrockN/A7x10-6 (1x10-5)IPZ05Slug injection Slug withdrawalColluvium ColluviumN/A1x10-5 (2x10-5)		MW05	Bail down/recovery	Disturbed Colluvium	A/A	1x10-6 (2x10-6)	I,
MW21Bail down/recoveryRocky Flats AlluviumN/A7x10-6 (1x10-5)MW27Slug injectionWeathered Bedrock Weathered BedrockN/A5x10-7 (1x10-6) 1x10-6 (3x10-6)MW29Bail down/recoveryWeathered Bedrock Weathered BedrockN/A7x10-6 (1x10-5) 7x10-6 (1x10-5)NW29Slug injection Slug withdrawalColluvium ColluviumN/A1x10-5 (2x10-5) 2x10-6 (4x10-6)		MW16	Slug injection Slug withdrawal	Colluvium Colluvium	$1x10^{-4} (2x10^{-4})$ $5x10^{-5} (1x10^{-4})$	1x10 ⁻⁴ (2x10 ⁻⁴) 4x10 ⁻⁵ (8x10 ⁻⁵)	ı
MW21Bail down/recoveryColluviumN/AN/AN/AMW27Slug injection Slug withdrawal NW29Weathered Bedrock Weathered BedrockN/A1x10°6 (1x10°5) 7x10°6 (1x10°5)MW29Bail down/recovery Slug withdrawal Slug withdrawalColluvium ColluviumN/A1x10°5 (2x10°5) 2x10°6 (4x10°6)	37591	MW22	Bail down/recovery	Rocky Flats Alluvium	N/A	7x10-6 (1x10-5)	i
MW27Slug injectionWeathered Bedrock Neathered BedrockN/A5x10-7 (1x10-6) 1x10-6 (3x10-6)MW29Bail down/recoveryWeathered BedrockN/A7x10-6 (1x10-5)PZ05Slug injectionColluvium Slug withdrawalN/A1x10-5 (2x10-5) 2x10-6 (4x10-6)	17791	MW21	Bail down/recovery	Colluvium	N/A	N/A	•
MW29 Bail down/recovery Weathered Bedrock N/A 7x10-6 (1x10-5) PZ05 Slug injection Colluvium N/A 1x10-5 (2x10-5) Slug withdrawal Colluvium N/A 2x10-6 (4x10-6)	37891	MW27	Slug injection Slug withdrawal	Weathered Bedrock Weathered Bedrock	N/A N/A	5x10-7 (1x10-6) 1x10-6 (3x10-6)	ı
PZ05 Slug injection Colluvium N/A 1x10 ⁻⁵ (2x10 ⁻⁵) Slug withdrawal Colluvium N/A 2x10 ⁻⁶ (4x10 ⁻⁶)	37991	MW29	Bail down/recovery	Weathered Bedrock	N/A	7x10-6 (1x10-5)	ı
	38191	PZ05	Slug injection Slug withdrawal	Colluvium Colluvium	N/A N/A	1x10 ⁵ (2x10 ⁵) 2x10 ⁶ (4x10 ⁶)	1

^{* =} U.S. Department of Interior, Bureau of Land Management method (U.S. Department of Interior 1974) used to evaluate packer test data in unsaturated material.

K = Hydraulic conductivity

k = Field permeability

N/A = Not applicable - analytical results not valid due to violation of required analytical method assumptions

cm/sec = centimeters per second

ft/min = feet per minute

1.1. D.1.7 Und	milic Condit	man and Field Pen	Permeability Summary			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				Hvorslev Conductivity Estimate	Bouwer & Rice Conductivity Estimate	Field Permeability
Well/Piezometer Number	Work Plan Designation	Type of Test	Lithologic Zone	K in cm/sec (ft/min)	(fr/min)	(fl/min)
38591	MW34	Bail down/recovery	Woman Creck Valley Fill Alluvium	N/A	4x104 (7x104)	ı
10001	W703	Bail down/recovery	Weathered Bedrock	A/N	1x10-6 (2x10-6)	i
39191	MW28	Bail down/recovery Packer	Weathered Bedrock Weathered Bedrock	N/A A	2x10 ⁵ (4x10 ⁻⁵)	1.7x10-6 (3.3x10-6) (unsaturated interval)
39291	PZ01	Slug injection Slug withdrawal	Weathered Bedrock Weathered Bedrock	3x10 ⁻⁵ (6x10 ⁻⁵) 3x10 ⁻⁵ (6x10 ⁻⁵)	3x10 ⁵ (7x10 ⁵) 3x10 ⁵ (5x10 ⁵)	

^{* =} U.S. Department of Interior, Bureau of Land Management method (U.S. Department of Interior 1974) used to evaluate packer test data in unsaturated material.

K = Hydraulic conductivity

K = Hydraulic conductivity

N/A = Not applicable - analytical results not valid due to violation of required analytical method assumptions

cm/sec = centimeters per second

Description of required analytical method assumptions

Table B1-8 Companison of Lincolnia	2011 01 1 11020		Phase III F	Phase III RFI/RI Field Investigation Results	tesuits
		Previous Test Results* K in cm/sec	Hvorslev K in cm/sec	Bouwer & Rice Method K in cm/sec	U.S. Dept. of the Interior k (ft/min)
Lithologic Zone	Type of Test	(ft/min)	(It/min)	(1)	
Rocky Flats Alluvium	Bail down/recovery	1	1	7x10 ⁶ [1] (1x10 ⁵)	ı
Colluvium and Disturbed Colluvium	Bail down/recovery (also draw down/	$5x10^4-4x10^5$ [3] (1x10 ⁻³ -8x10 ⁻⁵)	1	1x10 ⁻⁶ [1] (2x10 ⁻⁶)	1
	Slug injection	$\frac{2x10^4-3x10^5}{(4x10^4-6x10^5)}$	$1x10^{-4}-8x10^{-7}$ (2) $(2x10^{-4}-2x10^6)$	$1x10^{6}-1x10^{6}$ [4] (2x10 ⁴ -2x10 ⁶)	1
٠.	Slug withdrawal	1	$5x10^{5}-6x10^{7}(2)$ ($1x10^{4}-1x10^{6}$)	$4x10^{-5}-9x10^{-7}$ [4] $(8x10^{-5}-2x10^{-6})$	ı
Woman Creek Valley Fill Alluvium	Bail down/recovery (also draw down/ recovery)	$3x10^3-3x10^4$ [4] $(6x10^{-6}x10^{7})$	1 -	4x10 ⁻⁴ [1] (7x10 ⁻⁴)	ı
Bedrock Sandstone	Bail down/recovery (also draw down/ recovery)	$2x10^4-2x10^6$ [4] $(4x10^{-4}-4x10^{-6})$	ı	1	1
	Slug injection	$7x10^{-5}-6x10^{-6}$ [2] (1x10 ⁻⁴ -1x10 ⁻⁵)	1	2x10 ⁴ [1] (4x10 ⁴)	ı

Number in [] = Number of tests performed

• = Previous results as presented in the Phase II Remedial Investigation Report for High Priority Sites (881 Hillside Area) (Rockwell 1988) and French Drain

Geotechnical Investigation Report, EG&G 1990

• = Includes results from tests conducted in saturated and unsaturated intervals

• = Includes results from tests conducted in saturated and unsaturated intervals

Includes results from tests conducted in saturated and distance and distance in the state of the

			Phase II	Phase III RFI/RI Field Investigation Results	Results
Lithologic Zone	Type of Test	Previous Test Results* K in cm/sec (ft/min)	Hvorslev K in cm/sec (ft/min)	Bouwer & Rice Method K in cm/sec (ft/min)	U.S. Dept. of the Interior k (ft/min)
Bedrock Sandstone	Slug withdrawal	1	ı	2x10 ⁴ [1] (5x10 ⁴)	1
Weathered Bedrock	Bail down/recovery (also draw down/ recovery)	1	1	$2x10^5-1x10^4[3]$ $(4x10^5-2x10^6)$	1
	Slug injection	١	3x10 ⁻⁵ [1] (6x10 ⁻⁵)	$3x10^{-5}-5x10^{-7}$ [2] $(6x10^{-5}-1x10^{-6})$	· . 1
•,	Slug withdrawal	1	$3x10^{-5}[1]$ (6x10 ⁻⁵)	$3x10^{-5}-1x10^{-6}$ [2] (6x10 ⁻⁵ -2x10 ⁻⁶)	1
	**Packer injection	$2.3x10^{-3}-1.0x10^{-7}$ [67] (4.5x10 ⁻³ -2.0x10 ⁻⁷)	1 .	ı	1.7x10-6 [1] (3.3x10-6)
Unweathered Bedrock	Packer Injection	$3.0x10^{-6}-1.0x10^{-8}$ [12] (5.9 $x10^{-6}-2.0x10^{-8}$)		1	ı

OUI Phase III RFI/RI

Number in [] = Number of tests performed

• = Previous results as presented in the Phase II Remedial Investigation Report for High Priority Sites (881 Hillside Area) (Rockwell 1988) and French Drain

• = Previous results as presented in the Phase II Remedial Investigation Report, EG&G 1990

Geotechnical Investigation Report, EG&G 1990

• = Includes results from tests conducted in saturated and unsaturated intervals

k = Field permeability as determined using U.S. Department of Interior (1974) method for analysis of packer tests in unsaturated material cm/sec = centimeters per second [t/min = feet per second

Test	Fest Results at OU1		rage 1 of 1
Table B1-9 Summary of Agence. Lithologic Zone	Previous Test Results* K Range in cm/sec (ft/min)	Phase III RFI/RI** K Range in cm/sec (ft/min)	Comments
Rocky Flats Alluvium	1	$7x10^{5}[1]$ (1x10 ⁴)	Lithologic zone not tested during previous investigations
Colluvium and Disturbed Colluvium	5x10 ⁻⁴ -3x10 ⁻⁵ [5] (1x10 ⁻³ -6x10 ⁻⁵)	1x10 ⁻⁴ -9x10 ⁻⁷ [9] (2x10 ⁻⁴ -2x10 ⁻⁶)	Lower portion of Phase III range attributed to lower values reported for disturbed colluvium not tested during previous investigations
Woman Creek Valley Fill Alluvium	$3x10^3-3x10^5$ [4] (6x10³-6x10³)	4x10 ⁴ [1] (8x10 ⁴)	Results show good agreement between investigative programs
Bedrock Sandstone	$2x10^{4}-2x10^{6} [6] $ $(4x10^{4}-4x10^{6})$	$2x10^4 [2]$ $(4x10^4)$	Results show good agreement between investigative programs
Weathered Bedrock	$2.3\times10^{-3}-1.0\times10^{-7}$ [67] (4.5×10 ⁻³ -2.0×10 ⁻⁷)	$3x10^{-5}-5x10^{-7}$ [8] $(6x10^{-5}-1x10^{-6})$	High portion of range reported for previous investigations due to tests in highly weathered material or unsaturated conditions.
Unweathered Bedrock	$3.0x10^{-6}-1.8x10^{-8}$ [12] (5.9x10 ⁻⁶ -2.0x10 ⁻⁸)	ı	1

Number in [] = Number of tests performed

* = Previous investigation results presented in Draft Final [Phase II] Remedial Investigation Report for High Priority Sites (881 Hillside Area) (Rockwell 1988)

* = Previous investigation results presented in Draft Final [1980].

* = Previous investigation results proved for methods and packer injection test methods analyzed using various analytical techniques.

* * = Phase III RFI/RI results from bail down/recovery test methods, slug injection and slug withdrawal test methods and one packer injection test.

* * = Phase III RFI/RI results from bail down/recovery test method. Packer test results analyzed using U.S. Department of the Interior methods referenced in this report.

cm/sec = centimeters per second ft/min = feet per minute

Attachment B1-1 Field Data and Calculations

Phase III RFI/RI Report

Attachment B1-1 Field Data and Calculations

Phase III RFI/RI Report

INDEX OF BOREHOLE AND SINGLE WELL TEST DATA AND RESULTS

Borehole, well, or piezometer number: 31891 (MW02) (Work plan designation)

Dat	ta Available:
_	Packer Test - Set-up
_	Packer Test - Data Sheet (Flow vs. Time Data)
_	Packer Test - Data Logger Output (Head vs. Time Data)
_	Packer Test - Analysis and Results Calculation Sheet
<u>~</u>	Single Well Test - Record of Initial Water Level Measurement
<u>~</u>	Single Well Test – 10 Minute Calibration Plot
<u>~</u>	Single Well Test – Head vs. Time Data Form
<u>~</u>	Single Well Test - Head vs. Time Response Graph(s)
<u>~</u>	Single Well Test - Bouwer and Rice Method Analytical Results
	Single Well Test – Hyorslev Method Analytical Results

Revision 1.2

Date Passed 6/91

Name _

GROUNDWATER LEVELS MEASUREMENTS/CALCULATIONS

·	Project No. OUL - STI Hillside Date 12/6/71			
	Personnel 1.	J.Uhlinger K. Maley		
Manufacturer Tast	Model 77x - 16/19	Serial No. 265825		

ROCKY FLATS PROJECT

EQUIPMENT:

CALIBRATION:

QC REVIEW:

		-	
Well No.			
31891-AL	WD ^b	MTD ^c	Comments
Measurement 1	18.00	23.71	K. Heley
Measurement 2	18.01	25.67	I. Uhlugu
Measurement 3	19,01	23.71	K. Maley
	18.01	23,70	+ 0 - 23.7
:	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by
Well No.			
	WD _p	MTDc	Comments
Measurement 1			
Measurement 2			
Measurement 3			
			_
	Average WD	Average MTD	Probe End ^d TD° Chk'd by
Well No.			
	.WDb	MTD ^c	Comments
Measurement 1			
Measurement 2			
Measurement 3			
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by

Date

- controles:

 \(= TOWC = top of well casing = TOWC = top of well casing = WD = depth to water from MP = MTD = measured total depth from MP = Probe End = length beyond measuring point on probe = TD = total depth of well from MP

- Notes:

 All measurements are relative to Mark Point (MP) = morth side of TOWC

 OC review by supervisor is a check of reasonableness

 Measurements 1 and 2 must be within .01 R of a 3rd measurement must be taken

(4011-400-0034)(GW4REVJ)(09-11-91)

SLUG TEST DATA FORM

	Transductor Probe Datalogger Test Ru (include time and d	TAMES AND LANGE TO MAKE TO MAK	Total Casing Depth 2: Borehole Diameter 1/2 Casing Diameter 2:0 Screened Interval 1/2 Sand Pack Interval 1/2	1 - 21, 1 From MP	(12/6/11) (9,01' 5' from Cardons
•	•	131	Depth to Water from Top of Casing	H Excess Head	
	Actual Time	Elapsed Time	(ft)	(ft)	Н/НО
				/	
•					
				-/	
. •			2/5	· · · · · · · · · · · · · · · · · · ·	
•	· .		No V		
			RECO		
			Y0V		
-		V/	7		
-	 .	——————————————————————————————————————		•	
-		/-			
-					
•					
-	/		•.		
-					

SLUG INJECTION TEST DATA FORM 31891 - MW02

			ELAPSED TIME (min)	HEIGHT OF H20 IN WELL (ft)	EXCESS HEAD (ft)
E11 E.	NANAMO 4E	1400	•	10.405	4 476
FILE: TEST DATE:	MW02_1E 12/06/91	5.VVQ2	0 0.0083	19.485 19.602	1.475 1.5 9 2
START TIME:		AM	0.0166	19.434	1.424
SIANI HIVIL.	10.40.27	MAI	0.015	19.466	1.456
			0.0333	19.51	1.5
REFERENCE:	18.01	FT	0.0416	19.497	1.487
1101 0110100.	10.01	• •	0.05	19.491	1.481
			0.0583	19.488	1.478
			0.0666	19.485	1.475
			0.075	19.481	1.471
			0.0833	19.475	1.465
			0.1	19.472	1.462
			0.1166	19.466	1.456
			0.1333	19.459	1.449
			0.15	19.453	1.443
			0.1666	19.45	1.44
			0.1833	19.44	1.43
•	•		0.2	19.434	1.424
			0.2166	19.431	1.421
			0.2333	19.428	1.418
			0.25	19.437	1.427
			0.2666	19.415	1.405
			0.2833	19.409	1.399
			0.3	19.403	1.393
			0.3166	19.399	1.389
			0.3333	19.393	1.383
			0.4166	19.368	1.358
			0.5	19.346	1.336
			0.5833	19.327	1.317
			0.6666	19.305	1.295
			0.75	19.282	1.272
			0.8333	19.264	1.254
			0.9166	19.245	1.235
			1	19.226	1.216
			1.0833	19.207	1.197
			1.1666	19.188	1.178
			1.25	19.169	1.159
			1.3333	19.153	1.143
			1.4166	19.134	1.124
			1.5	19.118	1.108
			1.5833	19.102	1.092
			1.6666	19.087	1.077
			1.75	19.068	1.058
			1.8333	19.058	1.048
			1.9166	19.039	1.029

SLUG INJECTION TEST DATA FORM 31891 - MW02

ELAPSED TIME (min)	HEIGHT OF H20 IN WELL (ft)	EXCESS HEAD (ft)
2	19.027	1.017
2.5	18.935	0.925
3	18.85	0.84
3.5	18.777	0.767
4	18.708	0.698
4.5	18.648	0.638
5	18.594	0.584
5.5	18.546	0.536
6	18.499	0.489
6.5	18.461	0.451
7	18.423	0.413
7.5	18.398	0.388
8	18.37	0.36
8.5	18.341	0.331
9	18.319	0.309
9.5	18.294	0.284
10	18.281	0.271
11	18.25	0.24
12	18.221	0.211
13	18.196	0.186
14	18.174	0.164
15	18.158	0.148
16	18.148	0.138
17	18.139	0.129
18	18.13	0.12
19	18.12	0.11
20	18.117	0.107
21	18.107	0.097
22	18.104	0.094
23	18.098	0.088
24	18.095	0.085
25	18.098	0.088
26	18.065	0.075
27	18.085	0.075
28	18.065	0.075
29	18.079	0.069

			ELAPSED TIME	HEIGHT OF H20 IN WELL	EXCESS HEAD
			(min)	(ft)	(ft)
		•	(itui)	(11)	
FILE:	MW02_10	C WO2	0	16.321	-1.689
TEST DATE:	12/06/91	J. 11 Ca.2	0.0083	16.336	-1.674
START TIME:	11:20:44	AM	0.0166	16.352	-1.658
• · · · · · · · · · · · · · · · · · · ·			0.025	16.362	-1.648
			0.0333	16.368	-1.642
REFERENCE:	18.01	FT	0.0416	16.377	-1.633
	•		0.05	16.387	-1.623
			0.0583	16.39	-1.62
			0.0666	16.396	-1.614
			0.075	16.403	-1.607
			0.0833	16.406	-1.604
			0.1	16.415	-1.595
			0.1166	16.418	-1.592
			0.1333	16.431	-1.579
			0.15	16.437	-1.573
			0.1666	16.362	-1.648
			0.1833	16.45	-1.56
			0.2	16.45	-1.56
			0.2166	16.46	-1.55
			0.2333	16.469	-1.541
			0.25	16.478	-1.532
			0.2666	16.485	-1.525
			0.2833	16.491	-1.519
			0.3	16.501	-1.509
			0.3166	16.507	-1.503
			0.3333	16.513	-1.497
			0.4166	16.526	-1.484
			0.5	16.561	-1.449
			0.5833	16.589	-1.421
			0.6666	16.621	-1.389
			0.75	16.643	-1.367
			0.8333	16.668	-1.342
			0.9166	16.693	-1.317
			1	16.706	-1.304
			1.0833	16.738	-1.272
			1.1666	16.756	-1.254
			1.25	16.782	-1.228
			1.3333	16.801	-1.209
			1.4166	16.82	-1.19
			1.5	16.83 9	-1.171
			1.5833	16.861	-1.149
			1.6666	16.88	-1.13
			1.75	16.899	-1.111
			1.8333	16.918	-1.092
			1.9166	16.937	-1.073

ELAPSED	HEIGHT OF	EXCESS
TIME	H20 IN WELL	HEAD
(min)	(ft)	(ft)
2	16.952	-1.058
2.5	17.063	-0.947
3	17.158	-0.852
3.5	17.243	-0.767
4	17.316	-0.694
4.5	17.385	-0.625
5	17.455	-0.555
5.5	17.499	-0.511
6	17.546	-0.464
6.5	17.587	-0.423
7	17.625	-0.385
7.5	17.66	-0.35
8	17.688	-0.322
8.5	17.717	-0.293
9	17.745	-0.265
9.5	17.767	-0.243
10	17.789	-0.221
11	17.821	-0.189
12	17.846	-0.164
13	17,868	-0.142
14	17.887	-0.123
15	17.906	-0.104
16	17.919	-0.091
17	17.932	-0.078
18	17.938	-0.072
19	17.947	-0.063
20	17.95	-0.06
21	17.957	-0.053
22	17.96	-0.05
23	17.963	-0.047
24	17.966	-0.044
25	17.973	-0.037
26	17.973	-0.037

SLUG INJECTION TEST

AQTESOLV RESULTS Version 1.10

03/06/92 11:53:47

TEST DESCRIPTION

Data set..... mw02inj.dat

Data set title.... SLUG INJECTION TEST 31891 - MW02

Project...... OPERABLE UNIT 1
Client..... EG&G ROCKY FLATS
Location..... 881 HILLSIDE
Test date...... 12/06/91

Knowns and Constants:

ANALYTICAL METHOD

Bouwer-Rice (Unconfined Aquifer Slug Test)

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 4.0635E-004y0 = 1.4717E+000

ROCKY FLATS	IDE	02	DATA SET: mw02inj.dat 03/06/92	AQUIFER TYPE: Unconfined SOLUTION METHOD: Bouwer-Rice TEST DATE: 12/08/91	ESTIMATED PARAMETERS: K = 0.0004084 ft/min y0 = 1.472 ft	TEST DATA:	rc = 0.0863 ft rv = 0.458 ft r = 1.6 ft b = 9.09 ft H = 2.89 ft		
Client: EG&G ROCK	Location: 881 HILLSIDE	TEST 31891 - MW02			n11111			20. 30.	
	OPERABLE UNIT 1	SLUG INJECTION T	10. =1111111111111				0.1	0.01 10. 20. Time (min)	
	Project No.:			re)) Jusu	FCBI	nigeid		

AQTESOLV RESULTS Version 1.10

03/06/92 10:13:20

TEST DESCRIPTION

Data set mw02wd.dat
Data set title.... SLUG WITHDRAWAL TEST 31891 - MW02

Project..... OPERABLE UNIT 1 Client..... EG&G ROCKY FLATS Location..... 881 HILLSIDE Test date...... 12/06/91

Knowns and Constants:

Radius of well casing..... 0.0863 Well screen length..... 1.6 Static height of water in well..... 2.89

Log (Re/Rw) 0.9856 A, B, C..... 1.668, 0.253, 0.000

ANALYTICAL METHOD

Bouwer-Rice (Unconfined Aquifer Slug Test)

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 4.8018E-004 v0 = 1.6233E+000

Y FLATS	SIDE	MW02	DATA SET: mw02wd.det 03/06/92 AGUIFER TYPE: Unconfined SOLUTION METHOD: Bouwer-Rice TEST DATE: 12/06/91	ESTIMATED PARAMETERS: K = 0.0004802 ft/min y0 = 1.623 ft TEST DATA: rc = 0.0869 ft rw = 0.458 ft b = 3.09 ft H = 2.89 ft
EG&G ROCKY FLATS	881 HILLSIDE	1	<u> </u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Client: E	Location:	TEST 31891		00000000000000000000000000000000000000
	T 1	SLUG WITHDRAWAL		
	OPERABLE UNIT	SLUG WI		
	1		<u> </u>	Jusmessigaid O.0.1
	t No.:		(13)	
	Project			

INDEX OF BOREHOLE AND SINGLE WELL TEST DATA AND RESULTS

Borehole, well, or piezometer number: 34791 (MW13) (Work plan designation)

Data Available:

Packer Test - Set-up
 Packer Test - Data Sheet (Flow vs. Time Data)
 Packer Test - Data Logger Output (Head vs. Time Data)
 Packer Test - Analysis and Results Calculation Sheet
 ✓ Single Well Test - Record of Initial Water Level Measurement
 ✓ Single Well Test - 10 Minute Calibration Plot
 ✓ Single Well Test - Head vs. Time Data Form
 ✓ Single Well Test - Head vs. Time Response Graph(s)
 ✓ Single Well Test - Bouwer and Rice Method Analytical Results
 Single Well Test - Hvorslev Method Analytical Results

GROUNDWATER LEVELS MEASUREMENTS/CALCULATIONS

		Project No. 88 Hills de OUI Date 12/20/91 Personnel 1. J. Uhlunger	sion 1.2
EQUIPMENT: CALIBRATION:	Manufacturer Model Date Passed	2	
QC REVIEW:	Name	Date	
	Well No.		. 1

Well No. 34791 Measurement 1 Measurement 2 Measurement 3	WDb 4,94 4,94 4,94 4,94 Average WD	MTD ^c (2.8/ (2.8/ (2.8/ 12.8/ Average MTD	+ C = (2,8) Probe End ^d TD ^o Chk'd by
Well No.	WD ^b	MTD ^c	Comments
Measurement 1			
Measurement 2			
Measurement 3			
	Average WD	Average MTD	+ =
Well No.	WD ^b	MTD ^e	Comments
Measurement 1			
Measurement 2			
Measurement 3			
:			+
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by

Footnotes:

A = TOWC = top of wattlemning
b = WD = depth to makes draws
c = MTD = measured tastal draw
d = Probe End = length-began
e = TD = total depth and enables

Notes:

All measurements are relative to Mark Point (MP) = sorth side of TOWC

OC review by supervisor is a check of reasonableness

Measurements 1 and 2 must be within .01 ft of a 3rd measurement must be taken

SLUG TEST DATA FORM

Borehole No. 3 Test Date 12 Measuring Point Type of Test Signature Transductor Probe Datalogger Test R (include time and	4791 MW 13 120/91 100 PUC Carrier 100 PUC Carr	Name J. UHLINGER Groundwater Elevation Before Test 4.94 Total Casing Depth 12.81 Borehole Diameter 11" Casing Diameter 2.07" Screened Interval 13.5 - 8.4				
identification purp		Lithology Tested Send	y anvel			
mu	13-la.TST 113-16.TST 113-16.TST	Depth to Water	H Excess Head			
Actual Time	Elapsed Time	from Top of Casing (ft)	(ft)	/ Н/НО		
			/			
						
		کے				
		2				
		<i>y</i> /				
				,		
	,					
						
						
	4					
· · · · · · · · · · · · · · · · · · ·	·/					
						
						
		,				
	/					
/						
			•			

(4011-600-0024)(GW4REV.1)(09-11-91)

SLUG INJECTION TEST DATA FORM 34791 - MW13

		ELAPSED	DEPTH TO H2	EXCESS
		TIME	FROM TOC	HEAD
		(min)	(ft)	(ft)
FILE:	MW13_1B.WQ2	0	2.806	1.994
TEST DATE:	12/20/91	0.0083	2.587	2.213
START TIME:	08:28:035 AM	0.0166	2.701	2.099
	•	0.025	2.708	2.092
		0.0333	2.685	2115
REFERENCE:	4.80 FT	0.0416	2.689	2.111
		0.05	2.695	2.105
•	•	0.0583	2.692	2.108
		0.0666	2.695	2.105
		0.075	2.695	2.105
		0.0833	2.695	2.105
		0.1	2.714	2.086
		0.1166	2.696	2.102
		0.1333	2.695	2.105
		0.15	2.701	2.099
		0.1666	2.698	2.102
		0.1833	2.696	2.102
		0.2	2.698	2.102
		0.2166	2.701	2.099
		0.2333	2.701	2.099
		0.25	2.701	2.099
		0.2666	2.701	2.099
		0.2833	2.701	2.099
		0.3	2.704	2.096
		0.3166	2.701	2.099
		0.3333	2.701	2.099
		0.4166	2.704	2.096
		0.5	2.708	2.092
		0.5833	2.708	2.092
		0.6666	2.711	2.089
		0.75	2.714	2.086
		0.8333	2.711	2.069
		0.9166	2.714	2.086
		1	2.717	2.083
		1.0833	2.717	2.083
		1.1666	2.720	2.080
		1.25	2.720	2.080
		1.3333	2.723	2.077
		1.4166	2.723	2.077
		1.5	2.727	2.073
		1.5833	2.727	2.073
		1.6666	2.727	2.073
		1.75	2.730	2.070
		1.8333	2.730	2.070
		1.9166	2.733	2.067

SLUG INJECTION TEST DATA FORM 34791 - MW13

ELAPSED	DEPTH TO H20	
TIME	FROM TOC	HEAD
(min)	(ft)	(ft)
2	2.733	2.067
2.5	2.749	2.051
3	2.762	2.038
3.5	2.774	2.026
4	2.787	2.013
4.5	2.800	2.000
5	2.816	1.984
5.5	2.832	1.968
6	2.844	1.956
6.5	2.860	1.940
7	2.873	1.927
7.5	2.889	1.911
8	2.898	1.902
8.5	2.917	1.883
9.	2.917	1.883
9.5	2.946	1.854
10	2.959	1.841
12	3.013	1.787
14	3.067	1.733
16	3.118	1.682
18	3.169	1.631
20	3.216	1.584
22	3.267	1.533
24	3.318	1.482
26	3.378	1.422
28	3.452	1.348
30	3.518	1.282
32	3.582 3.642	1.218
34	· -	1,158
36	3.696	1.104
38	3.728	1.072
40	3.744	1.056
42	3.757	1.043
44	3.769	1.031
46	3.782	1.018
48	3.796	1.002
50	3.811	0.989
52	3.827	0.973
54	3.839	0.961
56	3.852	0.948
58	3.865	0.935
60	3.878	0.922
62	3.890	0.910
64	3.903	0.897
66	3.916	0.884

SLUG INJECTION TEST DATA FORM 34791 - MW13

ELAPSED TIME (min)	DEPTH TO H20 FROM TOC (ft)	EXCESS HEAD (ft)
68	3.928	0.872
70	3.941	0.859
72	3.951	0.849
74	3.963	0.837
76	3.976	0.824
78	3.986	0.814
80	3.998	0.802
82	4.008	0.792
84	4.021	0.779
86	4.033	0.767
88	4.043	0.757
90	4.052	0.748
92	4.062	0.738
94	4.075	0.725
96	4.064	0.716
98	4.091	0.709
100	4.103	0.697
110	4.151	0.649
120	4.195	0.605
130	4.237	0.563
140	4.275	0.525
150	4.310	0.490
160	4.342	0.458
170	4.374	0.426
180	4.402	0.398
190	4.428	0.372
200	4.453	0.347
210	4.478	0.322
220	4.504	0.296
230	4.523	0.277
240	4.542	0.258
250	4.564	0.236
260	4.580	0.220
270	4.596	0.204

			ELAPSED	DEPTH TO H20	EXCESS
			TIME	FROM TOC	HEAD
			(min)	(ft)	(ft)
FILE:	MW13_1C.W	102	0	6.758	-1.958
TEST DATE:	12/20/91		0.0083	6.754	-1.954
START TIME:	12:59:58 PI	М	0.0166	6.754	-1.954
			0.025	6.754	-1.954
			0.0333	6.754	-1.954
REFERENCE:	4.80 F	T	0.0416	6.751	-1.951
			0.05	6.748	-1.948
			0.0583	6.745	-1.945
			0.0666	6.745	-1.945
			0.075	6.745	-1.945
			0.0833	6.745	-1.945
			0.1	6.742	-1.942
			0.1166	6.742	-1. 94 2
			0.1333	6.754	-1.954
			0.15	6.754	-1.954
			0.1666	6.735	-1.935
			0.1833	6.739	-1.939
			0.2	6.735	-1.935
			0.2166	6.735	-1.935
			0.2333	6.735	-1.935
			0.25	6.735	-1.935
			0.2666	6.735	-1.935
			0.2833	6.732	-1.932
			0.3	6.732	-1.932
			0.3166	6.732	-1.932
•	•		0.3333	6.732	-1.932
			0.4166	6.729	-1.929
			0.4100	6.716	-1.916
			0.5833	6.713	-1.913
			0.6666	6.710	-1.910
			0.75	6.710	-1.910
			0.8333	6.707	-1.907
			0.9166	6.704	-1.904
			1	6.704	-1.904
			1.0833	6.700	-1.900
			1.1666	6.700	-1.900
			1.25	6.697	-1.897
			1.3333	6.697	
			1.4166	6.694	-1.897 -1.804
					-1.894
			1.5	6.691	-1.891
			1.5833	6.691	-1.891
			1.6666	6.688	-1.888
			1.75	6.688	-1.888
			1.8333	6.688	-1.888
			1.9166	6.685	-1.885

ELAPSED	DEPTH TO H20	
TIME	FROM TOC	HEAD
(min)	(ft)	(ft)
•	0.004	1 001
2	6.681	-1.881 -1.875
2.5	6.675	
3	6.665	-1.865
3.5	6.662	-1.862
4	6.666	-1.856
4.5	6.650	-1.850
5	6.646	-1.846
5.5	6.640	-1.840
6	6.634	-1.834
6.5	6.627	-1.827
7	6.624	-1.824
7.5	6.618	-1.818
8	6.615	-1.815
8.5	6.608	-1.808
9	6.602	-1.802
9.5	6.599	-1.799
10	6.592	-1.792
12	6.573	-1.773
14	6.557	-1.757
16	6.532	-1.732
18	6.522	-1.722
20	6.507	-1.707
22	6.491	-1.691
24	6.475	-1.675
26	6.459	-1.659
28	6.440	-1.640
30	6.427	-1.627
32	6.411	-1.611
34	6.398	-1.598
36	6.379	-1.579
38	6.367	-1.567
40	6.351	-1.551
42	6.338	-1.538
44	6.319	-1.519
46	6.306	-1.506
48	6.290	-1.490
5 0	6.278	-1.478
52	6.268	-1.468
54	6.249	-1.449
5 4	6.240	-1.440
58	6.240 6.224	-1.440 -1.424
60	6.211	-1.411
62	6.198	-1.398
64	6.185	-1.385
66	6.173	-1.373

ELAPSED TIME	DEPTH TO H20 FROM TOC	EXCESS HEAD
(min)	(ft)	(ft)
68	6.157	-1.357
70	6.147	-1.347
72	6.135	-1.335
74	6.122	-1.322
76	6.112	-1.312
78	6.096	-1.296
80	6.087	-1.287
82	6.074	-1.274
84	6.061	-1.261
86	6.052	-1.252
88	6.030	-1.239
90	6.027	-1.227
92	6.014	-1.214
94	6.004	-1.204
96	5.992	-1.192
96	5.982	-1.182
100	5.969	-1.169
110	5.918	-1.118
120	5.864	-1.064
130	5.814	-1.014
140	5.766	-0.966
150	5.718	-0.918
160	5.674	-0.874
170	5.632	-0.832
180	5.591	-0.791
190	5.553	-0.753
200	5.515	-0.715
210	5.477	-0.677
220	5.448	-0.648
230	5.416	-0.616
240	5.388	-0.588
250	5.356	-0.556
260	5.334	-0.534
270	5.305	-0.505
280	5.283	-0.483
290	5.260	-0.460
300	5.238	-0.438
310	5.222	-0.422
320	5.203	-0.403
330	5.184	-0.384
340	5.168	-0.368
350	5.149	-0.349
360	5.136	-0.336
370	5.124	-0.324
380	5.111	-0.311

ELAPSED	DEPTH TO H20	
TIME	FROM TOC	HEAD
(min)	(ft)	(ft)
390	5.098	-0.298
400	5.086	-0.286
410	5.076	-0.276
420	5.067	-0.267
430	5.057	-0.257
440	5.051	-0.251
450	5.038	-0.238
460	5.032	-0.232
470	5.022	-0.222
480	5.019	-0.219
490	5.012	-0.212
500	5.006	-0.206
510	5.000	-0.200
520	4.993	-0.193
530	4.984	-0.184
540	4.981	-0.181
550	4.978	-0.178
560	4.974	-0.174
570	4.971	-0.171
580	4.968	-0.168
590	4.962	-0.162
600	4.958	-0.158
610	4.955	-0.155
620	4.952	-0.152
630	4.946	-0.146
640	4.939	-0.139
650	4.936	-0.136
660	4.930	-0.130
670	4.927	-0.127
680	4.920	-0.120
690	4.917	-0.117
700	4.914	-0.114
710	4.911	-0.111
720	4.904	-0.104
730	4.898	-0.098
740	4,901	-0.101
750	4,895	-0.095
760	4.895	-0.095
770	4.895	-0.095
780	4.889	-0.089
790	4.889	-0.089
800	4.889	-0.089
810	4.889	-0.089
820	4.889	-0.089
830	4.885	-0.085
•	7.000	5.000

ELAPSED	DEPTH TO H20	
TIME	FROM TOC	HEAD
(min)	(ft)	(ft)
840	4.882	-0.082
850	4.879	-0.079
860	4.879	-0.079
870	4.879	-0.079
880	4.873	-0.073
890	4.876	-0.076
900	4.873	-0.073
910	4.869	-0.069
920	4.866	-0.066
930	4.863	-0.063
940	4.863	-0.063
950	4.863	-0.063
960	4.860	-0.060
970	4.857	-0.057
980	4.857	-0.057
990	4.857	-0.057
1000	4.854	-0.054
1010	4.847	-0.047
1020	4.850	-0.050
1030	4.847	-0.047
1040	4.850	-0.050
1050	4.847	-0.047
1060	4.844	-0.044
1070	4.841	-0.041
1080	4.841	-0.041
1090	4.841	-0.041
1100	4.841	-0.041
1110	4.841	-0.041
1120	4.838	-0.038
1130	4.838	-0.038
1140	4.841	-0.041
1150	4.841	-0.041
1160	4.838	-0.038
1170	4.838	-0.038

SLUG WITHDRAWAL TEST 34791 - MW13

AQTESOLV RESULTS Version 1.10

06/05/92 09:58:55

TEST DESCRIPTION

Data set..... MW13INJ.DAT

Data set title.... SLUG INJECTION TEST 34791 - MW13

Project...... OPERABLE UNIT 1
Client..... EG&G ROCKY FLATS
Location..... 881 HILLSIDE
Test date...... 12/20/91

Knowns and Constants:

A, B, C..... 1.663, 0.253, 0.000

ANALYTICAL METHOD

Bouwer-Rice (Unconfined Aquifer Slug Test)

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate (= 1.8752E-005

y0 = 1.4044E+000

T. 1 Client: EG&G ROCKY FLATS Location: 881 HILLSIDE

AQTESOLV RESULTS Version 1.10

03/12/92 12:57:59

TEST DESCRIPTION

Data set..... mw13wd.dat

Data set title.... SLUG WITHDRAWAL TEST 34791 - MW13

Knowns and Constants:

No. of data points..... 213 Radius of well casing........... 0.0863
Radius of well............... 0.458 Aquifer saturated thickness..... 5.56 Well screen length..... 1.54

************************** ANALYTICAL METHOD

Bouwer-Rice (Unconfined Aquifer Slug Test)

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate

1.2726E-005 y0 = 1.9061E+000

ROCKY FLATS	HILLSIDE	MW13	DATA SET: MM15WD.DAT 03/08/92	AGUIFER TYPE:	SOLUTION METHUD: Bouwer-Aice TEST DATE: 12/20/91	ESTIMATED PARAMETERS: K = 1.2726E-05 ft/min y0 = 1.908 ft	TEST DATA:	rc = 0.0863 ft rw = 0.458 ft L = 1.54 ft b = 5.56 ft H = 5.28 ft		
Client: EG&G R	Location: 881 H	TEST 34791 -		-		mmi			րևասուսիսուսիրուսորևասուհուսուհուսու 00. 600. 800. 1000. 1200. Time (min)	
	Project No .: OPERABLE UNIT 1	SLUG WITHDRAWAL	10. HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			i jusu	1901		0.01 humulumulumulumulumulum 0. 200. 400. 600. 800. Time (min)	

INDEX OF BOREHOLE AND SINGLE WELL TEST DATA AND RESULTS

Borehole, well, or piezometer number: 35691 (MW17) (Work plan designation)

Data Available:

- Packer Test Set-up
 Packer Test Data Sheet (Flow vs. Time Data)
 Packer Test Data Logger Output (Head vs. Time Data)
 Packer Test Analysis and Results Calculation Sheet
- ✓ Single Well Test Record of Initial Water Level Measurement
- ✓ Single Well Test 10 Minute Calibration Plot
- ✓ Single Well Test Head vs. Time Data Form
- ✓ Single Well Test Head vs. Time Response Graph(s)
- ✓ Single Well Test —Bouwer and Rice Method Analytical Results
- ✓ S ingle Well Test Hvorslev Method Analytical Results

GROUNDWATER LEVELS MEASUREMENTS/CALCULATIONS

CALIBRATION:	Manufacturer <u>Soli</u> Date Passed		Project No. Date _/2/4 Personnel 1 2	ATS PROJECT 58 (Millside o) (9/ . J. Uhlings . R. Wales Serial No. 602	/6(1) (0373
Towc [®] (wp)	Well No. 3569/ Measurement 1 Measurement 2	WDb 12,64' 12.64'	MTD ^c SEU RICHI 12.7 30.46 30.46	Commer K. Melinger	its
	Measurement 3	12.64' Average WD	30.46' 30.46' Average MTD	+ O = \$0.4 Probe End ^d TD	
W ²	Well No.	WD ^b	MTD ^c	Comme	nts
[™] 🕷 🕷	Measurement 1				
V 28 28 V	Measurement 2 Measurement 3				
		Average WD	Average MTD	+ = Probe End ^d TD	Chk'd by
V	Well No.	WD ⁶	MTD ^c	Comme	nts
	Measurement 1				
	Measurement 2 Measurement 3				
	Measulement 3			+	

Footnotes:

A = TOWC = top of well casing
b = WD = depth to water from MP
c = MTD = measured total depth from MP
d = Probe End = length beyond measuring point on probe
c = TD = total depth of well from MP

Average WD

Average MTD

Notes:

All measurements are relative to Mark Point (MP) = north side of TOWC

OC review by supervisor is a check of reasonableness

Measurements 1 and 2 must be within .01 ft of a 3rd measurement must be taken

Probe Endd

TD°

Chk'd by

SLUG TEST DATA FORM

Location 88/H	Uside	Name T. Uhlinger,	K, maly	
Borehole No. 350		Groundwater Elevation B	efore Test /2.04'	Leseured
Test Date _/2/6/9	1 12/3/11	Total Casing Depth	46 marenned	
Measuring Point 7		Borehole Diameter 114		
Type of Test Eluq		Casing Diameter _2.07		
	Serial No. 265725	Screened Interval		
Datalogger Test Ru		Sand Pack Interval 16.	13166.	
(include time and d	late for	List along Toront cile	Class classes as	ruel wand
identification purpo	ses) MW17_ 12. TST	Lithology Tested Selly	Say, Carry 9	
	MWG-16.TST MWG-16,TST		•	
	M M (4 = 1 C (1 C)	Depth to Water	H	
		from Top of Casing	Excess Head	
Actual Time	Elapsed Time	(ft)	(ft)	H/HO
				/
			/	
		5/	7.	
		0/	/	
		9		
	Ç	7		
	- 4/0-4			
				,
				
		· · · · · · · · · · · · · · · · · · ·		
/				 .
und am may voyus sv vin s				

			ELAPSED TIME	DEPTH TO H20 EXCESS FROM TOC HEAD		H/H0
			(min)	(ft)	(ft)	
FILE:	MW17_1E	BE.WQ2	0	21.449	1.449	0.96
TEST DATE:	12/06/91		0.0083	21.61	1.61	1.07
START TIME:	14:20:01	AM	0.0166	21.721	1.721	1.14
			0.025	21.667	1.667	1.11
H0:	1.5049	FT	0.0333	21.547	1.547	1.03
REFERENCE:	20	FT	0.0416	21.49	1.49	0.99
			0.05	21.519	1.519	1.01
			0.0583	21.582	1.582	1.05
		÷	0.0666	21.61	1.61	1.07
			0.075	21.585	1.585	1.05
			0.0833	21.55	1.55	1.03
•			0.1	21.55	1.55	1.03
	•		0.1166	21.573	1.573	1.05
			0.1333	21.554	1.554	1.03
			0.15	21.554	1.554	1.03
			0.1666	21.557	1.557	1.03
			0.1833	21.55	1.55	1.03
			0.2	21.554	1.554	1.03
			0.2166	21.554	1.554	1.03
			0.2333	21.55	1.55	1.03
			0.25	21.55	1.55	1.03
			0.2666	21.55	1.55	1.03
			0.2833	21.547	1.547	1.03
			0.3	21.547	1.547	1.03
			0.3166	21.547	1.547	1.03
			0.3333	21.547	1.547	1.03
			0.4166	21.544	1.544	1.03
			0.5	21.544	1.544	1.03
			0.5833	21.541	1.541	1.02
			0.6666	21.541	1.541	1.02
			0.75	21.538	1.538	1.02
			0.8333	21.538	1.538	1.02
			0.9166	21.535	1.535	1.02
			1	21.535	1.535	1.02
			1.0833	21.532	1.532	1.02
			1.1666	21.532	1.532	1.02
			1.25	21.532	1.532	1.02
			1.3333	21.532	1.532	1.02
			1.4166	21.528	1.528	1.02
			1.5	21.528	1.528	1.02
			1.5833	21.528	1.528	1.02
			1.6666	21.525	1.525	1.01
			1.75	21.525	1.525	1.01
			1.8333			
				21.525	1.525	1.01
			1.9166	21.522	1.522	1.01

ELAPSED	DEPTH TO H20		нино
TIME	FROM TOC	HEAD	
(min)	<u>(ft)</u>	(ft)	
•	21.522	1.522	1.01
2 25	21.513	1.513	1.01
3	21.509	1.509	1.00
3.5	21.503	1.503	1.00
4	21.5	1.5	1.00
4.5	21.497	1.497	0.99
5	21.494	1.494	0.99
5.5	21.487	1.487	0.99
6	21.487	1.487	0.99
6.5	21.487	1.487	0.99
7	21.481	1.481	0.98
7.5	21.478	1.478	0.98
7.5 8	21.475	1.475	0.98
8.5	21.475	1.475	0.98
9.	21.471	1.471	0.98
9.5	21.468	1.468	0.96
10	21.468	1.468	0.98
12	21.462	1.462	0.97
14	21,456	1.456	0.97
16	21.446	1.446	0.96
	21,44	1.44	0.96
18 20	21.43	1.43	0.95
22 22	21.427	1.427	0.95
24	21,415	1.415	0.94
24 26	21.411	1.411	0.94
_	21.405	1.405	0.93
28 30	21.402	1.403	0.93
32	21.396	1.396	0.93
32 34	21.389	1.389	0.92
	21.383	1.383	0.92
36 38	21.363	1.377	0.92
40	21.37	1.37	0.91
42	21.364	1.364	0.91
	21.361	1.361	0.90
44 46	21.348	1.348	0.90
48		1.345	0.89
46 50	21.345 21.342	1.343	0.89
52 54	21.336	1.336	0.89
54	21.333	1.333	0.89
56	21.326	1.326	0.88
58	21.323	1.323	0.88
60	21.317	1.317	0.88
62	21.31	1.31	0.87
64	21.304	1.304	0.87
66	21.298	1.298	98.0

ELAPSED TIME (min)	DEPTH TO H20 FROM TOC (ft)	EXCESS HEAD (ft)	НИНО
68	21.295	1.295	0.86
70	21.288	1.288	0.86
72	21.282	1.282	0.85
74	21.276	1.276	0.85
76	21.272	1.272	0.85
78	21.266	1.266	0.84
80	21.266	1.266	0.84
82	21.257	1.257	0.84
84	21.25	1.25	0.83
86	21.247	1.247	0.83
88	21.238	1.238	0.82
90	21.241	1.241	0.82
92	21.235	1.235	0.82
94	21,228	1.228	0.82
96	21,225	1.225	0.81
98	21,222	1.222	0.81
100	21,212	1.212	0.81
110	21,194	1.194	0.79
	21.168	1.168	0.78
120	21.146	1.146	0.76
130		1.124	0.75
140	21.124	1.105	0.73
150	21.105		0.73
160	21.083	1.083	
170	21.064	1.064	0.71
180	21.045	1.045	0.69
190	21.023	1.023	0.68
200	21.004	1.004	0.67
210	20.985	0.985	0.65
220	20.969	0.969	0.64
230	20.95	0.95	0.63
240	20.935	0.935	0.62
250	20.919	0.919	0.61
260	20.903	0.903	0.60
270	20.89	0.89	0.59
280	20.874	0.874	0.58
290	20.862	0.862	0.57
300	20.846	0.846	0.56
310	20.83	0.83	0.55
320	20.818	0.818	0.54
330	20.805	0.805	0.53
340	20.789	0.789	0.52
350	20.777	0.777	0.52
360	20.761	0.761	0.51
370	20.751	0.751	0.50
380	20.739	0.739	0.49
•	20.100		

	ELAPSED	DEPTH TO H20		H/H0
	TIME	FROM TOC	HEAD	
,	(min)	(ft)	(ft)	
	390	20.728	0.726	0.48
	400	20.717	0.717	0.48
	410	20.701	0.701	0.47
	420	20.691	0.691	0.46
	430	20.682	0.682	0.45
	440	20.672	0.672	0.45
	450	20.657	0.657	0.44
	460	20.647	0.647	0.43
	470	20.634	0.634	0.42
	480	20.628	0.628	0.42
	490	20.615	0.615	0.41
	500	20.606	0.606	0.40
	510	20.593	0.593	0.39
	520	20.587	0.587	0.39
	530	20.578	0.578	0.38
	540	20.568	0.568	0.38
	550	20.562	0.562	0.37
	560	20.552	0.552	0.37
	570	20.546	0.546	0.36
	580	20.536	0.536	0.36
	590	20.53	0.53	0.35
	600	20.524	0.524	0.35
	610	20.518	0.524	0.34
	620	20.511	0.510	0.34
	630	20.505	0.505	0.34
	640	20.499		
	650	20.492	0.499 0.492	0.33
				0.33
	660	20.489	0.489	0.32
	670	20.483	0.483	0.32
	680	20.473	0.473	0.31
	690	20.464	0.464	0.31
	700	20.461	0.461	0.31
	710	20.454	0.454	0.30
	720	20.448	0.448	0.30
	730	20.442	0.442	0.29
	740	20.435	0.435	0.29
	750	20.432	0.432	0.29
	760	20.426	0.426	0.28
	770	20.42	0.42	0.28
	780	20.413	0.413	0.27
	790	20.407	0.407	0.27
	800	20.401	0.401	0.27
	810	20.401	0.401	0.27
	820	20,398	0.398	0.26
	830	20.391	0.391	0.26
			•	-

ELAPSED	DEPTH TO H20	EXCESS	нно
TIME	FROM TOC	HEAD	
(min)_	(ft)	(ft)_	
			
840	20.388	0.388	0.26
850	20.388	0.388	0.26
860	20.382	0.382	0.25
870	20.379	0.379	0.25
880	20.375	0.375	0.25
890	20.369	0.369	0.25
900	20.366	0.366	0.24
910	20.36	0.36	0.24
920	20.356	0.356	0.24
930	20.35	0.35	0.23
940	20.347	0.347	0.23
950	20.344	0.344	0.23
960	20.341	0.341	0.23
970	20.334	0.334	0.22
980	20.331	0.331	0.22
990	20.328	0.328	0.22
1000	20.325	0.325	0.22
1010	20.319	0.319	0.21
1020	20.315	0.315	0.21
1030	20.312	0.312	0.21
1040	20.309	0.309	0.21
1050	20.303	0.303	0.20
1060	20.3	0.3	0.20
1070	20.293	0.293	0.19

		ELAPSED	DEPTH TO H20		НИНО
•	•	TIME	FROM TOC	HEAD	
		(min)	(ft)	(ft)	
FILE:	MW17_1CE.WQ2	0	18.796	-1.204	0.97
TEST DATE:	12/07/91	0.0083	18.711	-1.289	1.04
START TIME:	08:23:16 AM	0.0166	18.543	-1.457	1.17
	· ·	0.025	18.648	-1.352	1.09
H0:	-1.245 FT	0.0333	18.723	-1.277	1.03
REFERENCE:	20 FT	0.0416	18.673	-1.327	1.07
		0.05	18.644	-1.356	1.09
		0.0583	18.701	-1.299	1.04
		0.0666	18.717	-1.283	1.03
		0.075	18.682	-1.318	1.06
		0.0833	18.663	-1.337	1.07
		0.1	18.701	-1.299	1.04
		0.1166	18.685	-1.315	1.06
		0.1333	18.711	-1.289	1.04
		0.15	18.708	-1.292	1.04
		0.1666	18.717	-1.283	1.03
		0.1833	18.717	-1.283	1.03
		0.183	18.72	-1.28	1.03
		0.2166	18.72	-1.28	1.03
		0.2333	18.723	-1.277	1.03
		0.25	18.723	-1.277	1.03
		0.2666	18.723	-1.277	1.03
		0.2833	18.727	-1.273	1.02
		0.3	18.727	-1.273	1.02
		0.3166	18.73	-1.27	1.02
		0.3333	18.73	-1.27	1.02
		0.4166	18.733	-1.267	1.02
		0.5	18.736	-1.264	1.02
		0.5833	18.736	-1.264	1.02
		0.6666	18.739	-1.261	1.01
		0.75	18.739	-1.261	1.01
		0.8333	18.742	-1.258	1.01
		0.9166	18.742	-1.258	1.01
		1	18.742	-1.258	1.01
		1.0833	18.745	-1.255	1.01
		1.1666	18.745	-1.255	1.01
		1.25	18.749	-1.251	1.00
		1.3333	18.749	-1.251	1.00
		1.4166	18.749	-1.251 -1.251	1.00
•	•	1.5	18.749	-1.251 1.249	1.00
		1.5833	18.752	-1.248	1.00
		1.6666	18.752	-1.248	1.00
		1.75	18.752	-1.248	1.00
		1.8333	18.752	-1.248	1.00
		1.9166	18.755	-1.245	1.00

ELAPSED TIME (min)	DEPTH TO H20 FROM TOC (ft)	EXCESS HEAD (ft)	Н/Н0
(trait)		(11)	
•	40 755	4 045	1.00
2 2.5	18.755 18.761	-1.245 -1.239	1.00
3		-1.236	0.99
3 3.5	18.764 18.764	-1.236	0.99
	18.768	-1.232	0.99
4	18.771	-1.232 -1.229	0.99
4.5			0.98
5	18.777	-1.223 -1.223	0.98
5.5	18.777		
6	18.78	-1.22	0.98
6.5	18.787	-1.213	0.97
7	18.79	-1.21	0.97
7.5	18.793	-1.207	0.97
8	18.809	-1.191	0.96
8.5	18.799	-1.201	0.96
9	18.799	-1.201	0.96
9.5	18.802	-1.198	0.96
10	18.802	-1.198	0.96
12	18.809	-1.191	0.96
14	18.815	-1.185	0.95
16	18.821	-1.179	0.95
18	18.824	-1.176	0.94
20	18.831	-1.169	0.94
22	18.834	-1.166	0.94
24	18.837	-1.163	0.93
26	18.843	-1.157	0.93
28	18.847	-1.153	0.93
30	18.85	-1.15	0.92
32	18.853	-1.147	0.92
34	18.856	-1.144	0.92
36	18.859	-1.141	0.92
38	18.862	-1.138	0.91
40	18.869	-1.131	0.91
42	18.872	-1.128	0.91
44	18.878	-1.122	0.90
46	18.881	-1.119	0.90
48	18.884	-1.116	0.90
50	18.894	-1.106	0.89
52	18.897	-1.103	0.89
54	18.897	-1.103	0.89
56	18.894	-1.106	0.89
58	18.897	-1.103	0.89
60	18.9	-1.1	0.88
62	18.903	-1.097	0.88
64	18.907	-1.093	0.88
66	18.91	-1.093 -1.09	0.88
00	18.91	-1.09	0.66

ELAPSED	DEPTH TO H20 EXCESS		H/H0
TIME	FROM TOC	HEAD	
(min)	<u>(ft)</u>	(ft)	
68	18.916	-1.084	0.87
70	18.919	-1.081	0.87
72	18.922	-1.078	0.87
74	18.929	-1.071	0.86
76	18.935	-1.065	0.86
78	18.935	-1.065	0.86
80.	18.938	-1.062	0.85
82	18.941	-1.059	0.85
84	18.944	-1.056	0.85
86	18.944	-1.056	0.85
88	18,948	-1.052	0.84
90	18.951	-1.049	0.84
92	18.954	-1.046	0.84
94	18.957	-1.043	0.84
96	18.96	-1.04	0.84
96	18,963	-1.037	0.83
100	18.967	-1.033	0.83
110	18,982	-1.018	0.82
120	19.011	-0.989	0.79
130	19.02	-0.96	0.79
140	19.039	-0.961 0.040	0.77
150	19.052	-0.948	0.76
160	19.071	-0.929	0.75
170	19.093	-0.907	0.73
180	19.106	-0.894	0.72
190	19.125	-0.875	0.70
200	19.143	-0.857	0.69
210	19.159	-0.841	0.68
220	19.172	-0.828	0.67
230	19.185	-0.815	0.65
240	19.2	-0.8	0.64
250	19.213	-0.787	0.63
260	19.226	-0.774	0.62
270	19.241	- 0.759	0.61
290	19.248	-0.752	0.60
290	19.257	-0.743	0.60
300	19.27	-0.73	0.59
310	19.279	-0.721	0.58
320	19.289	-0.711	0.57
330	19.298	-0.702	0.56
340	19.308	-0.692	0.56
350	19.32	-0.68	0.55
360	19.327	-0.673	0.54
370	19.336	-0.664	0.53
380	19.342	-0.658	0.53

ELAPSED TIME (min)	DEPTH TO H20 FROM TOC (ft)	EXCESS HEAD (ft)	н/но
(******)	110	(10)	
390	19.352	-0.648	0.52
400	19.361	-0.639	0.51
410	19.368	-0.632	0.51
420	19.374	-0.626	0.50
430	-		0.50
430 440	19.38	-0.62 -0.613	0.50
	19.387		
450 460	19.396	-0.604 0.500	0.49 0.48
460	19.402	-0.598	
470	19.412	-0.588	0.47
480	19.418	-0.582	0.47
490	19.425	-0.575	0.46
500	19.431	-0.569	0.46
510	19.437	-0.563	0.45
520	19.444	-0.556	0.45
530	19.45	-0.55	0.44
540	19.453	-0.547	0.44
550	19.459	-0.541	0.43
560	19.466	-0.534	0.43
570	19.472	-0.528	0.42
580	19.475	-0.525	0.42
590	19.478	-0.522	0.42
600	19.485	-0.515	0.41
610	19.488	-0.512	0.41
620	19.497	-0.503	0.40
630	19.5	-0.5	0.40
640	19.504	-0.496	0.40
650	19.51	-0.49	0.39
660	19.516	-0.484	0.39
670	19.523	-0.477	0.38
680	19.526	-0.474	0.38
690	19.532	-0.468	0.38
700	19.535	-0.465	0.37
710	19.541	-0.4 59	0.37
720	19.545	-0.455	0.37
730	19.551	-0.449	0.36
740	19.554	-0.446	0.36
750	19.56	-0.44	0.35
760	19.567	-0.433	0.35
770	19.57	-0.43	0.35
780	19.576	-0.424	0.34
790	19.579	-0.421	0.34
800	19.583	-0.417	0.33
810	19.586	-0.417 -0.414	0.33
820	19.592	-0.408 0.405	0.33
830	19.595	-0.405	0.33

ELAPSED	DEPTH TO H20 EXCESS		НИНО
TIME	FROM TOC	HEAD	
(min)	(ft)	(ft)	
. 040	40 F00	0.400	0.00
840 850	19.598 19.601	-0.402	0.32
		-0.3 99	0.32
860	19.605	-0.395	0.32
870	19.608	-0.392	0.31
880	19.611	-0.389	0.31
890	19.611	-0.389	0.31
900	19.614	-0.386	0.31
910	19.617	-0.383	0.31
920	19.62	-0.38	0.31
930	19.627	-0.373	0.30
940	19.627	-0.373	0.30
950	19.63	-0.37	0.30
960	19.633	-0.367	0.29
970	19.639	-0.361	0.29
980	19.643	-0.357	0.29
990	19.643	-0.357	0.29
1000	19.646	-0.354	0.28
1010	19.652	-0.348	0.28
1020	19.655	-0.345	0.28
1030	19.658	-0.342	0.27
1040	19.658	-0.342	0.27
1050	19.665	-0.335	0.27
1060	19.665	-0.335	0.27
1070	19.671	-0.329	0.26
1080	19.674	-0.326	0.26
1090	19.674	-0.326	
1100	19.68	-0.32 -0.32	0.26 0.26
1110	19.684	-0.316	0.25
1120	19.687	-0.313	0.25
1130	19.69	-0.31	0.25
1140	19.69	-0.31	0.25
1150	19.696	-0.304	0.24
1160	19.699	-0.301	0.24
1170	19.706	-0.294	0.24
1180	19.706	-0.294	0.24
1190	19.709	-0.291	0.23
1200	19.709	-0.291	0.23
1210	19.715	-0.285	0.23
1220	19.718	-0.282	0.23
1230	19.722	-0.278	0.22
1240	19.722	-0.278	0.22
1250	19.725	-0.275	0.22
1260	19.722	-0.278	0.22
1270	19.725	-0.275	0.22
1280	19.725	-0.275	0.22

ELAPSED TIME	DEPTH TO H20 EXCESS FROM TOC HEAD		H/H0	
(min)	(ft)	(ft)		
1290	19.728	-0.272	0.22	
1300	19.725	-0.275	0.22	
1310	19.728	-0.272	0.22	
1320	19.731	-0.269	0.22	
1330	19.731	-0.269	0.22	
1340	19.731	-0.269	0.22	
1350	19.734	-0.266	0.21	
1360	19.734	-0.266	0.21	
1370	19.734	-0.266	0.21	

SLUG WITHDRAWAL TEST 35691 - MW17

AQTESOLV RESULTS Version 1.10

15:20:11 03/01/92 TEST DESCRIPTION Data set..... MW17INJ.DAT Data set title.... SLUG INJECTION TEST 35691 - MW17 Project..... OPERABLE UNIT 1 Client.... EG&G ROCKY FLATS Location...... 881 HILLSIDE Test date...... 12/06/91 Knowns and Constants: No. of data points..... 203 Radius of well casing..... 0.0863 Radius of well...... 0.458 Aquifer saturated thickness..... 17.02 Well screen length..... 10.52 Static height of water in well..... 17.02 ANALYTICAL METHOD Bouwer-Rice (Unconfined Aquifer Slug Test) RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate K = 1.8853E-006

y0 = 1.5035E-000

ROCKY FLATS	SIDE	MW17	DATA SET: MM17INJ1.DAT 03/06/92	AGUIFER TYPE: Unconfined SOLUTION METHOD:	TEST DATE: 12/06/91	ESTIMATED PARAMETERS: K = 1.8853E-06 ft/min yo = 1.505 ft	TEST DATA:	rc = 0.0863 ft rw = 0.458 ft L = 10.52 ft b = 17.02 ft H = 17.02 ft		
Client: EG&G ROCK	Location: 881 HILLSIDE	35691 -	<u> </u>				111		1000. 1200.	
611	No . OPERABLE UNIT 1				(3.		1:		0.1	

AQTESOLV RESULTS Version 1.10

3/01/92 15:28:58 TEST DESCRIPTION Data set..... MW17WD.DAT Data set title.... SLUG WITHDRAWAL TEST 25691 - MW17
Project..... OPERABLE UNIT 1
Client.... EG&G ROCKY FLATS
Location.... 881 HILLSIDE Test date..... 12/07/91 Knowns and Constants: Radius of well casing..... 0.0863 Radius of well...... 0.458 Aquifer saturated thickness...... 17.02 Well screen length...... 10.52 Static height of water in well..... 17.02 Log(Re/Rw)................ 2.628 A, B, C..... 0.000, 0.000, 1.751 ANALYTICAL METHOD Bouwer-Rice (Unconfined Aquifer Slug Test) RESULTS FROM VISUAL CURVE MATCHING

ISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 1.7489E-006

y0 = 1.2450E + 000

CKY FLATS LLSIDE MW17 DATA SET: MW17MD1.DAT	AGUIFER TYPE: Unconfined SOLUTION METHOD: Bouwer-Rice TEST DATE: 12/07/91 K = 1.7489E-08 ft/min yo = 1.248 ft rc = 0.0869 ft rw = 0.458 ft t = 10.52 ft h = 17.02 ft h = 17.02 ft	
ABLE UNIT 1 SLUG WITHDRAWAL TEST 35691 - MW17		
Project No.: OPERABLE U	Oi (ft) Jnemensigation	

Single Well Test Analysis

Date of Test:

12/06/91

Project:

OU1 PHASE III RI

Well: Screen Interval: 35691 15.8-26.4 Client:

EG&G ROCKY FLATS

Filter Interval:

13.4-29.0

Location:

881 Hillside

Water Level:

9.34

Type of Test: Slug Injection

Hvorslev Analysis Method: (after Fetter, 1988)

$$K = \frac{\text{(r squared)}}{2 \text{(L) (To)}} \ln (L/R)$$

For L/R>8

L = length of the well screen:	10.52	feet
r = radius of the well casing:	0.0863	feet
R = radius of the well screen	0.458	feet
To = time to recover 37%	745	minutes
L/R = Validity Check	22.97	

K = 1.5E-06 ft/min x 0.508 cm-min/sec-ft

K = 7.6E-07 cm/sec

Single Well Test Analysis

Date of Test:

12/07/91

Project:

OU1 PHASE III RI

Well:

35691

Client

EG&G ROCKY FLATS

Screen Interval:

15.8-26.4

Location:

881 Hillside

Filter Interval:

13.4-29.0 9.34 Type of Test: Slug Withdrawal

Water Level:

Hvorslev Analysis Method (after Fetter, 1988)

$$K = \frac{\text{(r squared)}}{2 \text{(L) (To)}} \ln \text{(L/R)}$$

For L/R>8

L = length of the well screen:	10.52	feet
r = radius of the well casing:	0.0863	feet
R = radius of the well screen	0.458	feet
To = time to recover 37%	1000	minutes
L/R = Validity Check	22.97	

K = 1.1E-06 ft/min x 0.508 cm-min/sec-ft

K = 5.6E-07 cm/sec

INDEX OF BOREHOLE AND SINGLE WELL TEST DATA AND RESULTS

Borehole, well, or piezometer number: 36191 (MW05) (Work plan designation)

Dat	a Available:
_	Packer Test - Set-up
	Packer Test - Data Sheet (Flow vs. Time Data)
_	Packer Test - Data Logger Output (Head vs. Time Data)
_	Packer Test - Analysis and Results Calculation Sheet
Ł	Single Well Test - Record of Initial Water Level Measurement
<u>~</u>	Single Well Test - 10 Minute Calibration Plot
<u> </u>	Single Well Test - Head vs. Time Data Form
<u>~</u>	Single Well Test - Head vs. Time Response Graph(s)
<u>~</u>	Single Well Test - Bouwer and Rice Method Analytical Results
	Single Well Test - Hvorslev Method Analytical Results

GROUNDWATER LEVELS MEASUREMENTS/CALCULATIONS

		ROCKY FI	ATS PROJECT .	Revision 1.2
	-	Date /2/	9/9/	
		Personnel 1	J. Uhlinger	
		2	K. Maly	
EQUIPMENT:	Manufacturer Solinst	Model	Serial No. <u>1037 5</u>	
CALIBRATION:	Date Passed	Date Due		
OC REVIEW:	Name	Date		
				•

Well No.			
36191	WD ^b	MTD ^c	Comments
Measurement 1	14.34		K. Malen
Measurement 2	14.34	50 147/91	J. Uhluser
Measurement 3	14.34	19,41	K. Maler
	14.54	·	. 0 -
	Average WD	Average MTD	Probe End ^d TD° Chk'd by
Well No.			
	WD ^b	MTD ^c	Comments
Measurement 1			
Measurement 2			
Measurement 3			
	Average WD	Average MTD	Probe End ^d TD° Chk'd by
Well No.			
	WD ^b	MTD ^e	Comments
Measurement 1			
Measurement 2			
Measurement 3			
			_
	Average WD	Average MTD	Probe End ^d TD° Chk'd by

- Footnotes:

 A = TOWC = top of well casing
 b = WD = depth to water from MP
 c = MTD = measured total depth from MP
 d = Probe End = length beyond measuring point on probe
 e = TD = total depth of well from MP

- Notes:

 All measurements are relative to Mark Point (MP) = sorth side of TOWC

 OC review by supervisor is a check of reasonableness

 Measurements 1 and 2 must be within .01 ft of a 3rd measurement must be taken

(4011-400-0034)(GW4REV.1)(09-11-91)

BAILDOWN RECEICRY -SLUG TEST DATA FORM

Type of Test Transductor Probe Datalogger Test R (include time and didentification purpo	Top PK Casing Domin Recovery Serial No./257 DD un No. date for	Total Casing Depth 19	efore Test /4.34 9/' 10/11/13 10/12/ 10/12/	H/HO
				
				
				/
				· · · · · · · · · · · · · · · · · · ·
		13	/	
		ROO		
		300		
	10			
		/		
	160	<u></u>		
	4			
•		•		
/	-			

		ELAPSED	DEPTH TO H20	EXCESS
		TIME	FROM TOC	HEAD
		(min)	(ft)	(ft)
	•			
FILE:	MW05_1B.WQ2	0	17.412	-3.072
TEST DATE:	12/24/91	0.0083	17.526	-3.186
START TIME:	08:30:02 AM	0.0166	17.358	-3.018
		0.025	17.292	-2.952
•	•	0.0333	17.282	-2.942
REFERENCE:	14.34 FT	0.0416	17.241	-2.901
		0.05	17.210	-2.870
		0.0583	17.140	-2.800
		0.0666	17.134	-2.794
		0.075	17.102	-2.762
		0.0833	17.067	-2.727
		0.1	17.001	-2.661
		0.1166	16.934	-2.594
		0.1333	16.874	-2.534
		0.15	16.814	-2.474
		0.1666	16.757	-2.417
		0.1833	16.700	-2.360
		0.1	16.653	-2.313
		0.2166	16.605	-2.265
		0.2333	16.561	-2.221
		0.25	16.523	-2.183
		0.2666	16.495	-2.165 -2.155
		0.2833	16.453	-2.113
		0.3	16.425	-2.085
		0.3166	16.403	-2.063 -2.063
		0.3333	16.384	-2.044
		0.3333	16.305	-2.044
			16.257	-1.903
		0.5 0.5833	16.226	-1.886
		0.5666		-1.863
		0.5666	16.203	-1.848
			16.188	-1.832
		0.8333	16.172 16.159	-1.832 -1.819
		0.9166		
		1	16.150	-1.810
		1.0833	16.146	-1.806
		1.1666	16.134	-1.794
		1.25	16.124	-1.784
		1.3333	16.127	-1.787
		1.4166	16.112	-1.772
		1.5	16.105	-1.765
		1.5833	16.099	-1.759
		1.6666	16.096	-1.756
		1.75	16.089	-1.749
		1.8333	16.089	-1.749
		1,9166	16.086	-1.746

ELAPSED TIME	DEPTH TO H20 FROM TOC	EXCESS HEAD
(min)	(ft)	(ft)
2	16.086	-1.746
2.5	16.061	-1.721
3	16.045	-1.705
3.5	16.039	-1.69 9
4	16.023	-1.683
4.5	16.014	-1.674
5	16.004	-1.664
5.5	15.998	-1.658
6	15.988	-1.648
6.5	15.968	-1.648
7	15.982	-1.642
7.5	15.972	-1.632
8	15.963	-1.623
8.5	15.960	-1.620
9	15.953	-1.613
9.5	15.960	-1.610
10	15.957	-1.617
12	15.931	-1.591
14	15.922	-1.582
16	15.912	-1.572
18	15.906	-1.566
20	15.893	-1.553
22	15.881	-1.541
24	15.884	-1.544
26	15.877	-1.537
28	15.874	-1.534
30	15.846	-1.506
32	15.843	-1.503
34	15.839	-1.499
36	15.836	-1.496
38	15.830	-1.490
40	15.827	-1.487
42	15.827	-1.487
44	15.820	-1.480
46	15.817	-1.477
48	15.814	-1.474
50	15.814	-1.474
52	15.814	-1.474
54	15.811	-1.471
56	15.811	-1.471
58	15.808	-1.468
60	15.805	-1.465
62	15.806	-1.465
-, 64	15.901	-1.461
66	15.801	-1.461

ELAPSED	DEPTH TO H20	
TIME	FROM TOC	HEAD
(min)	(ft)	(ft)
<u> </u>		
68	15.798	-1.458
70	15.798	-1.458
72	15.795	-1.455
74	15.792	-1.452
76	15.792	-1.452
78	15.789	-1.449
80	15.792	-1.452
82	15.789	-1.449
84	15.789	-1.449
86	15.789	-1.449
88	15.786	-1.446
90	15.783	-1.443
92	15.783	-1.443
94	15,779	-1.439
96	15,779	-1.439
98	15.786	-1.446
100	15.779	-1.439
110	15.776	-1.436
-	15.773	-1.433
120	15.776	-1.433 -1.436
130		
140	15.773	-1.433
150	15.770	-1.430
160	15.770	-1.430
170	15.767	-1.427
180	15.764	-1.424
190	15.764	-1.424
200	15.764	-1.424
210	15.760	-1.420
220	15.760	-1.420
230	15.760	-1.420
240	15.760	-1.420
250	15.757	-1.417
260	15.754	-1.414
270	15.751	-1.411
280	15.748	-1.408
290	15.726	-1.386
300	15.726	-1.386
310	15.726	-1.386
320	15.722	-1.382
330	15.719	-1.379
340	15.719	-1.379
350	15.710	-1.370
360	15.710	-1.370
370	15.710	-1.370
380	15.707	-1.367

ELAPSED	DEPTH TO H20	EXCESS
TIME	FROM TOC	HEAD
(min)	(ft)	(ft)
390	15.707	-1.367
400	15.700	-1.360
410	15.703	-1.363
420	15.703	-1.363
430	15.700	-1.360
440	15.703	-1.363
450	15.700	-1.360
460	15.697	-1.357
470	15.697	-1.357
480	15.694	-1.354
490	15.694	-1.354
500	15.694	-1.354
510	15.691	-1.351
520	15.691	-1.351
530	15.688	-1.348
540	15.691	-1.351
550	15,688	-1.348
560	15.684	-1.344
570	15.681	-1.341
580	15.678	-1.338
590	15.675	-1.335
600	15.681	-1.341
610	15.678	-1.338
620	15.678	-1,338
630	15.678	-1.338
640	15.678	-1.338
650	15.675	-1.335
660	15.672	-1.332
670	15.678	-1.338
680	15.672	-1.332
690	15.672	-1.332
700	15.672	-1.332
700 710	15.672	-1.332
710	15,669	-1.329
720 730	15.665	-1.325
740	15.665	-1.325
750	15.665	-1.325
760 770	15.665 15.662	-1.325 -1.323
	· · · - -	-1.322
780	15.662	-1.322
790	15.662	-1.322
800	15.656	-1.316
810	15.662	-1.322
820	15.656	-1.316
830	15.65 9	-1.319

ELAPSED TIME (min)	DEPTH TO H20 FROM TOC (ft)	EXCESS HEAD (ft)
840	15.656	-1.316
850	15.656	-1.316
860	15.653	-1.313
870	15.653	-1.313
880	15.653	-1.313
890	15.653	-1.313
900	15.653	-1.313
910	15.650	-1.310
920	15.650	-1.310
930	15.650	-1.310
940	15.650	-1.310
950	15.643	-1.303
960	15.643	-1.303
970	15.643	-1.303
980	15.646	-1.306
990	15.643	-1.303
1000	15.640	-1.300
1010	15.640	-1.300
1020	15.637	-1.297
1030	15.640	-1.300
1040	15.637	-1.297
1050	15.637	-1.297
	15.634	-1.294
1060		-1.297
1070	15.637	-1.297 -1.291
1080	15.631	
1090	15.631	-1.291
1100	15.631	-1.291
1110	15.627	-1.287
1120	15.621	-1.281
1130	15.627	-1.287
1140	15.624	-1.284
1150	15.624	-1.284
1160	15.621	-1.281
1170	15.621	-1.281
1180	15.618	-1.278
1190	15.621	-1.281
1200	15.618	-1.278
1210	15.615	-1.275
1220	15.615	-1.275
1230	15.612	-1.272
1240	15.612	-1.272
1250	15.612	-1.272
1260	15.608	-1.268
1270	15.599	-1.259
1280	15.599	-1.259

TIME (min) (ft) (ft) (ft) 1290 15.599 -1.259 1300 15.599 -1.259 1310 15.599 -1.259 1320 15.602 -1.262 1330 15.602 -1.262 1340 15.599 -1.259 1350 15.602 -1.262 1360 15.602 -1.262 1370 15.602 -1.262 1380 15.599 -1.259 1390 15.596 -1.259 1390 15.596 -1.256 1400 15.599 -1.259 1400 15.599 -1.259 1420 15.599 -1.259 1430 15.596 -1.262 1440 15.596 -1.266 1440 15.596 -1.256 1440 15.596 -1.256 1440 15.596 -1.256 1460 15.593 -1.253 1470 15.593 -1.253 1480 15.593 -1.263 1490 15.596 -1.246 1510 15.586 -1.246 1510 15.586 -1.246 1550 15.586 -1.246 1550 15.586 -1.246 1550 15.586 -1.246 1550 15.580 -1.240 1600 15.580 -1.240 1600 15.580 -1.240 1600 15.580 -1.240 1600 15.580 -1.240 1610 15.580 -1.240 1620 15.580 -1.240 1630 15.580 -1.240 1650 15.580 -1.240 1650 15.580 -1.240 1650 15.580 -1.240 1650 15.580 -1.240 1650 15.580 -1.240 1650 15.580 -1.240 1650 15.580 -1.240 1650 15.580 -1.240 1650 15.580 -1.240 1650 15.580 -1.240 1650 15.580 -1.240 1650 15.580 -1.240	ELAPSED	DEPTH TO H20	EXCESS
1290 15.599 -1.259 1300 16.599 -1.259 1310 15.599 -1.259 1320 16.602 -1.262 1330 16.602 -1.262 1340 15.599 -1.259 1350 15.602 -1.262 1360 15.602 -1.262 1370 15.602 -1.262 1380 15.599 -1.259 1390 15.596 -1.256 1400 15.602 -1.262 1410 15.599 -1.259 1420 15.599 -1.259 1420 15.599 -1.259 1430 15.596 -1.256 1440 15.596 -1.256 1440 15.593 -1.253 1470 15.593 -1.253 1470 15.593 -1.253 1480 15.593 -1.249 1500 15.586 -1.246 1500 15.586 -1.246 <td></td> <td>FROM TOC</td> <td>HEAD</td>		FROM TOC	HEAD
1300 15.599 -1.259 1310 15.599 -1.259 1320 15.602 -1.262 1330 15.602 -1.262 1340 15.599 -1.259 1350 15.602 -1.262 1360 15.602 -1.262 1370 15.602 -1.262 1380 15.599 -1.259 1390 15.596 -1.256 1400 15.602 -1.262 1410 15.599 -1.259 1420 15.599 -1.259 1420 15.599 -1.256 1440 15.596 -1.256 1450 15.596 -1.256 1450 15.593 -1.253 1470 15.593 -1.253 1480 15.593 -1.253 1480 15.593 -1.249 1500 15.586 -1.246 1510 15.586 -1.246 1520 15.586 -1.246 <td>(min)</td> <td>(ft)</td> <td>(ft)</td>	(min)	(ft)	(ft)
1300 15.599 -1.259 1310 15.599 -1.259 1320 15.602 -1.262 1330 15.602 -1.262 1340 15.599 -1.259 1350 15.602 -1.262 1360 15.602 -1.262 1370 15.602 -1.262 1380 15.599 -1.259 1390 15.596 -1.256 1400 15.602 -1.262 1410 15.599 -1.259 1420 15.599 -1.259 1420 15.599 -1.256 1440 15.596 -1.256 1450 15.596 -1.256 1450 15.593 -1.253 1470 15.593 -1.253 1480 15.593 -1.253 1480 15.593 -1.249 1500 15.586 -1.246 1510 15.586 -1.246 1520 15.586 -1.246 <td></td> <td></td> <td></td>			
1310 15.599 -1.259 1320 15.602 -1.262 1330 15.602 -1.262 1340 15.599 -1.259 1350 15.602 -1.262 1360 15.602 -1.262 1370 15.602 -1.262 1380 15.599 -1.259 1390 15.596 -1.256 1400 15.602 -1.262 1410 15.599 -1.259 1420 15.599 -1.259 1420 15.599 -1.256 1440 15.596 -1.256 1440 15.596 -1.256 1450 15.596 -1.256 1460 15.593 -1.253 1470 15.593 -1.253 1480 15.593 -1.243 1500 15.586 -1.246 1510 15.586 -1.246 1520 15.586 -1.246 1530 15.580 -1.240 <td>1290</td> <td>15.599</td> <td>-1.259</td>	1290	15.599	-1.259
1320 15.602 -1.262 1330 15.602 -1.262 1340 15.599 -1.259 1350 15.602 -1.262 1360 15.602 -1.262 1370 15.602 -1.262 1380 15.599 -1.259 1390 15.596 -1.256 1400 15.602 -1.262 1410 15.599 -1.259 1420 15.599 -1.259 1420 15.599 -1.259 1420 15.596 -1.256 1440 15.596 -1.256 1440 15.596 -1.256 1450 15.596 -1.256 1460 15.593 -1.253 1470 15.593 -1.253 1480 15.593 -1.253 1480 15.599 -1.249 1500 15.586 -1.246 1520 15.586 -1.246 1520 15.586 -1.246 <td>1300</td> <td>15.599</td> <td>-1.259</td>	1300	15.599	-1.259
1330 15.602 -1.262 1340 15.599 -1.259 1350 15.602 -1.262 1360 15.602 -1.262 1370 15.602 -1.262 1380 15.599 -1.259 1390 15.596 -1.256 1400 15.602 -1.262 1410 15.599 -1.259 1420 15.599 -1.259 1420 15.599 -1.256 1440 15.596 -1.256 1440 15.596 -1.256 1440 15.596 -1.256 1450 15.596 -1.256 1460 15.593 -1.253 1470 15.593 -1.253 1480 15.593 -1.249 1500 15.589 -1.249 1500 15.586 -1.246 1520 15.586 -1.246 1530 15.586 -1.246 1540 15.580 -1.240 <td>1310</td> <td>15.599</td> <td>-1.259</td>	1310	15.599	-1.25 9
1340 15.599 -1.259 1350 15.602 -1.262 1360 15.602 -1.262 1370 15.602 -1.262 1380 15.599 -1.259 1390 15.596 -1.256 1400 15.602 -1.262 1410 15.599 -1.259 1420 15.599 -1.259 1420 15.599 -1.259 1430 15.596 -1.256 1440 15.596 -1.256 1450 15.596 -1.256 1450 15.596 -1.253 1460 15.593 -1.253 1470 15.593 -1.253 1480 15.593 -1.253 1490 15.589 -1.249 1500 15.586 -1.246 1520 15.586 -1.246 1530 15.586 -1.246 1540 15.580 -1.240 1550 15.580 -1.240 <td>1320</td> <td>15.602</td> <td>-1.262</td>	1320	15.602	-1.262
1350 15.602 -1.262 1360 15.602 -1.262 1370 15.602 -1.262 1380 15.599 -1.259 1390 15.596 -1.256 1400 15.602 -1.262 1410 15.599 -1.259 1420 15.599 -1.259 1420 15.599 -1.256 1440 15.596 -1.256 1440 15.596 -1.256 1450 15.596 -1.256 1450 15.596 -1.253 1460 15.593 -1.253 1470 15.593 -1.253 1480 15.593 -1.253 1480 15.589 -1.249 1500 15.586 -1.246 1510 15.586 -1.246 1520 15.586 -1.246 1530 15.586 -1.246 1540 15.580 -1.240 1550 15.580 -1.240 <td>1330</td> <td>15.602</td> <td>-1.262</td>	1330	15.602	-1.262
1360 15.602 -1.262 1370 15.602 -1.262 1380 15.599 -1.259 1390 15.596 -1.256 1400 15.602 -1.262 1410 15.599 -1.259 1420 15.599 -1.259 1420 15.596 -1.256 1440 15.596 -1.256 1440 15.596 -1.256 1450 15.596 -1.256 1460 15.593 -1.253 1470 15.593 -1.253 1480 15.593 -1.253 1480 15.583 -1.249 1500 15.586 -1.249 1500 15.586 -1.246 1510 15.586 -1.246 1520 15.586 -1.246 1530 15.586 -1.246 1540 15.580 -1.240 1560 15.580 -1.240 1560 15.580 -1.240 <td>1340</td> <td>15.599</td> <td>-1.259</td>	1340	15.599	-1.25 9
1370 15.602 -1.262 1380 15.599 -1.259 1390 15.596 -1.256 1400 15.602 -1.262 1410 15.599 -1.259 1420 15.599 -1.256 1420 15.596 -1.256 1440 15.596 -1.256 1440 15.596 -1.256 1450 15.596 -1.256 1450 15.596 -1.253 1470 15.593 -1.253 1480 15.593 -1.253 1480 15.589 -1.249 1500 15.589 -1.249 1500 15.586 -1.246 1510 15.586 -1.246 1520 15.586 -1.246 1530 15.586 -1.246 1530 15.580 -1.240 1550 15.580 -1.240 1570 15.577 -1.237 1580 15.580 -1.240 <td>1350</td> <td>15.602</td> <td>-1.262</td>	1350	15.602	-1.262
1380 15.599 -1.259 1390 15.596 -1.256 1400 15.602 -1.262 1410 15.599 -1.259 1420 15.599 -1.259 1420 15.599 -1.256 1440 15.596 -1.256 1440 15.596 -1.256 1450 15.596 -1.256 1460 15.593 -1.253 1470 15.593 -1.253 1480 15.593 -1.253 1490 15.589 -1.249 1500 15.586 -1.246 1510 15.586 -1.246 1520 15.586 -1.246 1530 15.586 -1.246 1540 15.583 -1.243 1550 15.580 -1.240 1560 15.580 -1.240 1570 15.577 -1.237 1580 15.580 -1.240 1620 15.580 -1.240 <td>1360</td> <td>15.602</td> <td>-1.262</td>	1360	15.602	-1.262
1390 15.596 -1.256 1400 15.602 -1.262 1410 15.599 -1.259 1420 15.599 -1.256 1430 15.596 -1.256 1440 15.596 -1.256 1440 15.596 -1.256 1450 15.593 -1.253 1460 15.593 -1.253 1470 15.593 -1.253 1480 15.593 -1.253 1490 15.589 -1.249 1500 15.586 -1.246 1510 15.586 -1.246 1520 15.586 -1.246 1530 15.586 -1.246 1530 15.583 -1.240 1560 15.580 -1.240 1570 15.577 -1.237 1580 15.574 -1.234 1590 15.580 -1.240 1620 15.580 -1.240 1630 15.580 -1.240 <td>1370</td> <td>15.602</td> <td>-1.262</td>	1370	15.602	-1.262
1400 15.602 -1.262 1410 15.599 -1.259 1420 15.596 -1.256 1430 15.596 -1.256 1440 15.596 -1.256 1440 15.596 -1.256 1450 15.593 -1.253 1460 15.593 -1.253 1470 15.593 -1.253 1480 15.593 -1.253 1490 15.589 -1.249 1500 15.586 -1.246 1510 15.586 -1.246 1520 15.586 -1.246 1530 15.586 -1.246 1540 15.583 -1.240 1550 15.580 -1.240 1550 15.580 -1.240 1550 15.580 -1.240 1550 15.580 -1.240 1550 15.580 -1.240 1600 15.580 -1.240 1620 15.580 -1.240 1630 15.580 -1.240 1650 15.	1380	15.599	-1.259
1400 15.602 -1.262 1410 15.599 -1.259 1420 15.599 -1.259 1430 15.596 -1.256 1440 15.596 -1.256 1440 15.593 -1.253 1450 15.593 -1.253 1460 15.593 -1.253 1470 15.593 -1.253 1480 15.593 -1.253 1490 15.589 -1.249 1500 15.586 -1.246 1510 15.586 -1.246 1520 15.586 -1.246 1530 15.586 -1.246 1540 15.583 -1.243 1550 15.580 -1.240 1560 15.580 -1.240 1570 15.577 -1.237 1580 15.574 -1.234 1590 15.580 -1.240 1620 15.580 -1.240 1630 15.580 -1.240 1630 15.580 -1.240 1650 15.	1390	15.596	-1.256
1420 15.599 -1.259 1430 15.596 -1.256 1440 15.596 -1.256 1450 15.593 -1.253 1460 15.593 -1.253 1470 15.593 -1.253 1480 15.593 -1.253 1490 15.589 -1.249 1500 15.586 -1.246 1510 15.586 -1.246 1520 15.586 -1.246 1530 15.586 -1.246 1530 15.586 -1.246 1550 15.580 -1.240 1560 15.580 -1.240 1570 15.580 -1.240 1590 15.580 -1.240 1590 15.580 -1.240 1600 15.580 -1.240 1620 15.580 -1.240 1630 15.580 -1.240 1650 15.580 -1.240 1650 15.580 -1.240 1650 15.580 -1.240 1650 15.		15.602	-1.262
1420 15.599 -1.259 1430 15.596 -1.256 1440 15.596 -1.256 1450 15.593 -1.253 1460 15.593 -1.253 1470 15.593 -1.253 1480 15.593 -1.253 1490 15.589 -1.249 1500 15.586 -1.246 1510 15.586 -1.246 1520 15.586 -1.246 1530 15.586 -1.246 1530 15.586 -1.246 1550 15.580 -1.240 1560 15.580 -1.240 1570 15.580 -1.240 1590 15.580 -1.240 1590 15.580 -1.240 1600 15.580 -1.240 1620 15.580 -1.240 1630 15.580 -1.240 1650 15.580 -1.240 1650 15.580 -1.240 1650 15.580 -1.240 1650 15.		15.599	-1.259
1430 15.596 -1.256 1440 15.596 -1.256 1450 15.593 -1.253 1460 15.593 -1.253 1470 15.593 -1.253 1480 15.593 -1.253 1480 15.589 -1.249 1500 15.589 -1.246 1510 15.586 -1.246 1520 15.586 -1.246 1530 15.586 -1.246 1530 15.586 -1.246 1540 15.583 -1.240 1550 15.580 -1.240 1560 15.580 -1.240 1570 15.577 -1.237 1580 15.574 -1.234 1590 15.580 -1.240 1620 15.580 -1.240 1630 15.580 -1.240 1630 15.580 -1.240 1650 15.580 -1.240 1650 15.580 -1.240 1650 15.580 -1.240 1650 15.			
1440 15.596 -1.256 1450 15.596 -1.256 1460 15.593 -1.253 1470 15.593 -1.253 1480 15.593 -1.253 1490 15.589 -1.249 1500 15.586 -1.246 1510 15.586 -1.246 1520 15.586 -1.246 1530 15.586 -1.246 1530 15.586 -1.246 1540 15.583 -1.240 1550 15.580 -1.240 1560 15.580 -1.240 1570 15.577 -1.237 1580 15.574 -1.234 1590 15.580 -1.240 1610 15.580 -1.240 1620 15.580 -1.240 1630 15.580 -1.240 1640 15.580 -1.240 1650 15.580 -1.240 1650 15.580 -1.240 <td></td> <td></td> <td></td>			
1450 15.596 -1.256 1460 15.593 -1.253 1470 15.593 -1.253 1480 15.593 -1.253 1490 15.589 -1.249 1500 15.586 -1.246 1510 15.586 -1.246 1510 15.586 -1.246 1520 15.586 -1.246 1530 15.586 -1.246 1530 15.583 -1.240 1550 15.580 -1.240 1560 15.580 -1.240 1570 15.577 -1.237 1580 15.574 -1.234 1590 15.580 -1.240 1610 15.580 -1.240 1620 15.580 -1.240 1630 15.580 -1.240 1640 15.580 -1.240 1650 15.580 -1.240 1650 15.580 -1.240 1650 15.580 -1.240 <td></td> <td></td> <td></td>			
1460 15.593 -1.253 1470 15.593 -1.253 1480 15.593 -1.253 1490 15.589 -1.249 1500 15.586 -1.246 1510 15.586 -1.246 1510 15.586 -1.246 1520 15.586 -1.246 1530 15.586 -1.246 1540 15.583 -1.243 1550 15.580 -1.240 1560 15.580 -1.240 1570 15.577 -1.237 1580 15.574 -1.234 1590 15.564 -1.224 1600 15.580 -1.240 1620 15.580 -1.240 1630 15.580 -1.240 1640 15.580 -1.240 1650 15.580 -1.240 1650 15.580 -1.240 1650 15.580 -1.240 1650 15.580 -1.240 <td></td> <td>*</td> <td></td>		*	
1470 15.593 -1.253 1480 15.583 -1.249 1500 15.586 -1.246 1510 15.586 -1.246 1510 15.586 -1.246 1520 15.586 -1.246 1530 15.586 -1.246 1530 15.586 -1.246 1540 15.583 -1.243 1550 15.580 -1.240 1560 15.580 -1.240 1570 15.577 -1.237 1580 15.574 -1.234 1590 15.564 -1.224 1600 15.580 -1.240 1610 15.580 -1.240 1620 15.580 -1.240 1630 15.580 -1.240 1640 15.580 -1.240 1650 15.580 -1.240 1650 15.580 -1.240 1660 15.577 -1.237 1670 15.577 -1.237 <td></td> <td>*******</td> <td></td>		*******	
1480 15.593 -1.253 1490 15.589 -1.249 1500 15.586 -1.246 1510 15.586 -1.246 1520 15.586 -1.246 1530 15.586 -1.246 1530 15.586 -1.243 1540 15.583 -1.243 1550 15.580 -1.240 1560 15.580 -1.240 1570 15.577 -1.237 1580 15.574 -1.234 1590 15.564 -1.224 1600 15.580 -1.240 1610 15.580 -1.240 1620 15.580 -1.240 1630 15.580 -1.240 1640 15.580 -1.240 1650 15.580 -1.240 1660 15.577 -1.237 1670 15.577 -1.237 1680 15.574 -1.234 1690 15.570 -1.230 <td></td> <td></td> <td></td>			
1490 15.589 -1.249 1500 15.586 -1.246 1510 15.586 -1.246 1520 15.586 -1.246 1530 15.586 -1.246 1530 15.583 -1.243 1550 15.583 -1.240 1550 15.580 -1.240 1560 15.580 -1.240 1570 15.577 -1.237 1580 15.574 -1.234 1590 15.564 -1.224 1600 15.580 -1.240 1610 15.580 -1.240 1620 15.580 -1.240 1630 15.580 -1.240 1640 15.580 -1.240 1650 15.580 -1.240 1650 15.580 -1.240 1660 15.577 -1.237 1680 15.577 -1.237 1680 15.570 -1.230 1700 15.567 -1.227 <td></td> <td></td> <td></td>			
1500 15.586 -1.246 1510 15.586 -1.246 1520 15.586 -1.246 1530 15.586 -1.246 1540 15.583 -1.243 1550 15.580 -1.240 1560 15.580 -1.240 1570 15.577 -1.237 1580 15.574 -1.234 1590 15.564 -1.224 1600 15.580 -1.240 1610 15.580 -1.240 1620 15.580 -1.240 1630 15.580 -1.240 1640 15.580 -1.240 1650 15.580 -1.240 1650 15.580 -1.240 1660 15.577 -1.237 1670 15.577 -1.237 1680 15.574 -1.234 1690 15.567 -1.230 1700 15.567 -1.227 1700 15.567 -1.224 <td></td> <td></td> <td></td>			
1510 15.586 -1.246 1520 15.586 -1.246 1530 15.586 -1.246 1540 15.583 -1.243 1550 15.580 -1.240 1560 15.580 -1.240 1570 15.577 -1.237 1580 15.574 -1.234 1590 15.564 -1.224 1600 15.580 -1.240 1610 15.580 -1.240 1620 15.580 -1.240 1630 15.580 -1.240 1640 15.580 -1.240 1650 15.580 -1.240 1650 15.580 -1.240 1650 15.580 -1.240 1650 15.577 -1.237 1670 15.577 -1.237 1680 15.574 -1.234 1690 15.570 -1.230 1700 15.567 -1.227 1710 15.567 -1.224 <td></td> <td></td> <td></td>			
1520 15.586 -1.246 1530 15.586 -1.246 1540 15.583 -1.243 1550 15.580 -1.240 1560 15.580 -1.240 1570 15.577 -1.237 1580 15.574 -1.234 1590 15.564 -1.224 1600 15.580 -1.240 1610 15.580 -1.240 1620 15.580 -1.240 1630 15.580 -1.240 1640 15.580 -1.240 1650 15.580 -1.240 1650 15.580 -1.240 1650 15.580 -1.240 1650 15.577 -1.237 1670 15.577 -1.237 1680 15.574 -1.234 1690 15.570 -1.230 1700 15.567 -1.227 1710 15.564 -1.224			
1530 15.586 -1.246 1540 15.583 -1.243 1550 15.580 -1.240 1560 15.580 -1.240 1570 15.577 -1.237 1580 15.574 -1.234 1590 15.564 -1.224 1600 15.580 -1.240 1610 15.580 -1.240 1620 15.580 -1.240 1630 15.580 -1.240 1640 15.580 -1.240 1650 15.580 -1.240 1660 15.577 -1.237 1670 15.577 -1.237 1680 15.574 -1.234 1690 15.570 -1.230 1700 15.567 -1.227 1710 15.567 -1.224			
1540 15.583 -1.243 1550 15.580 -1.240 1560 15.580 -1.240 1570 15.577 -1.237 1580 15.574 -1.234 1590 15.564 -1.224 1600 15.580 -1.240 1610 15.580 -1.240 1620 15.580 -1.240 1630 15.580 -1.240 1640 15.580 -1.240 1650 15.580 -1.240 1650 15.580 -1.240 1650 15.580 -1.240 1650 15.577 -1.237 1670 15.577 -1.237 1680 15.574 -1.234 1690 15.570 -1.230 1700 15.567 -1.227 1710 15.564 -1.224			
1550 15.580 -1.240 1560 15.580 -1.240 1570 15.577 -1.237 1580 15.574 -1.234 1590 15.564 -1.224 1600 15.580 -1.240 1610 15.580 -1.240 1620 15.580 -1.240 1630 15.580 -1.240 1640 15.580 -1.240 1650 15.580 -1.240 1650 15.580 -1.240 1650 15.580 -1.240 1650 15.580 -1.240 1650 15.577 -1.237 1670 15.577 -1.237 1680 15.574 -1.234 1690 15.570 -1.230 1700 15.567 -1.227 1710 15.564 -1.224			
1560 15.580 -1.240 1570 15.577 -1.237 1580 15.574 -1.234 1590 15.564 -1.224 1600 15.580 -1.240 1610 15.580 -1.240 1620 15.580 -1.240 1630 15.580 -1.240 1640 15.580 -1.240 1650 15.580 -1.240 1650 15.580 -1.240 1660 15.577 -1.237 1680 15.577 -1.237 1680 15.574 -1.234 1690 15.570 -1.230 1700 15.567 -1.227 1710 15.567 -1.227 1720 15.564 -1.224			
1570 15.577 -1.237 1580 15.574 -1.234 1590 15.564 -1.224 1600 15.580 -1.240 1610 15.580 -1.240 1620 15.580 -1.240 1630 15.580 -1.240 1640 15.580 -1.240 1650 15.580 -1.240 1660 15.577 -1.237 1670 15.577 -1.237 1680 15.574 -1.234 1690 15.570 -1.230 1700 15.567 -1.227 1710 15.567 -1.227 1720 15.564 -1.224	•=		
1580 15.574 -1.234 1590 15.564 -1.224 1600 15.580 -1.240 1610 15.580 -1.240 1620 15.580 -1.240 1630 15.580 -1.240 1640 15.580 -1.240 1650 15.580 -1.240 1660 15.577 -1.237 1670 15.577 -1.237 1680 15.574 -1.234 1690 15.570 -1.230 1700 15.567 -1.227 1710 15.567 -1.227 1720 15.564 -1.224			
1590 15.564 -1.224 1600 15.580 -1.240 1610 15.580 -1.240 1620 15.580 -1.240 1630 15.580 -1.240 1640 15.580 -1.240 1650 15.580 -1.240 1660 15.577 -1.237 1670 15.577 -1.237 1680 15.574 -1.234 1690 15.570 -1.230 1700 15.567 -1.227 1710 15.567 -1.227 1720 15.564 -1.224			
1600 15.580 -1.240 1610 15.580 -1.240 1620 15.580 -1.240 1630 15.580 -1.240 1640 15.580 -1.240 1650 15.580 -1.240 1660 15.577 -1.237 1670 15.577 -1.237 1680 15.574 -1.234 1690 15.570 -1.230 1700 15.567 -1.227 1710 15.567 -1.227 1720 15.564 -1.224			
1610 15.580 -1.240 1620 15.580 -1.240 1630 15.580 -1.240 1640 15.580 -1.240 1650 15.580 -1.240 1660 15.577 -1.237 1670 15.577 -1.237 1680 15.574 -1.234 1690 15.570 -1.230 1700 15.567 -1.227 1710 15.567 -1.227 1720 15.564 -1.224			
1620 15.580 -1.240 1630 15.580 -1.240 1640 15.580 -1.240 1650 15.580 -1.240 1660 15.577 -1.237 1670 15.577 -1.237 1680 15.574 -1.234 1690 15.570 -1.230 1700 15.567 -1.227 1710 15.567 -1.227 1720 15.564 -1.224			
1630 15.580 -1.240 1640 15.580 -1.240 1650 15.580 -1.240 1660 15.577 -1.237 1670 15.577 -1.237 1680 15.574 -1.234 1690 15.570 -1.230 1700 15.567 -1.227 1710 15.567 -1.227 1720 15.564 -1.224			
1640 15.580 -1.240 1650 15.580 -1.240 1660 15.577 -1.237 1670 15.577 -1.237 1680 15.574 -1.234 1690 15.570 -1.230 1700 15.567 -1.227 1710 15.567 -1.227 1720 15.564 -1.224			
1650 15.580 -1.240 1660 15.577 -1.237 1670 15.577 -1.237 1680 15.574 -1.234 1690 15.570 -1.230 1700 15.567 -1.227 1710 15.567 -1.227 1720 15.564 -1.224			
1660 15.577 -1.237 1670 15.577 -1.237 1680 15.574 -1.234 1690 15.570 -1.230 1700 15.567 -1.227 1710 15.567 -1.227 1720 15.564 -1.224			
1670 15.577 -1.237 1680 15.574 -1.234 1690 15.570 -1.230 1700 15.567 -1.227 1710 15.567 -1.227 1720 15.564 -1.224			
1680 15.574 -1.234 1690 15.570 -1.230 1700 15.567 -1.227 1710 15.567 -1.227 1720 15.564 -1.224			
1690 15.570 -1.230 1700 15.567 -1.227 1710 15.567 -1.227 1720 15.564 -1.224			
1700 15.567 -1.227 1710 15.567 -1.227 1720 15.564 -1.224			
1710 15.567 -1.227 1720 15.564 -1.224			
1720 15.564 -1.224			
		15.567	
1730 15.564 -1.224	1720		
	1730	15.564	-1.224

ELAPSED		
TIME	FROM TOC	HEAD
(min)	(ft)	(ft)
1740	15.561	-1.221
1750	15.561	-1.221
1760	15.558	-1.218
1770	15.555	-1.215
1780	15.551	-1.211
1790	15.545	-1.206
1800	15.542	-1.202
1810	15.536	-1.196
1820	15.533	-1.193
1830	15.533	-1.193
1840	15.529	-1.189
1850	15.529	-1.189
1860	15.529	-1.189
1870	15.529	-1.189
1880	15.526	-1.186
1890	15.526	-1.186
1900	15.526	-1.186
1910	15.523	-1.183
1920	15.523	-1.183
1930	15.523	-1.183
1940	15.520	-1.180
1950	15.523	-1.183
1960	15.520	-1.180
1970	15.520	-1.180
1980	15.520	-1.180
1990	15.517	-1.177
2000	15.517	-1.177
2010	15.517	-1.177
2020	15.514	-1.174
2030	15.514	-1.174
2040	15.510	-1.170
2050	15.510	-1.170
2060	15.510	-1.170
2070	15.507	-1.167
2080	15.507	-1.167
2090	15.507	-1.167
2100	15.504	-1.164
2110	15.504	-1.164
2120	15.504	-1.164
2130	15.501	-1.161
2140	15.501	-1.161
	15.501	
2150 2160	15.498	-1.161 -1.158
	15.498	
2170 2180	15.498	-1.158 -1.158
2100	13.430	-1.100

ELAPSED	DEPTH TO H20	
TIME	FROM TOC	HEAD
(min)	(ft)	(ft)
2190	15.498	-1.158
2200	15.495	-1.155
2210	15.495	-1.155
2220	15.491	-1.151
2230	15.488	-1.148
2240	15.488	-1.148
2250	15.491	-1.151
2260	15.488	-1.148
2270	15.485	-1.145
2280	15.485	-1.145
2290	15.485	-1.145
2300	15.482	-1.142
2310	15.482	-1.142
2320	15.482	-1.142
2330	15.479	-1.139
2340	15.479	-1.139
2350	15.476	-1,136
2360	15.476	-1,136
2370	15.476	-1.136
2380	15.472	-1.132
2390	15.472	-1.132
2400	15.469	-1.129
2410	15.469	-1.129
2420	15.466	-1.126
2430	15.466	-1.126
2440	15.463	-1.123
2450 2450	15.463	-1.123
2460		•
2460 2470	15.463 15.463	-1.123 -1.123
2480	15.460	-1.120
2490	15.460	-1.120
2500	15.460	-1.120
2510	15.457	-1.117
2520	15.453	-1.113
2530	15.453	-1.113
2540	15.453	-1.113
2550	15.453	-1.113
2560	15.453	-1.113
2570	15.450	-1.110
2580	15.450	-1.110
2590	15.450	-1.110
2600	15.447	-1.107
2610	15.447	-1.107
2620	15.447	-1.107
- 2630	15.444	-1.104

ELAPSED	DEPTH TO H20 EXCESS	
TIME	FROM TOC	HEAD
<u>(min)</u>	(ft)	(ft)
2640	15.444	-1.104
2650	15.444	-1.104
2660	15.441	-1.101
2670	15.441	-1.101
2680	15.441	-1.101
2690	15.441	-1.101
2700	15.438	-1.098
2710	15.438	-1.098
2720	15.438	-1.098
2730	15.431	-1.091
2740	15.434	-1.094
2750	15.434	-1.094

12:19:32 03/06/92

TEST DESCRIPTION

Data set..... MW05BDR.DAT
Data set title.... BAIL DOWN/RECOVERY TEST 36191 - MW05
Project..... OPERABLE UNIT 1

Client..... EG&G ROCKY FLATS
Location..... 881 HILLSIDE
Test date...... 12/09/91

Knowns and Constants:

No. of data points........... 371 Radius of well casing..... 0.26 Radius of well...... 0.458 Aquifer saturated thickness..... 2.46 Well screen length..... 2.46 Static height of water in well..... 2.46 Log (Re/Rw) 1.212

A, B, C..... 0.000, 0.000, 0.916

ANALYTICAL METHOD

Bouwer-Rice (Unconfined Aquifer Slug Test)

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate

2.1920E-006 K =

1.4540E+000 y0 =

KY FLATS	HILLSIDE	MW05	DATA SET: MNOSBOR.DAT 03/06/92	AGUIFER TYPE: Unconfined SOLUTION METHOD: Bouwer-Rice TEST DATE:	ESTIMATED PAHAMETEHS: K = 2.192E-08 ft/min y0 = 1.454 ft	TEST DATA: rc = 0.28 ft rw = 0.458 ft L = 2.46 ft b = 2.46 ft	1 N	
Client: EG&G ROCKY	Location: 881 HILI	N TEST 36191 -		-			-	1200. 1600. 2000. 2400. 2800. Fime (min)
	OPERABLE UNIT 1	BAILDOWN/RECOVERY TEST	10.	- - - - (21)	211811	Displace	- - - - - - - -	0.1 0. 400. 800. 1200. 1600. Time (min)
	Project No.:			(13,				

INDEX OF BOREHOLE AND SINGLE WELL TEST DATA AND RESULTS

Borehole, well, or piezometer number: 37191 (MW16) (Work plan designation)

Data Available:

- __ Packer Test Set-up
- Packer Test Data Sheet (Flow vs. Time Data)
- Packer Test Data Logger Output (Head vs. Time Data)
- Packer Test Analysis and Results Calculation Sheet
- ✓ Single Well Test Record of Initial Water Level Measurement
- ✓ Single Well Test 10 Minute Calibration Plot
- ✓ Single Well Test Head vs. Time Data Form
- ✓ Single Well Test Head vs. Time Response Graph(s)
- ✓ Single Well Test Bouwer and Rice Method Analytical Results
- ✓ Single Well Test Hvorslev Method Analytical Results

GROUNDWATER LEVELS MEASUREMENTS/CALCULATIONS

		4	ROCKY FLATS PROJECT Project No. Out - 98/ Hillside	Revision 1.2
			Date /2/7/9/	
			Personnel 1. T. Uhlings"	
			2 t. Malen	
	^ .*		đ	
EQUIPMENT:	Manufacturer SolinsT	Model_	Serial No	<u> </u>
CALIBRATION:	Date Passed		Date Due	
QC REVIEW:	Name		Date	

Well No.			·
37191	WD _p	MTD ^e	Comments
Measurement 1	9.88'	28.85	J. Ohlinger
Measurement 2	1,88	25.85	k. Malen
Measurement 3	9,88'	25.85	J. Uhlinger
	9.88	25.85	. 0
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by
Well No.			
	WD ^b	MTD ^c	Comments
Measurement 1			
Measurement 2			
Measurement 3			
			+ =
	Average WD	Average MTD	Probe End ^d TD° Chk'd by
Well No.			
	WDb	MTD ^c	Comments
Measurement 1			
Measurement 2			
Measurement 3			
			+
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by

Footnotes:

A = TOWC = top of well casing
b = WD = depth to water from MP
c = MTD = measured total depth from MP
d = Probe End = length beyond measuring point on probe
e = TD = total depth of well from MP

tex:
All measurements are relative to Mark Point (MP) = north side of TOWC
OC review by supervisor is a check of reasonableness
Measurements 1 and 2 must be within .01 R of a 3rd measurement must be taken

SLUG TEST DATA FORM

Type of Test Slue	9/ MWIG 11 6P PVE Gazing Ini/Mithele/ Serial No. 1759DD n No ate for ses) , TST	Total Casing Depth Borehole Diameter Casing Diameter Screened Interval Sand Pack Interval Lithology Tested	fore Test 9.88 Tel 85 manual 7 - 23.8' - 24.8 Ely sandy ela	rac
mw16-19		Depth to Water	H	
•		from Top of Casing	Excess Head	
Actual Time	Elapsed Time	(ft)	(ft)	H/HO
-		/		
		30/		
		200/		
	- 100			
	<u> </u>			· · · · · · · · · · · · · · · · · · ·
•		<u> </u>		
			•	
/				
	-			
			-	
			•	

(4011-400-0034)(GW4REV1)(09-11-91)

SLUG INJECTION TEST DATA FORM 37191 - MW16

		ELAPSED	DEPTH TO H20		н/н0
		TIME	FROM TOC (ft)	HEAD (ft)	
		(min)	(11)	- (11)	
FILE:	MW16_1B.WQ2	0	8.01	1.87	1.14
TEST DATE:	12/07/91	0.0083	7.938	1.942	1.18
START TIME:	11:49:38 AM	0.0166	7.985	1.895	1.15
OTATI TIME		0.025	7.95	1.93	1.17
H0:	1.645 FT	0.0333	7.966	1.914	1.16
REFERENCE:	9.88 FT	0.0416	7.968	1.892	1.15
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.00	0.05	7.965	1.895	1.15
		0.0583	7.968	1.892	1.15
		0.0666	8.001	1.879	1.14
		0.075	8.004	1.876	1.14
			8.004		1.14
		0.0833 0.1	8.02	1.876 1.86	1.13
		0.1166 0.1333	8.023 8.039	1.857 1.841	1.13 1.12
	•	0.15	8.042	1.838	1.12
		0.1666	8.076	1.804	1.10
		0.1833	8.054	1.826	1.11
		0.2	8.08	1.8	1.09
		0.2166	8.083	1.797	1.09
		0.2333	8.099	1.781	1.08
		0.25	8.105	1.775	1.08
		0.2666	8.118	1.762	1.07
		0.2833	8.124	1.756	1.07
		0.3	8.143	1.737	1.06
		0.3166	8.143	1.737	1.06
		0.3333	8.162	1.718	1.04
		0.4166	8.209	1.671	1.02
		0.5	8.247	1.633	0.99
		0.5833	8.285	1.595	0.97
		0.6666	8.323	1.557	0.95
		0.75	8.364	1.516	0.92
		0.8333	8.399	1.481	0.90
		0.9166	8.433	1.447	0.88
		1	8.468	1.412	0.86
		1.0833	8.503	1.377	0.84
		1.1666	8.537	1.343	0.82
		1.25	8.569	1.311	0.80
		1.3333	8.597	1.283	0.78
		1.4166	8.626	1.254	0.76
		1.5	8.654	1.226	0.75
		1.5833	8.683	1.197	0.73
		1.6666	8.711	1.169	0.71
		1.75	8.736	1.144	0.70
		1.8333	8.759	1.121	0.68
		1.9166	8.787	1.093	0.66

SLUG INJECTION TEST DATA FORM 37191 - MW16

ELAPSED	DEPTH TO H20		H/H0
TIME	FROM TOC	HEAD	
<u>(min)</u>	(ft)	(ft)	
2	8.809	1.071	0.65
2.5	8.951	0.929	0.56
3	9.065	0.815	0.50
3.5	9.163	0.717	0.44
4	9.245	0.635	0.39
4.5	9.311	0.569	0.35
5	9.377	0.503	0.31
5.5	9.425	0.455	0.28
6	9.466	0.414	0.25
6.5	9.51	0.37	0.22
7	9.545	0.335	0.20
7.5	9.58	0.3	0.18
8	9.608	0.272	0.17
8.5	9.633	0.247	0.15
9	9.655	0.225	0.14
9.5	9.681	0.199	0.12
10	9.7	0.18	0.11
12	9.75	0.13	0.08
14	9.794	0.086	0.05
16	9.826	0.054	0.03
18	9.842	0.038	0.02
20	9.854	0.026	0.02
22	9.864	0.016	0.01
24	9.87	0.01	0.01
26	9.876	0.004	0.002

SLUG WITHDRAWAL TEST DATA FORM 37191 - MW16

			ELAPSED	DEPTH TO H20		H/H0
			TIME	FROM TOC	HEAD	
			(min)	(ft)	(ft)	
E# E.			_	44.000	4.000	4.04
FILE: TEST DATE:	MW16_1C.WQ2		0	11.878	-1.998	1.04
	12/07/91		0.0083	11.9	-2.02	1.05
START TIME:	12:16:35 PM	, ,	0.0166	11.878	-1.998	1.04
No.	4 0000 FT		0.025	11.885	-2.005	1.04
HO:	-1.9223 FT		0.0333	11.875	-1.995	1.04
REFERENCE:	9.88 FT		0.0416	11.872	-1.992	1.04
			0.05	11.866	-1.986	1.03
			0.0583	11.964	-2.084	1.08
			0.0666	11.863	-1.983	1.03
			0.075	11.866	-1.986	1.03
			0.0833	11.863	-1.983	1.03
			0.1	11.856	-1.976	1.03
			0.1166	11.866	-1.986	1.03
			0.1333	11.837	-1.957	1.02
			0.15	11.834	-1.954	1.02
			0.1666	11.834	-1.954	1.02
			0.1833	11.828	-1.948	1.01
			0.2	11.818	-1.938	1.01
			0.2166	11.818	-1.938	1.01
			0.2333	11.809	-1.929	1.00
			0.25	11.806	-1.926	1.00
			0.2666	11.803	-1.923	1.00
			0.2833	11.799	-1.919	1.00
			0.3	11.796	-1.916	1.00
			0.3166	11.799	-1.919	1.00
			0.3333	11.787	-1.907	0.99
•	•		0.4166	11.771	-1.891	0.96
			0.5	11.758	-1.878	0.98
			0.5833	11.749	-1.869	0.97
			0.6666	11.73	-1.85 1.037	0.96
			0.75	11.717	-1.837	0.96
			0.8333	11.705	-1.825	0.95
			0.9166	11.692	-1.812	0.94
			1	11.676	-1.796	0.93
			1.0833	11.67	-1.79	0.93
			1.1666	11.651	-1.771	0.92
			1.25	11.638	-1.758	0.91
			1.3333	11.626	-1.746	0.91
			1.4166	11.616	-1.736	0.90
			1.5	11.604	-1.724	0.90
			1.5833	11.597	-1.717	0.89
			1.6666	11.581	-1.701	0.88
			1.75	11.569	-1.689	0.88
			1.8333	11.556	-1.676	0.87
			1.9166	11.547	-1.667	0.87

SLUG WITHDRAWAL TEST DATA FORM 37191 - MW16

ELAPSED	DEPTH TO H20	HVHO	
TIME	FROM TOC	HEAD	
(min)	(ft)	(ft)	
2	11.537	-1.657	0.86
2.5	11.462	-1.582	0.82
3	11.395	-1.515	0.79
9.5	11.335	-1.455	0.76
4	11.272	-1.392	0.72
4.5	11.215	-1.335	0.69
5	11.155	-1.275	0.66
5.5	11.105	-1.225	0.64
6	11.057	-1.177	0.61
6.5	11.004	-1.124	0.58
7	10.959	-1.079	0.56
7.5	10.918	-1.038	0.54
8	10.874	-0.994	0.52
8.5	10.846	-0.966	0.50
9	10.802	-0.922	0.48
9.5	10.764	-0.884	0.46
10	10.726	-0.846	0.44
12	10. 599	-0.719	0.37
14	10.489	-0.609	0.32
16	10.401	-0.521	0.27
18	10.322	-0.442	0.23
20	10.258	-0.378	0.20
22	10.202	-0.322	0.17
24	10.151	-0.271	0.14
26	10.11	-0.230	0.12
28	10.078	-0.198	0.10
30	10.047	-0.167	0.09
32	10.028	-0.148	0.08
34	9.999	-0.119	0.06
36	9.984	-0.104	0.05
38	9.971	-0.091	0.05
40	9.962	-0.082	0.04
42	9.952	-0.072	0.04
44	9.939	-0.059	0.03
46	9.933	-0.053	0.03
48	9.924	-0.044	0.02
50	9.917	-0.037	0.02
52	9.914	-0.034	0.02
54	9.911	-0.031	0.02
56	9.911	-0.031	0.02
58	9.911	-0.031	0.02
60	9.908	-0.028	0.01
62	9.905	-0.025	0.01
64	9.905	-0.025	0.01

SLUG INJECTION TEST

AQTESOLV RESULTS Version 1.10

13:01:57 03/12/92

TEST DESCRIPTION

Data set..... mwl6inj.dat

Data set title.... SLUG INJECTION TEST 37191 - MW16

Project..... OPERABLE UNIT 1
Client.... EG&G ROCKY FLATS Location...... 881 HILLSIDE Test date...... 12/07/91

Knowns and Constants:

Radius of well casing..... 0.0863 Radius of well..... 0.458 Aquifer saturated thickness..... 13.74 Well screen length..... 9.55

ANALYTICAL METHOD

Bouwer-Rice (Unconfined Aquifer Slug Test)

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate

2.2660E-004

1.6450E+000 y0 =

Y FLATS	IDE	16	DATA SET: MM16INJ.DAT 02/27/92	AQUIFER TYPE: Unconfined SOLUTION METHOD:	Bouwer-Aice TEST DATE: 12/07/91	ESTIMATED PAHAMETERS: K = 0.0002288 ft/min y0 = 1.845 ft	TEST DATA:	rc = 0.0863 ft rw = 0.458 ft L = 9.55 ft b = 19.74 ft H = 13.74 ft		
Client: EG&G ROCKY FLATS	Location: 881 HILLSIDE	ECTION TEST 37191 - MW16		-	-1 - 1	11111 1	·		0	2(u)
	OPERABLE UNIT 1	SLUG INJECTION	10.	-		Secretary	L_1		-	0.01 0. 10. 20. Time (min)
	Project No.: OF		10		(13) jaso	reen			Ó

AQTESOLV RESULTS Version 1.10

03/12/92 13:03:23

TEST DESCRIPTION

Data set..... mw16wd.dat

Data set title.... SLUG WITHDRAWAL TEST 37191 - MW16

Knowns and Constants:

A, B, C..... 0.000, 0.000, 1.687

ANALYTICAL METHOD

Bouwer-Rice (Unconfined Aquifer Slug Test)

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 7.9463E-005

y0 = 1.9223E+000

ROCKY FLATS	SIDE	MW16	DATA SET: HM16MD.DAT 02/27/92	AGUIFER TYPE: Unconfined SOLUTION METHOD: Bouwer-Rice TEST DATE:	ESTIMATED PAHAMETERS: K = 7.94636-05 ft/min yo = 1.922 ft	TEST DATA:	rc = 0.0863 ft rv = 0.458 ft L = 9.55 ft b = 19.74 ft H = 19.74 ft	
Client: EG&G ROCK	Location: 881 HILLSIDE	IDRAWAL TEST 37191 - MI		- .	 		0000000	100000 10000 1000
	BLE UNIT 1	WITH		<u>-</u>	o o o o o o o o o o o o o o o o o o o	o o	0000	. 10. 20. 30. 40. Time (min
	Project No.: OPERABLE		10. нипп		i) jusu	rcer	sigeid o	0.01

Single Well Test Analysis

Date of Test:

12/07/91

Project:

OU1 PHASE III RI

Well:

37191

7.13

Client:

EG&G ROCKY FLATS

Screen Interval:

11.3-20.9

Location:

881 Hillside

Filter Interval: Water Level:

9.2-22.0

Type of Test: Slug Injection

Hvorslev Analysis Method: (after Fetter, 1988)

$$K = \frac{\text{(r squared)}}{2 \text{(L) (To)}} \ln \text{(L/R)}$$

For L/R>8

L = length of the well screen:	9.55	feet
r = radius of the well casing:	0.0863	feet
R = radius of the well screen	0.458	feet
To = time to recover 37%	4.5	minutes
L/R = Validity Check	20.85	

2.6E-04 ft/min x 0.508 cm-min/sec-ft K =

K = 1.3E-04 cm/sec

Single Well Test Analysis

Date of Test:

12/07/91

Project:

OU1 PHASE III RI

Well:

37191

Client:

EG&G ROCKY FLATS

Screen Interval:

11.3-20.9

Location:

881 Hillside

Filter Interval: Water Level:

9.2-22.0 7.13

Type of Test: Slug Withdrawal

Hvorslev Analysis Method: (after Fetter, 1988)

$$K = \frac{\text{(r squared)}}{2 \text{(L) (To)}} \ln \text{(L/R)}$$

For L/R>8

L = length of the well screen:	9.55	feet
r = radius of the well casing:	0.0863	feet
R = radius of the well screen	0.458	fœt
To = time to recover 37%	12.5	minutes
L/R = Validity Check	20.85	

9.5E-05 ft/min x 0.508 cm-min/sec-ft K =

K = 4.8E-05 cm/sec

INDEX OF BOREHOLE AND SINGLE WELL TEST DATA AND RESULTS

Borehole, well, or piezometer number: 37591 (MW22) (Work plan designation)

Dat	a Available:
	Packer Test - Set-up
	Packer Test - Data Sheet (Flow vs. Time Data)
_	Packer Test - Data Logger Output (Head vs. Time Data)
	Packer Test - Analysis and Results Calculation Sheet
<u>~</u>	Single Well Test - Record of Initial Water Level Measurement
<u>~</u>	Single Well Test – 10 Minute Calibration Plot
<u>~</u>	Single Well Test – Head vs. Time Data Form
<u>~</u>	Single Well Test —Head vs. Time Response Graph(s)
<u>~</u>	Single Well Test - Bouwer and Rice Method Analytical Results
	Single Well Test – Hyorslev Method Analytical Results

GROUNDWATER LEVELS MEASUREMENTS/CALCULATIONS

			ROCKY FL	ATS PROJECT	Revision 1.2
			Project No.		
•			Date	121/91	
				J. Uhlineur	
			2.	J. COEN	
EQUIPMENT:	Manufacturer Solivist	Model		Serial No. 103	73
CALIBRATION:	Date Passed		Date Duc		
QC REVIEW:	Name		Date		
					;

Well No.			
37591 5FV	WD _p	MTD ^c	Comments
Measurement 1	13.29	17.00	٦٢
Measurement 2	13.29	17.00	JF.
Measurement 3	13.29	17.00	JC
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by
Well No.			1
	WD ^b	MTD°	Comments
Measurement 1			
Measurement 2			
Measurement 3			<u> </u>
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by
Well No.			
Well No.	WD ^b	MTDe	Comments
Measurement 1			
Measurement 2			·
Measurement 3			
. :			+ =
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by

- Footnotes:

 A = TOWC = top of well casing
 b = WD = depth to water from MP
 c = MTD = measured total depth from MP
 d = Probe End = length beyond measuring point on probe
 e = TD = total depth of well from MP

- Notes:

 All measurements are relative to Mark Point (MP) = north side of TOWC

 OC review by supervisor is a check of reasonableness

 Measurements 1 and 2 must be within .01 ft of a 3rd measurement must be taken

FEN MINUTE CALIBRATION TEST 37591 - MW22 4 5 6 TIME (minutes) **N** -1.5-Ş -2.5-EXCESS HEAD (feet)

min

U.S. DEPARTMENT OF ENERGY ROCKY FLATS PLANT

PORM GW.4A Page 1 of 2

BALL DOWN RECOVERY TEST SLUG TEST DATA FORM

	* * /			
Location Sel 14	1/side	Name J. Uhline	,-	
Borehole No. 3	7591 muzz	Groundwater Elevation B	efore Test 13, 29	
Test Date 12/2/19/		Total Casing Depth/?	100'	
Measuring Point		Borehole Diameter //"	· · · · · · · · · · · · · · · · · · ·	
Type of Test Bai	ldown/Recovery	Casing Diameter 2.6	2 4	
Transductor Probe	Serial No. 350975	Screened Interval 14, 3	0-9-70 (54)	
Datalogger Test R		Sand Pack Interval 16.80	- 2.70	
(include time and				
identification purp		Lithology Tested grave	lle samle Cle	44
	•		0	8
MW	22_la, TST			
mu	182-16. TST	Depth to Water	H	
		from Top of Casing	Excess Head	
Actual Time	Elapsed Time	(ft)	(ft)	H/HO
		•		
		······································		
				
				·
				
			•	
		0		
		Ve Control		
	*	•/		
		/		
	Κγ /			
	/			
				
 .				
	7			
	/ ·			
/				
				
/				

			ELAPSED	DEPTH TO H20	EXCESS
			TIME	FROM TOC	HEAD
			(min)	(ft)	(ft)
		•	(114:7)		
FILE:	MW22_1B.W) 2	0	14.697	-1.427
TEST DATE:	12/21/91		0.0083	14.694	-1.424
START TIME:	10:32:48 AM	l	0.0166	14.690	-1.420
			0.025	14.687	-1.417
			0.0333	14.684	-1.414
REFERENCE:	13.27 FT		0.0416	14.678	-1.408
			0.05	14.675	-1.405
		•	0.0583	14.675	-1.405
			0.0666	14.668	-1.398
•	•		0.076	14.665	-1.395
			0.0833	14.665	-1.395
			0.1	14.875	-1.405
			0.1166	14.665	-1.395
			0.1333	14.659	-1.389
			0.15	14.652	-1.382
			0.1666	14.646	-1.376
			0.1833	14.640	-1.370
			0.2	14.630	-1.360
			0.2166	14.627	-1.357
			0.2333	14.621	-1.351
			0.25	14.615	-1.345
			0.2666	14.608	-1.338
			0.2833	14.602	-1.332
			0.3	14.596	-1.326
			0.3166	14.589	-1.319
			0.3333	14.583	-1.313
			0.4166	14.558	-1.2 88
			0.5	14.532	-1.262
			0.5833	14.510	-1.240
			0.6666	14.488	-1.218
			0.75	14.466	-1.196
			0.8333	14.447	-1.177
			0.9166	14.431	-1.161
			1	14.412	-1.142
			1.0833	14.396	-1.128
			1.1666	14.384	-1.114
			1.25	14.368	-1.098
			1.3333	14.355	-1.085
			1.4166	14.342	-1.072
			1.5	14.330	-1.060
			1.5833	14.317	-1.047
			1.6666	14.308	-1.038
			1.75	14.304	-1.034
			1.8333	14.289	-1.019
			1.9166	14.279	-1.009

ELAPSED TIME	DEPTH TO H20 FROM TOC	EXCESS HEAD
(min)	(ft)	(ft)
(Com s)	110	(10)
2	14.270	-1.000
2.5	14.225	-0.955
3	14.194	-0.924
3.5	14.165	-0.895
4	14.140	-0.870
4.5	14.115	-0.845
5	14.102	-0.832
5.5	14.089	-0.819
6	14.073	-0.803
6.5	14.064	-0.794
7	14.054	-0.784
, 7.5	14.051	-0.781
8	14.045	-0.775
8.5	14.035	-0.765
9	14.029	-0.759
9.5	14.023	-0.753
10	14.020	-0.750
12	14.007	-0.737
14	13.994	-0.737 -0.724
16	13.982	-0.724 -0.712
18	13.972	-0.712 -0.702
20	13.966	-0.702 -0.696
22 22	13.956	-0.686
24	13.950	-0.680
24 26	13.947	-0.6677
28		
25 30	13.937 13.934	-0.667 -0.664
32 34	13.928	-0.658 -0.655
	13.925	
36	13.921	-0.651
38	13.918	-0.648
40	13.912	-0.642
42	13.912	-0.642
44	13.909	-0.639
46	13.902	-0.632
48	13.899	-0.629
50	13.896	-0.626
52	13.893	-0.623
54	13.893	-0.623
56	13.887	-0.617
58	13.883	-0.613
60	13.883	-0.613
. 62	13.877	-0.607
64	13.877	-0.607
66	13.874	-0.604

ELAPSED TIME (min)	DEPTH TO H20 FROM TOC (ft)	EXCESS HEAD (ft)
(TIME)	710/	
68	13.874	-0.604
70	13.871	-0.601
70 72	13.868	-0.598
74	13.864	-0.594
7 4 76	13.864	-0.594
		-0.5 9 1
78 ~~	13.861	-0.588
80	13.858	-0.585
82	13.855	
84	13.855	-0.585
86	13.855	-0.585
88	13.849	-0.579
90	13.849	-0.579
92	13.845	-0.575
94	13.842	-0.572
96	13.842	-0.572
96	13.839	-0.569
100	13.839	-0.569
110	13.830	-0.560
120	13.820	-0.550
130	13.814	-0.544
140	13.804	-0.534
150	13.795	-0.525
160	13.789	-0.519
170	13.782	-0.512
180	13.773	-0.503
190	13.766	-0.496
200	13.757	-0.487
210	13.754	-0.484
220	13.744	-0.474
230	13.738	-0.468
240	13.732	-0.462
250	13.725	-0.455
260	13.716	-0.446
270	13.709	-0.439
280	13.703	-0.433
290	13.697	-0.427
300	13.694	-0.424
310	13.687	-0.417
320	13.678	-0.408
330	13.668	-0.398
340	13.665	-0.395
350	13.659	-0.389
360	13.656	-0.386
370	13.649	-0.379
380	13.646	-0.37 6
330	13.040	7.570

ELAPSED	DEPTH TO H20	
TIME	FROM TOC	HEAD
(min)	(ft)	(ft)
390	13.643	-0.373
400	13.637	-0.367
410	13.630	-0.360
420	13.627	-0.357
430	13.624	-0.354
440	13.618	-0.348
450	13.614	-0.344
460	13.608	-0.338
470	13.605	-0.335
480	13.602	-0.332
490	13.595	-0.325
500	13.592	-0.322
510	13.589	-0.319
520	13.583	-0.313
530	13.576	-0.306
540	13.573	-0.303
550	13.567	-0.297
560	13.564	-0.294
570	13.561	-0.291
580	13.558	-0.288
590	13.551	-0.281
600	13.548	-0.278
610	13.542	-0.272
620	13.535	-0.265
630	13.532	-0.262
640	13.529	-0.259
650	13.526	-0.256
660	13.523	-0.253
670	13.516	-0.246
680	13.513	-0.243
690	13.510	-0.240
700	13.504	-0.234
710	13.501	-0.231
710 720	13.497	-0.227
730	13.494	-0.224
740	13.488	-0.218
7 5 0	13.488	-0.218
760 	13.482	-0.212
770	13.478	-0.208
780	13.475	-0.205
790	13.469	-0.199
800	13.466	-0.196
810	13.463	-0.193
. 820	13.459	-0.189
830	13.453	-0.183

ELAPSED	DEPTH TO H20	
TIME	FROM TOC	HEAD
(min)	(ft)	(ft)
840	13.453	-0.183
850	13.447	-0.177
860	13.444	-0.174
870	13.437	-0.167
880	13.434	-0.164
890	13.431	-0.161
900	13.428	-0.158
910	13.425	-0.155
920	13.418	-0.148
930	13.415	-0.145
940	13.412	-0.142
950	13.409	-0.139
960	13.406	-0.136
970	13.402	-0.132
980	13.396	-0.126
990	13.396	-0.126
1000	13.393	-0.123
1010	13.390	-0.120
1020	13.383	-0.113
1020	13.380	-0.110
		-0.110 -0.107
1040	13.377 13.374	-0.107 -0.104
1050 1060	13.371	-0.101
	13.368	-0.098
1070 1080	13.364	-0.094
		-0.088
1090	13.358	
1100	13.358	-0.088
1110	13.358	-0.088
1120	13.355	-0.085
1130	13.352	-0.082
1140	13.345	-0.075
1150	13.342	-0.072
1160	13.339	-0.069
1170	13.336	-0.066
1180	13.333	-0.063
1190	13.330	-0.060
1200	13.326	-0.056
1210	13.323	-0.053
1220	13.317	-0.047
1230	13.314	-0.044
1240	13.311	-0.041
1250	13.311	-0.041
1260	13.304	-0.034
1270	13.304	-0.034
1280	13.301	-0.031

ELAPSED	DEPTH TO H20 FROM TOC	EXCESS HEAD
TIME	(ft)	(ft)
(min)	(R)	(11)
1290	13.296	-0.028
1300	13.295	-0.025
1310	13.288	-0.018
1320	13.285	-0.015
1330	13.282	-0.012
1340	13.279	-0.009
1350	13.279	-0.009
1360	13.273	-0.003
1370	13.270	0.000
1380	13.266	0.004
1390	13.263	0.007
1400	13.26	0.007
1410	13.257	0.013
1420	13.254	0.016

1430	13.251	0.019
1440	13.247	0.023
1450	13.244	0.026
1460	13.241	0.029
1470	13.238	0.032
1480	13.235	0.035
1490	13.232	0.038
1500	13,228	0.042
1510	13,225	0.045
1520	13,222	0.048
1530	13,219	0.051
1540	13.213	0.057
1550	13.213	0.057
1560	13.209	0.061
1570	13.206	0.064
1580	13.203	0.067
1590	13,197	0.073
1600	13.197	0.073
1610	13.19	0.080
1620	13.187	0.083
1630	13.184	0.086
1640	13.181	0.089
1650	13,178	0.092
1660	13.175	0.095
1670	13.175	0.095
1680	13.171	0.099
1690	13.168	0.102
1700	13.165	0.105
1710	13.162	0.108
1720	13.159	0.111
1730	13.156	0.114

ELAPSED	DEPTH TO H20	
TIME	FROM TOC	HEAD
(min)	(ft)	(ft)
	40.450	0444
1740	13.156	0.114
1750	13.152	0.118
1760	13.149	0.121
1770	13.146	0.124
1780	13.143	0.127
1790	13.14	0.130
1800	13.137	0.133
1810	13.133	0.137
1820	13.13	0.140
1830	13.13	0.140
1840	13.127	0.143
1850	13.124	0.146
1860	13.121	0.149
1870	13.118	0.152
1880	13.114	0.156
1890	13.111	0.159
1900	13.108	0.162
1910	13.105	0.165
1920	13.105	0.165
1930	13.102	0.168
1940	13.099	0.171
1950	13.095	0.175
1960	13.092	0.178
1970	13.092	0.178
1980	13.089	0.181
1990	13.086	0.184
2000	13.066	0.184
2010	13.08	0.190
2020	13.076	0.194
2030	13.076	0.194
2040	13.073	0.197
2050	13.07	0.200
2060	13.067	0.203
2070	13.064	0.206
2080	13.061	0.209
		0.213
2090	13.057	0.213
2100	13.057	
2110	13.054	0.216
2120	13.051	0.219
2130	13.048	0.222
2140	13.045	0.225
2150	13.045	0.225
2160	13.042	0.228
2170	13.038	0.232
2180	13.035	0.235

ELAPSED TIME	DEPTH TO H20 FROM TOC	HEAD
(min)	(ft)	(ft)
2190	13.032	0.238
2200	13.032	0.238
2210	13.026	0.244
2220	13.026	0.244
2230	13.023	0.247
2240	13.019	0.251
2250	13.016	0.254
2260	13.016	0.254
2270	13.013	0.257
2280	13.01	0.260
2290	13.01	0.260
2300	13.007	0.263
2310	13.004	0.266
2320	13	0.270
2330	12. 99 7	0.273
2340	12.997	0.273
2350	12.994	0.276
2360	12.991	0.279
2370	12.988	0.282
2380	12.988	0.282
2390	12.985	0.285
2400	12.981	0.289
2410	12.978	0.292
2420	12.978	0.292
2430	12.975	0.295
2440	12.972	0.298
2450	12.969	0.301
2460	12.969	0.301
2470	12.963	0.307
2480	12.963	0.307
2490	12.959	0.311
2500	12.956	0.314
2510	12.953	0.317
2520	12.95	0.320
2530	12.95	0.320
2540	12.944	0.326
2550	12.94	0.330
2560	1294	0.330
2570	12.937	0.333
2580	12.934	0.336
2590	12.934	0.336
2600	12.931	0.339
2610	12.928	0.342
2620	12.925	0.345
2630	12.925	0.345

BAIL DOWN/RECOVERY TEST 37591 - MW22

AQTESOLV RESULTS Version 1.10

06/05/92 11:41:08

TEST DESCRIPTION

Data set..... mw22bdr.dat

Data set title.... BAIL DOWN RECOVERY TEST 37591 - MW22

Project...... OPERABLE UNIT 1
Client..... EG&G ROCKY FLATS
Location..... 881 HILLSIDE
Test date..... 12/21/91

Knowns and Constants:

ANALYTICAL METHOD

Bouwer-Rice (Unconfined Aquifer Slug Test)

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 1.4723E-005y0 = 9.6610E-001

ROCKY FLATS	IDE	MW22	DATA SET: mw22bdr.dat 06/05/92 AGUIFER TYPE: Unconfined SOLUTION METHOD: Bouwer-Rice TEST DATE: 12/21/91 ESTIMATED PARAMETERS: K = 1.4723E-05 ft/min yo = 0.9661 ft rc = 0.261 ft rc = 0.261 ft rw = 0.458 ft L = 1.21 ft b = 1.21 ft H = 1.21 ft	•
Client: EG&G ROCI	Location: 881 HILLSIDE	3RY TEST 37591 -	1200. 1600. 2000. 2400. 2800. Time (min)	
	o.: OPERABLE UNIT 1	BAIL DOWN RECOVERY	10. Eller	
	Project No			0

INDEX OF BOREHOLE AND SINGLE WELL TEST DATA AND RESULTS

Borehole, well, or piezometer number: 37791 (MW21) (Work plan designation)

Data Available:				
	Packer Test - Set-up			
_	Packer Test - Data Sheet (Flow vs. Time Data)			
	Packer Test - Data Logger Output (Head vs. Time Data)			
	Packer Test - Analysis and Results Calculation Sheet			
Ł	Single Well Test – Record of Initial Water Level Measurement			
	Single Well Test – 10 Minute Calibration Plot			
<u>~</u>	Single Well Test - Head vs. Time Data Form			
Ł	Single Well Test - Head vs. Time Response Graph(s)			
_	Single Well Test - Bouwer and Rice Method Analytical Results			
	Single Well Test – Hvorslev Method Analytical Results			

GROUNDWATER LEVELS MEASUREMENTS/CALCULATIONS

CALIBRATION:	Manufacturer <u>Solo</u> Date Passed Name		Project No. Date		//side	
TOWC (MP)	Well No. 37791 Measurement 1 Measurement 2 Measurement 3	WD ^b 22.50 Average WD	MTD ^c 2.5.00	Co	mments TD°	Chk'd by
	Well No. Measurement 1 Measurement 2 Measurement 3	WD _p	MTD ^c	Со	mments	
	Well No.	Average WD	Average MTD	+ = . Probe End ^d	TD°	Chk'd by
<u> </u>	Measurement 1 Measurement 2 Measurement 3	WD ^b	MTD¢	Со	mments	
		Average WD	Average MTD	Probe End ^d	TD°	Chk'd by

Footnotes:

A = TOWC = top of well casing
b = WD = depth to water from MP
c = MTD = measured total depth from MP
d = Probe End = length beyond measuring point on probe
e = TD = total depth of well from MP

Notes:

All measurements are relative to Mark Point (MP) = north side of TOWC

QC review by supervisor is a check of reasonableness

Measurements 1 and 2 must be within .01 R of a 3rd measurement must be taken

BAIL DOWN RECOVERY SLUG TEST DATA FORM

Location OUI	881 Hillside	Name July	B Brenner	C. Benulis		
Borehole No.	37791 MWZ1	Groundwater Elevation Before Test 22,48 74 MP Total Casing Depth 24 117/2"				
Test Date 12	123/8/ Top PVC Carin	Total Casing Depth 24	113/34			
Measuring Poin	Top Precuin	Borchole Diameter _//				
Type of Test B	mil /Deinin - Kecover	Casing Diameter 2.07	4,			
Transductor Pro	obe Serial No. <u>245925</u>	Screened Interval 23.10	- 13,10"			
Datalogger Test		Sand Pack Interval _//.30	-25,10			
(include time an			0 .11			
identification pu		Lithology Tested	france, colless	3 Sel 6.		
	MW21-1-757	8				
1	MWZL-16, TST	Depth to Water	H			
		from Top of Casing	Excess Head			
Actual Time	Elapsed Time	(ft)	(ft)	н/но		
						
	·		/			
		/				
				·		
		2000				
	\		·			
	,					
						
٠.	\mathcal{T}					
	-16					
	/ / /	<i></i> :				
	4					
	+					
			•			
	/					
/						
1/		• .				
		·				
						

(4011-400-0034)(GW4REV.1)(99-11-91)

			ELAPSED	DEPTH TO H20	EXCESS
			TIME	FROM TOC	HEAD
			(min)	(ft)	(ft)
			(11411)		
FILE:	MW21_1E	WO2	0	22,999	-0.519
TEST DATE:	12/24/91		0.0083	22.999	-0.519
START TIME:		AM	0.0166	22.999	-0.519
O 17 11 1 1110.2.	.00.00.01	, .	0.025	22.999	-0.519
			0.0333	22.995	-0.515
REFERENCE:	22.48	FT	0.0416	22.999	-0.519
		• •	0.05	22.995	-0.515
			0.0583	22,995	-0.515
•			0.0666	22,995	-0.515
			0.075	22.992	-0.512
			0.0833	22.995	-0.515
			0.1	22.992	-0.512
			0.1166	22.989	-0.509
			0.1333	22.989	-0.509
			0.15	22.989	-0.509
			0.1666	22.986	-0.506
			0.1833	22.983	-0.503
			0.2	22.983	-0.503
			0.2166	22.983	-0.503
			0.2333	22,980	-0.500
			0.25	22.980	-0.500
			0.25 0.2666	22.976	-0.496
			0.2833	22.976	-0.496
			0.2833	22.973	-0.493
			0.3 0.3166	22.973 22.973	-0.493
			0.3333	22.973	-0.493
			0.4166	22.967	-0.487
			0.4166	22.961	-0.481
			0.5833	22.954	-0.474
				22.948	-0.468
			0.6666 0.75	22.942	-0.462
				22.938	-0.458
			0.8333 0.9166	22.932	-0.452
				22.926	-0.446
			1 1.0833	22.923	-0.443
				22.916	-0.436
			1.1666 1.25	22.913	-0.433 -0.433
			1.3333	22.910	-0.430 -0.437
			1.4166	22.907	-0.427
			1.5	22.904	-0.424
			1.5633	22.900	-0.420
			1.6666	22.897	-0.417
			1.75	22.894	-0.414
			1.8333	22.894	-0.414
			1.9166	22.891	-0.411

ELAPSED	DEPTH TO H20	
TIME	FROM TOC	HEAD
(min)	(ft)	(ft)
•	22.891	-0.411
2 2.5	22.882	-0.402
3	22.872	-0.392
3.5	22.869	-0.389
4	22.866	-0.386
4.5	22.859	-0.379
• • •	22.856	-0.376
5 5.5	22.853	-0.373
		-0.373
6 6.5	22.853 22.850	-0.373 -0.370
		-0.367
7	22.847	
7.5	22.847	-0.367
8	22.844	-0.364
8.5	22,840	-0.360
9.	22.840	-0.360
9.5	22.837	-0.357
10	22.837	-0.357
12	22.834	-0.354
14	22.828	-0.348
16	22.825	-0.345
18	22.821	-0.341
20	22.818	-0.338
22	22.815	-0.335
24	22.812	-0.332
26	22.809	-0.32 9
28	22.806	-0.326
30	22.806	-0.326
32	22.802	-0.322
34	22.802	-0.322
36	22.799	-0.319
38	22.796	-0.316
40	22.796	-0.316
42	22.796	-0.316
44	22.793	-0.313
4 6	22.793	-0.313
48	22.790	-0.310
50	22.790	-0.310
52	22.787	-0.307
54	22.787	-0.307
56	22.787	-0.307
58	22.783	-0.303
60	22.783	-0.303
62	22.780	-0.300
· 64	22.780	-0.300
66	22.780 22.780	-0.300
90	££./00	~.500

ELAPSED			
TIME	FROM TOC	HEAD	
(min)	(ft)	(ft)	
68	22.777	-0.297	
70	22.777	-0.297	
72	22.777	-0.297	
74	22.774	-0.294	
76	22.774	-0.294	
78	22.771	-0.291	
80	22.771	-0.291	
82	22.771	-0.291	
84	22.771	-0.291	
86	22.768	-0.288	
88	22.768	-0.288	
90	22.768	-0.288	
92	22.768	-0.288	
94	22.768	-0.288	
96	22.764	-0.284	
98	22.764	-0.284	
100	22.764	-0.284	
110	22.761	-0.281	
120	22.758	-0.278	
130	2 2.752	-0.272	
140	22.749	-0.269	
150	22.745	-0.265	
160	22.742	-0.262	
170	22.739	-0.2 59	
180	22.736	-0.256	
190	22.736	-0.256	
200	22.733	-0.253	
210	22,730	-0.250	
220	22.726	-0.246	
230	22.723	-0.243	
240	22.720	-0.240	
250	22,717	-0.237	
260	22.714	-0.234	
270	22.711	-0.231	
280	22.707	-0.227	
290	22.711	-0.231	
300	22.704	-0.224	
310	22.701	-0.221	
320	22.701	-0.221	
330	22,695	-0.215	
340	22.695 22.695	-0.215 -0.215	
350	22.692	-0.212	
350 360	22.688 22.688	-0.212 -0.208	
	22.685	-0.205 -0.205	
370	22.685 22.685	-0.205 -0.205	
380	22.060	-0.200	

ELAPSED	DEPTH TO H20 EXCESS		
TIME	FROM TOC	HEAD	
(min)	(ft)	<u>(ft)</u>	
390	22.685	-0.205	
400	22.685	-0.205	
410	22.679	-0.1 99	
420	22.679	-0.1 99	
430	22.679	-0.199	
440	22.676	-0.196	
450	22.673	-0.193	
460	22.673	-0.193	
470	22.666	-0.186	
480	22.666	-0.186	
490	22.663	-0.183	
500	22.660	-0.180	
510	22.660	-0.180	
520	22.660	-0.180	
530	22.657	-0.177	
540	22.654	-0.174	
550	22.654	-0.174	
560	22.654	-0.174	
570	22.650	-0.170	
580	22.650	-0.170	
590	22.647	-0.167	
600	22.647	-0.167	
610	22.647	-0.167	
620	22.644	-0.164	
630	22.641	-0.161	
640	22.641	-0.161	
650	22.641	-0.161	
	22.638	-0.158	
660	22.638	-0.158	
670		-0.155	
680	22.635	-0.155 -0.155	
690	22.635		
700	22.635	-0.155 -0.151	
710	22.631		
720	22.631	-0.151	
730	22.631	-0.151	
740	22.628	-0.148	
750	22.625	-0.145	
760	22.625	-0.145	
770	22.625	-0.145	
790	22.622	-0.142	
790	22.625	-0.145	
800	22.619	-0.139	
810	22.619	-0.139	
820	22.619	-0.139	
830	22.619	-0.139	

ELAPSED			
TIME	FROM TOC	HEAD	
(min)	(ft)	(ft)	
840	22.616	-0.136	
850	22.616	-0.136	
860	22.612	-0.132	
870	22.612	-0.132	
880	22.612	-0.132	
890	22.609	-0.129	
900	22.609	-0.129	
910	22.609	-0.129	
920	22.606	-0.126	
930	22.606	-0.126	
940	22.603	-0.123	
950	22.603	-0.123	
960	22,603	-0.123	
970	22.600	-0.120	
960	22.600	-0.120	
990	22.600	-0.120	
1000	22.597	-0.117	
1010	22.597	-0.117	
1020	22,593	-0.113	
1020	22.593	-0.113	
	22.590	-0.110	
1040	22.590 22.590	-0.110 -0.110	
1050	22.590	-0.110	
1060		-0.110	
1070	22.590 22.587	-0.110 -0.107	
1080		-0.110	
1090	22.590	-0.110 -0.107	
1100	22.587		
1110	22.587	-0.107 -0.107	
1120	22.587		
1130	22.584	-0.104	
1140	22.584	-0.104	
1150	22.584	-0.104	
1160	22.581	-0.101	
1170	22.581	-0.101	
1180	22.578	-0.098	
1190	22.578	-0.096	
1200	22.574	-0.094	
1210	22.574	-0.094	
1220	22.574	-0.094	
1230	22.574	-0.094	
1240	22.571	-0.091	
1250	22.571	-0.091	
1260	22.571	-0.091	
1270	22.571	-0.091	
1280	22.571	-0.091	

ELAPSED TIME	DEPTH TO H20 FROM TOC	HEAD
(min)	(ft)	(ft)
		0.000
1290	22.568	-0.088
1300	22.568	-0.088
1310	22.568	-0.088 -0.095
1320	22.565	-0.085
1330	22.565	-0.085
1340	22.565	-0.085
1350	22.562	-0.082
1360	22.562	-0.082
1370	22.559	-0.079
1380	22.559	-0.079
1390	22.559	-0.079
1400	22.559	-0.079
1410	22.555	-0.075
1420	22.559	-0.079
1430	22.552	-0.072
1440	22.555	-0.075
1450	22.555	-0.075
1460	22.555	-0.075
1470	22.552	-0.072
1480	22.552	-0.072
1490	22.552	-0.072
1500	22.552	-0.072
1510	22.552	-0.072
1520	22.549	-0.069
1530	22.549	-0.069
1540	22.549	-0.069
1550	22.549	-0.069
1560	22.549	-0.069
1570	22.546	-0.066
1580	22.546	-0.066
1590	22.546	-0.066
1600	22.546	-0.066
1610	22.546	-0.066
1620	22.543	-0.063
1630	22.543	-0.063
1640	22.543	-0.063
1650	22.543	-0.063
1660	22.54	-0.060
1670	22.54	-0.060
1680	22.536	-0.056
1690	22.536	-0.056
1700	22.536	-0.056
1710	22.533	-0.053
1720	22.533	-0.053
1730	22.533	-0.053

ELAPSED	ELAPSED DEPTH TO H20 EXCES			
TIME	FROM TOC HEAD			
(min)	(ft)	(ft)		
1740	22.53	-0.050		
1750	22.527	-0.047		
1760	22.527	-0.047		
1770	22.524	-0.044		
1780	22.527	-0.047		
1790	22.521	-0.041		
1800	22.521	-0.041		
1810	22.517	-0.037		
1820	22.521	-0.041		
1830	22.521	-0.041		
1840	22.517	-0.037		
1850	22.517	-0.037		
1860	22.517	-0.037		
1870	22.514	-0.034		
1880	22.514	-0.034		
1890	22.511	-0.031		
1900	22.511	-0.031		
1910	22.508	-0.028		
1920	22.508	-0.028		
1930	22.508	-0.028		
1940	22.508	-0.028		
1950	22.505	-0.025		
1960	22.505	-0.025		
1970	22.505	-0.025		
1980	22.502	-0.022		
1990	22.502	-0.022		
2000	22.502	-0.022		
2010	22,502	-0.022		
2020	22.502	-0.022		
2030	22.498	-0.018		
2040	22.498	-0.018		
2050	22.498	-0.018		
2060	22.498	-0.018		
		-0.018		
2070 2080	22.498 22.498	-0.018		
		-0.015		
2090 2100	22.495 22.495	-0.015 -0.015		
2110	22.492	-0.012 0.012		
2120	22.492	-0.012		
2130	22.492	-0.012		
2140	22.492	-0.012		
2150	22.492	-0.012		
2160	22.489	-0.009		
2170	22.492	-0.012		
2180	22.489	-0.009		

ELAPSED			
TIME	FROM TOC	HEAD	
(min)	(ft)	(ft)	
2190	22.489	-0.009	
2200	22.489	-0.009	
2210	22.489	-0.009	
2220	22.486	-0.006	
2230	22.483	-0.003	
2240	22.483	-0.003	
2250	22.483	-0.003	
2260	22.483	-0.003	
2270	22.483	-0.003	
2280	22.483	-0.003	
2290	22.48	0.000	
2300	22.48	0.000	
2310	22.48	0.000	
2320	22.48	0.000	
2330	22.476	0.004	
2340	22.476	0.004	
2350	22,476	0.004	
2360	22.473	0.007	
2370	22.473	0.007	
2380	22.473	0.007	
2390	22.473	0.007	
2400	22.473	0.007	
2410	22.47	0.010	
2420	22.47	0.010	
2430	22.47	0.010	
2440	22.47	0.010	
2450	22.467	0.013	
2460	22.467	0.013	
2470	22.467	0.013	
2480	22.464	0.016	
2490	22.464 22.464	0.016	
2490 2500	22.464	0.016	
2510	22.464 22.464	0.016	
2510 2520	22.464	0.016	
2530	22.464	0.016	
2540	22.461	0.019	
2550	22.461	0.019	

2560 2570	22.461	0.019	
2570	22.461	0.019	
2580	22.457	0.023	
2590	22.457	0.023	
2600	22.457	0.023	
2610	22.454	0.026	
2020	22.454	0.026	
2630	22.454	0.026	
	•		

	ELAPSED	DEPTH TO H20	EXCESS
	TIME	FROM TOC	HEAD
_	(min)	(ft)	<u>(ft)</u>
_			
	2640	22.454	0.026
	2650	22.454	0.026
	2660	22.451	0.029
	2670	22.451	0.029
	2680	22.451	0.029
	2690	22.451	0.029
	2700	22.451	0.029
	2710	22.448	0.032
	2720	22.448	0.032
	2730	22.448	0.032
	2740	22.445	0.035
	2750	22.445	0.035
	2760	22.445	0.035
	2770	22.442	0.038
	2780	22.445	0.035
	2790	22.442	0.038
	2800	22.442	0.038
	2810	22.438	0.042
	2820	22.438	0.042
	2830	22.438	0.042
	2840	22,438	0.042
	,,		

BAIL DOWN/RECOVERY TEST 2500 2000 TIME (minutes) 37791 - MW21 1500 1000 **5**00 -0.6--0.4--0.5--0.3--0.2--0.1 EXCESS HEAD (feet)

INDEX OF BOREHOLE AND SINGLE WELL TEST DATA AND RESULTS

Borehole, well, or piezometer number: 37891 (MW27) (Work plan designation)

Data Available:

- Packer Test Set-up
 Packer Test Data Sheet (Flow vs. Time Data)
 Packer Test Data Logger Output (Head vs. Time Data)
 Packer Test Analysis and Results Calculation Sheet
- ✓ Single Well Test Record of Initial Water Level Measurement
- ✓ Single Well Test 10 Minute Calibration Plot
- ✓ Single Well Test Head vs. Time Data Form
- ✓ Single Well Test Head vs. Time Response Graph(s)
- ✓ Single Well Test Bouwer and Rice Method Analytical Results
- __ Single Well Test Hvorslev Method Analytical Results

GROUNDWATER LEVELS MEASUREMENTS/CALCULATIONS

CALIBRATION:	Manufacturer <u>Sel</u> Date Passed Name		Project No. Date 12/2 Personnel 1 2	J. Uhlmann K. Malen Serial No. 103	573	
TOWC® (MP)	Well No. 3789/ Measurement 1 Measurement 2 Measurement 3	WD ^b 43.70 43.70 43.70 43.70 Average WD	MTD° 57' ¼" 57' ¼" 57' ¼" 57' ¼* Average MTD	Co EM JFU EM + Probe End	TD°	Chk'd by
	Well No. Measurement 1 Measurement 2 Measurement 3	WDb Average WD	MTD ^c Average MTD	+ = Probe End ^d	omments TD°	Chk'd by
	Well No. Measurement 1	WD _p	MTD ^e	Co	mments	

- Footnotes:

 A = TOWC = top of well casing
 b = WD = depth to water from MP
 c = MTD = measured total depth from MP
 d = Probe End = length beyond measuring point on probe
 e = TD = total depth of well from MP

Measurement 2 Measurement 3

Average WD

- Notes:

 All measurements are relative to Mark Point (MP) = north side of TOWC

 QC review by supervisor is a check of reasonableness

 Measurements 1 and 2 must be within .01 ft of a 3rd measurement must be taken

Average MTD

Probe End^d

TD°

Chk'd by

SLUG TEST DATA FORM

* * * * * * *	10 11/1/2 l	Name Juhlin	v == 1.	
Location BUI - S	XI HUISLAGE	Name Flowsting Role	Tank (13 2-1)	
Borehole No. 378	9/ (KWZ7)	Groundwater Elevation Befo	ore 1651 <u>42.70°</u>	
	91-12/21/91	Total Casing Depth _57.0		
Measuring Point 10		Borehole Diameter 74	<u>. </u>	
Type of Test Size	on withdow	Casing Diameter 2.67		
		Screened Interval 55.0		
Datalogger Test Run		Sand Pack Interval 57.	0-41.80	
(include time and da			101 11	
identification purpose	-	Lithology Tested West	and before	
MW27_		Charge	Sulfstone	
mw27		Depth to Water	H	
mwzz	1c. TST	from Top of Casing	Excess Head	
A second Times	Element Eleme		(ft)	H/HO
Actual Time	Elapsed Time	(ft)	<u>(11)</u>	11/110
		. /		
		/		
				
				
				
		7		
	×	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
	/'\	0 /		
				
•	لره ۵۲	<i>"</i>		
	100			
	<u></u>			
		/		
		/		
		_		
 .				
	/	·		
<u></u>				
	/			
				
	/			
				
	/	*.		
			·	

(4011-600-0024)(GW4REV.1)(09-11-91)

			ELAPSED	DEPTH TO H20	EXCESS
			TIME	FROM TOC	HEAD
			(min)	(ft)	(ft)
		1			
FILE:	MW27_1E	3.WQ2	0	41.942	1.718
TEST DATE:	12/18/91		0.0083	41.948	1.712
START TIME:	10:38:55	AM	0.0166	41.825	1.835
		. *	0.025	41.942	1.718
			0.0333	41.888	1.772
REFERENCE:	43.66	FT	0.0416	41.942	1.718
			0.05	42.002	1.658
			0.0583	41.958	1.702
			0.0666	41.955	1.705
			0.075	41.948	1.712
			0.0833	41.951	1.709
			0.1	41.955	1.705
•			0.1166	41.945	1.715
			0.1333	41.958	1.702
			0.15	41.958	1.702
			0.1666	41.958	1.702
			0.1833	41.958	1.702
			0.2	41.958	1.702
			0.2166	41.961	1.699
•	•		0.2333	41.958	1.702
			0.25	41.929	1.731
			0.2666	42.015	1.645
			0.2833	41.958	1.702
			0.3	41.961	1.699
			0.3166	41.961	1.699
			0.3333	41.961	1.699
			0.4166	41.964	1.696
			0.5	41.964	1,696
			0.5833	41.964	1.696
			0.6666	41,964	1.696
			0.75	41.964	1.696
			0.73	41.964	1.696
			0.9355	41.964	1.696
			1	41.964	1.696
			1.0833	41.967	1.693
			1.1666	41.967	1.693
			1.25		1.693
				41.967	
			1.3333	41.967 41.967	1.693
			1.4166	41.967	1.693
			1.5	41.970	1.690
			1.5833	41.970	1.690
			1.6666	41.967	1.693
			1.75	41.967	1.693
			1.8333	41.967	1.693
			1.9166	41.967	1.693

ELAPSED	DEPTH TO H20 EXCESS	
TIME	FROM TOC	HEAD
(min)	(ft)	<u>(ft)</u>
_		
2	41.955	1.705
2.5	41.967	1.693
3	41.977	1.683
3.5	41.964	1.696
4	41.983	1.677
4.5	41.986	1.674
5	41.970	1.690
5.5	41.986	1.674
6	41.977	1.683
6.5	41.999	1.661
7	41.999	1.661
7.5	42.005	1.655
8	42.008	1.652
8.5	42.011	1.649
9	42.018	1.642
9.5	42.018	1.642
10	42.024	1.636
12	42.030	1.630
14	42.027	1.633
16	42.030	1.630
18	42.040	1.620
20	42.046	1.614
22	42.049	1.611
24	42.081	1.579
26	42.090	1.570
28	42,100	1.560
30	42.106	1.554
32	42,112	1.548
34	42.122	1.538
36	42.128	1.532
38	42.135	1.525
40	42.141	1.519
42	42.147	1.513
44	42.150	
46	42.150 42.154	1.510
		1.506
48	42.160	1.500
50	42.163	1.497
52	42.169	1.491
54	42.172	1.488
56	42.179	1.481
58	42.185	1.475
60	42.188	1.472
62	42.195	1.465
64	42.198	1.462
66	42.204	1.456

ELAPSED	DEPTH TO H20 FROM TOC	EXCESS HEAD
TIME		
(min)	(ft)	(ft)
20	40.007	4.450
68 70	42.207 42.214	1.453 1.446

72 74	42.217	1.443
74	42.223	1.437
76 ~	42.226	1.434
78	42.232	1.428
80	42.239	1.421
82	42.242	1.418
84	42.245	1.415
86	42.251	1,409
88	42.255	1.405
90	42.258	1.402
92	42.264	1.396
94	42.267	1.393
96	42.270	1.390
96	42.277	1.383
100	42.280	1.380
110	42.299	1.361
120	42.318	1.342
130	42.340	1.320
140	42.356	1.304
150	42.375	1.285
160	42.371	1.289
170	42.381	1.279
180	42.393	1.267
190	42.403	1.257
200	42.419	1.241
210	42.435	1.225
220	42.447	1.213
230	42.460	1.200
240	42.472	1.188
250	42.482	1.178
260	42,495	1.165
270	42.504	1.156
290	42.517	1.143
290	42.526	1.134
300	42.539	1.121
310	42.548 42.548	1.112
320	42.561	1.099
330	42.570	1.090
340	42.577	1.083
350	42.586	1.074
360	42.596	1.064
370	42.605	1.055
380	42.611	1.049

ELAPSED	DEPTH TO H20	
TIME	FROM TOC	HEAD
(min)	(ft)	(ft)
390	42.618	1.042
400	42.624	1.036
410	42.630	1.030
420	42.637	1.023
430	42.643	1.017
440	42.649	1.011
450	42.652	1.008
460	42.659	1.001
470	42.665	0.995
480	42.668	0.992
490	42.674	0.986
500	42.681	0.979
510	42.684	0.976
520	42.687	0.973
530	42.690	0.970
540	42.693	0.967
	,	
550	42.697	0.963
560	42.700	0.960
570	42.703	0.957
580	42.706	0.954
590	42.706	0.954
600	42.709	0.951
610	42.712	0.948
620	42.719	0.941
630	42.719	0.941
640	42.722	0.938
650	42.725	0.935
660	42.728	0.932
670	42.728	0.932
680	42.731	0.929
690	42.728	0.932
700	42.728	0.932
710	42.728	0.932
720	42.728	0.932
730	42.731	0.929
740	42.731	0.929
760	42.734	0.926
760	42.734	0.926
7 7 0	42.731	0.929
780	42.731	0.929
790	42.731	0.929
800	42.731	0.929
810	42.731	0.929
820	42.731	0.929
830	42.731	0.929

ELAPSED TIME	DEPTH TO H20 FROM TOC	EXCESS HEAD
(min)	(ft)	(ft)
840	42.728	0.932
850	42.728	0.932
8 60	42.728	0.932
870	42.728 42.728	0.932
880	45.160	0.932
890	42.728	0.932
900	42.728	0.932
910	42.728	0.932
920	42.728	0.932
930	42.728	0.932
940	42.725	0.935
950	42.725	0.935
960	42.728	0.932
970	42.728	0.932
980	42.728	0.932
990	42.725	0.935
1000	42.725	0.935
1010	42.722	0.938
1020	42.722	0.938
1030	42.722	0.938
1040	42.725	0.935
1050	42.725	0.935
1060	42.725	0.935
1070	42.725	0.935
1080	42.725	0.935
1090	42.728	0.932
1100	42.722	0.938
1110	42.725	0.935
1120	42.728	0.932
1130	42.731	0.929
1140	42.731	0.929
1150	42.734	0.926
1160	42.738	0.922
1170	42.738	0.922
1180	42.738	0.922
1190	42.738	0.922
1200	42.734	0.926
1210	42.738	0.922
1220	42.738	0.922
1230	42.741	0.919
1240	42.744	0.916
1250	42.747	0.913
1260	42.747	0.913
1270	42.747	0.913
1280	42.747	0.913
1200	7807 77	

ELAPSED	DEPTH TO H20	
TIME	FROM TOC	HEAD
(min)	(ft)	(ft)
1290	42.750	0.910
1300	42.753	0.907
1310	42.760	0.900
1320	42.763	0.897
1330	42.760	0.891
1340	42.772	0.888
1350	42.776	0.884
1360	42.776	0.884
1370	42.779	0.881
1380	42.782	0.878
1390	42.791	0.869
1400	42.794	0.866
1410	42.791	0.869
1420	42.798	0.862
1430	42.798	0.862
1440	42.794	0.866
1450	42.788	0.872
1460	42.791	0.869
1470	42.791	0.869
1480	42.801	0.859
1490	42.801	0.859
1500	42.801	0.859
1510	42.798	0.862
1520	42.798	0.862
1530	42.788	0.872
1540	42.794	0.866
1550	42.794	0.866
1560	42.794	0.866
1570	42.794	0.866
1580	42.791	0.869
1590	42.791	0.869
1600	42.788	0.872
1610	42.788	0.872
1620	42.785	0.875
1630	42.788	0.872
1640	42.785	0.875
1650	42.788	0.872
1660	42.791	0.869
1670	42.791	0.869
1680	42.788	0.872
1690	42.798	0.862
1700	42.798	0.862
1710	42.801	0.859
1720	42.804	0.856
1730	42.804	0.856

ELAPSED	DEPTH TO H20	EXCESS
TIME	FROM TOC	HEAD
(min)	(ft)	(ft)
1740	42.804	0.856
1750	42.804	0.856
1760	42.813	0.847
1770	42.813	0.847
1780	42.810	0.850
1790	42.813	0.847
1800	42.813	0.847
1810	42.817	0.843
1820	42.820	0.840
1830	42.826	0.834
1840	42.832	0.828
1850	42.832	0.828
1860	42.839	0.821
1870	42.842	0.818
1880	42.848	0.812
1890	42.851	0.809
1900	42.854	0.806
1910	42.854	0.806
1920	42.861	0.799
1930	42.864	0.796
1940	42.867	0.793
1950	42.870	0.790
1960	42.873	0.787
1970	42.877	0.787
1970	42.880	0.783
	42.886	0.774
1990	42.886	0.774
2000		
2010	42.892	0.768
2020	42.895	0.765
2030	42.902	0.758
2040	42.905	0.755
2050	42.908	0.752
2060	42.911	0.749
2070	42.914	0.746
2080	42.918	0.742
2090	42.921	0.739
2100	42.924	0.736
2110	42.924	0.736
2120	42.927	0.733
2130	42.933	0.727
2140	42.937	0.723
2150	42.940	0.720
2160	42.946	0.714
2170	42.946	0.714
2180	42.952	0.708

ELAPSED TIME	DEPTH TO H20 FROM TOC	EXCESS HEAD
(min)	(ft)	(ft)
	المساحب الأساد المنسب	
2190	42.952	0.708
2200	42.955	0.705
2210	42.955	0.705
2220	42.959	0.701
2230	42.959	0.701
2240	42.959	0.701
2250	42.959	0.701
2260	42.962	0.698
2270	42.962	0.698
2280	42.965	0.695
2290	42.965	0.695
2300	42.965	0.695
2310	42.965	0.695
2320	42.968	0.692
2330	42.968	0.692
2340	42.968	0.692
2350	42.971	0.689
2360	42.971	0.689
2370	42.974	0.686
2380	42.978	0.682
2390	42.981	0.679
2400	42.981	0.679
2410	42.984	0.676
2420	42.984	0.676
2430	42.984	0.676
2440	42.984	0.676
2450	42.964	0.676
2460	42.984	0.676
2470	42.984	0.676
2480	42.984	0.676
2490	42.987	0.673
2500	42.987	0.673
2510	42.987	0.673
2520	42.990	0.670
2530	42.990	0.670
2540	42.993	0.667
2550	42.993	0.667
2560	42.997	0.663
2570	43.000	0.660
2580	43.000	0.660
2590	43.003	0.657
2600	43.006	0.654
2610	43.006	0.654
2620	43.006	0.654
2630	43.009	0.651

				ELAPSED	DEPTH TO H20	EXCESS
				TIME	FROM TOC	HEAD
			_	(min)	(ft)	(ft)
			•			
FILE:	MW27_10	C.WQ2		0	44.910	-1.250
TEST DATE:	12/20/91			0.0083	44.919	-1.2 59
START TIME:	07:30:34	AM		0.0166	44.907	-1.247
				0.025	44.929	-1.2 69
				0.0333	44.916	-1.256
REFERENCE:	43.66	FT		0.0416	44.948	-1.288
				0.05	44.954	-1.294
				0.0583	44.976	-1.316
				0.0666	45.077	-1.417
				0.075	45.197	-1.537
				0.0833	45.181	-1.521
				0.1	45.229	-1.569
				0.1166	45.342	-1.682
				0.1333	45.333	-1.673
				0.15	45.345	-1.685
				0.1666	45.342	-1.682
				0.1833	45.339	-1.679
				0.2	45.336	-1.676
				0.2166	45.333	-1.673
				0.2333	45.333	-1.673
				0.25	45.330	-1.670
•				0.2666	45.330	-1.670
				0.2833	45.330	-1.670
				0.3	45.330	-1.670
				0.3166	45.326	-1.666
				0.3333	45.326	-1.666
				0.4166	45.311	-1.651
				0.5	44.840	-1.180
•				0.5833	44.828	-1.168
				0.6666	44.828	-1.168
				0.75	44.840	-1.180
				0.8333	44.837	-1.177
				0.9166	44.834	-1.174
				1	44.834	-1.174
				1.0833	44.831	-1.171
				1.1666	44.831	-1.171
				1.25	44.828	-1.168
				1,3333	44.828	-1.168
				1.4166	44.828	-1.168
				1.5	44.824	-1.164
				1.5833	44.824	-1.164
				1.6666	44.821	-1.161
				1.75	44.821	-1.161
				1.8333	44.821	-1.161
				1.9166	44.821	-1.161

ELAPSED	DEPTH TO H20	
TIME	FROM TOC	HEAD
(min)	(ft)	(ft)
_	44.040	4.450
2	44.818	-1.158
2.5	44.812	-1.152
3	44.809	-1.149
3.5	44.802	-1.142
4	44.783	-1.123
4.5	44.777	-1.117
5	44.774	-1.114
5.5	44.771	-1.111
6	44.768	-1.108
6.5	44.761	-1.101
7	44.758	-1.098
7.5	44.755	-1.095
8	44.749	-1.089
8.5	44.746	-1.086
9	44.742	-1.082
9.5	44.739	-1.079
10	44.736	-1.076
12	44.723	-1.063
14	44.711	-1.051
16	44.698	-1.038
18	44.682	-1.022
20	44.670	-1.010
22	44.660	-1.000
24	44,648	-0.988
26	44.635	-0.975
28	44.622	-0.962
30	44.610	-0.950
32	44.600	-0.940
34	44.588	-0.928
36	44.578	-0.918
38	44.566	-0.906
40	44.556	-0.896
42	44.547	-0.887
44	44.534	-0.874
46	44.525	-0.865
48	44.515	-0.855
5 0	44.506	-0.846
52	44.493	-0.833
52 54	44.483	-0.823
	44.463	-0.823 -0.814
56		
58	44.465	-0.805
60		-0.795
62		-0,786
- 64		-0.776
66	44.427	-0.767

ELAPSED	DEPTH TO H20	
TIME	FROM TOC	HEAD
(min)	(ft)	(ft)
	_	
68	44.417	-0.757
70	44.408	-0.748
72	44.398	-0.738
74	44.389	-0.729
76	44.382	-0.722
78	44.373	-0.713
80	44.364	-0.704
82	44.354	-0.694
84	44.348	-0.688
86	44.338	-0.678
88	44.329	-0.669
90	44.322	-0.662
92	44.313	-0.653
94	44.307	-0.647
96	44.297	-0.637
98	44.291	-0.631
100	44.281	-0.621
110	44.240	-0.580
120	44,206	-0.546
130		-0.511
140		-0.476
150	_	-0.445
160		-0.413
170		-0.385
180		-0.353
190		-0.322
200		-0.293
210	_	-0.262
220		-0.230
230		-0.202
24		-0.173
250		-0.145
260		-0.119
		-0.094
270 280		-0.072
290		-0.050
30		-0.028
31		-0.009
32		0.010
33		0.032
34		0.051
35	-	0.070
36	0 43.574	0.086
37	0 43.555	0.105
38	0 43.540	0.120

ELAPSED TIME	DEPTH TO H20 EXCESS FROM TOC HEAD			
(min)	(ft)	(ft)		
1771117	(1.0)			
390	43.521	0.139		
400	43.508	0.152		
410	43.492	0.168		
420	43.480	0.180		
430	43.464	0.196		
440	43.451	0.209		
450	43.439	0.221		
460	43.426	0.234		
470	43.413	0.247		
480	43.401	0.259		
490	43.388	0.272		
500	43.375	0.285		
510	43.363	0.297		
520	43.353	0.307		
530	43.337	0.323		
540	43.328	0.332		
550	43.319	0.341		
560	43.306	0.354		
570	43.300	0.360		
580	43.290	0.370		
590	43.281	0.379		
600	43.271	0.389		
610	43.265	0.395		
620	43.255	0.405		
630	43.249	0.411		
640	43.243	. 0.417		
650	43,236	0.424		
660	43.230	0.430		
670	43.224	0.436		
680		0.442		
690		0.449		
700		0.455		
710		0.458		
720		0.465		
730		0.471		
740		0.474		
750		0.480		
760		0.484		
770		0.490		
780		0.496		
790		0.499		
800		0.502		
810		0.506		
. 820		0.512		
830	43.145	0.515		

ELAPSED TIME	DEPTH TO H20 FROM TOC	EXCESS HEAD
(min)	(ft)	(ft)
840	43.142	0.518
850	43.135	0.525
860	43.132	0.528
870	43.129	0.531
880	43.126	0.534
890	43.123	0.537
900	43.120	0.540
910	43.116	0.544
920	43.110	0.550
930	43.107	0.553
940	43.104	0.556
950	43.101	0.559
960	43.094	0.566
970	43.091	0.569
980	43.085	0.575
990	43.079	0.581
1000	43.072	0.588
1010	43.069	0.591
1020	43.063	0.597
1030	43.056	0.604
1040	43.053	0.607
1050	43.050	0.610
1060	43.044	0.616
1070	43.041	0.619
1080	43.038	0.622
1090 1100	43.034 43.031	. 0.626 0.629
1110	43.028	0.632
1120	43.025	0.635
1130	43.025	0.635
1140	43.025	0.635
1150	43.022	0.638
1160	43.022	0.638
1170	43.015	0.645
1180	43.012	0.648
1190	43.006	0.654
1200	43.003	0.657
1210	43.003	0.657
1220	42.997	0.663
1230	42,993	0.667
1240	42.990	0.670
1250	42.987	0.673
1260	42.984	0.676
1270	42.981	0.679
1280	42.978	0.682

ELAPSED TIME	DEPTH TO H20 FROM TOC	EXCESS HEAD	
		• • • •	
(min)	(ft)	(ft)	
1290	42.974	0.686	
1300	42.971	0.689	
1310	42.968	0.692	
1320	42.965	0.695	
1330	42.962	0.698	
1340	42.959	0.701	
1350	42,955	0.705	
1360	42.955	0.705	
1370	42.952	0.708	
1380	42.949	0.711	
		•	
1390	42.946	0.714	
1400	42.943	0.717	
1410	42.940	0.720	
1420	42.940	0.720	
1430	42.937	0.723	
1440	42.937	0.723	
1450	42.937	0.723	
1460	42.937	0.723	
1470	42.937	0.723	
1480	42.937	0.723	
1490	42.933	0.727	

AQTESOLV RESULTS Version 1.10

14:09:09 05/08/92

TEST DESCRIPTION

Data set..... MW27INJ.DAT

Data set title... SLUG INJECTION TEST 37891 - MW27
Project..... OPERABLE UNIT 1
Client... EG&G ROCKY FLATS
Location... 881 HILLSIDE Test date..... 12/20/91

Knowns and Constants:

No. of data points..... 364 Radius of well casing..... 0.0863 Aquifer saturated thickness...... 13.3 Well screen length...... 9.6 Static height of water in well..... 11.1 Log(Re/Rw)...... 2.47

A, B, C..... 2.534, 0.413, 0.000

ANALYTICAL METHOD

Bouwer-Rice (Unconfined Aquifer Slug Test)

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate

1.0108E-006 y0 = 1.5060E + 000

CY FLATS	SIDE	MW27	DATA SET: MW27INJ.DAT 05/08/92	AQUIFER TYPE: Unconfined SOLUTION METHOD: Bouwer-Aice TEST DATE:	ESTIMATED PARAMETERS: K = 1.0108E-06 ft/min yo = 1.506 ft	TEST DATA:	rc = 0.0863 ft rw = 0.292 ft L = 9.6 ft b = 13.3 ft H = 11.1 ft	
Client: EG&G ROCKY FLATS	Location: 881 HILLSIDE	TEST 37891 - MW		-	1			1200. 1600. 2000. 2400. 2800. Time (min)
	Droiert No : OPERABLE UNIT 1	Onts	10.		nent (f	resp	sigeid	0.1 1111111111111111 0.1 0.1 0.1 0.1 0.1

AQTESOLV RESULTS Version 1.10

05/08/92 14:24:09

TEST DESCRIPTION

Data set..... MW27WD.DAT

Data set title.... SLUG WITHDRAWAL TEST 37891 - MW27

Project...... OPERABLE UNIT 1
Client..... EG&G ROCKY FLATS
Location..... 881 HILLSIDE
Test date...... 12/20/91

Knowns and Constants:

ANALYTICAL METHOD

Bouwer-Rice (Unconfined Aquifer Slug Test)

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 2.6836E-006 y0 = 1.7378E+000

Y FLATS	SIDE	MW27	DATA SET: WW27WD.DAT 05/08/92	AGUIFER TYPE: Unconfined SOLUTION METHOD:	TEST DATE: 12/20/91	ESTIMATED PARAMETERS: K = 2.6836E-06 ft/min yo = 1.738 ft	TEST DATA:	rc = 0.0863 ft rw = 0.292 ft L = 9.6 ft b = 13.3 ft H = 11.1 ft	
1 1	Project No.: OPERABLE UNIT 1 Location: 881 HILLSIDE	SLUG WITHDRAWAL TEST 37891 - MW			÷		0.1	Diaple of the control	0.001 humaliminali

T

INDEX OF BOREHOLE AND SINGLE WELL TEST DATA AND RESULTS

Borehole, well, or piezometer number: 37991 (MW29) (Work plan designation)

Da	ta Available:
	Packer Test - Set-up
_	Packer Test - Data Sheet (Flow vs. Time Data)
	Packer Test - Data Logger Output (Head vs. Time Data)
	Packer Test - Analysis and Results Calculation Sheet
<u>~</u>	Single Well Test - Record of Initial Water Level Measurement
<u>~</u>	Single Well Test – 10 Minute Calibration Plot
<u>~</u>	Single Well Test – Head vs. Time Data Form
<u> </u>	Single Well Test - Head vs. Time Response Graph(s)
<u>~</u>	Single Well Test - Bouwer and Rice Method Analytical Results
	Single Well Test – Hvorslev Method Analytical Results

GROUNDWATER LEVELS MEASUREMENTS/CALCULATIONS

				LATS PROJECT	Revision 1.2
	•		Project No.	001	
•			Date	121891 1. J. Uhlinger	
•				L. K. Malen	
	_	. 1			
EQUIPMENT:	Manulacturer <u>Sc</u>	Mode Mode	d l	Serial No/03°	75
	Date Passed		Date Due		
	Name		Date		
					
			н———		
•	Well No.	!	•		•
	37991	WD ⁶	MTD ^c	Comments	
	Measurement 1	50.11	58104	JFU	*
	Measurement 2	50.88	55'10%"	KU	
TOWC [®] (MP)	Measurement 3	50.87	58'104"	Jeu	
		50.89	58'1034"		
		Average WD	Average MTD	Probe End ^d TD ^o	Chk'd by
wo Si	Well No.	l		,	•.
		WD _p	MTD ^c	Comments	
™ 🔯 🔯	Measurement 1				
		1			
	Measurement 2				
▼ 類 一葉 マ					
▼ 徳 ― 常 - ▽	Measurement 2 Measurement 3				
マクラス					
		Average WD	Average MTD	+ = Probe End ⁶ TD ⁰	Chk'd by
	Measurement 3	Average WD	Average MTD	+ Probe End® TD®	Chk'd by
					Chk'd by
	Measurement 3	Average WD	Average MTD MTD ^c	+ Probe End® TD®	Chk'd by
	Measurement 3 Well No.				Chk'd by
	Well No. Measurement 1 Measurement 2				Chk'd by
	Measurement 3 Well No.				Chk'd by

- Footnotes:

 A = TOWC = top of well casing

 b = WD = depth to water from MP

 c = MTD = measured total depth from MP

 d = Probe End = length beyond measuring point on probe

 e = TD = total depth of well from MP

Average WD

Average MTD

Notes:

All measurements are relative to Mark Point (MP) = north side of TOWC

OC review by supervisor is a check of reasonableness

Measurements 1 and 2 must be within .01 ft of a 3rd measurement must be taken

Probe End^d

TD°

Chk'd by

BAIL POWN/RECOVERY NEST DATA FORM

Location OUI 8	181 Hill side	Name Dept &	MIZISA;	
Borehole No 3	7991 MWZ9	Groundwater Elevation I	Before Test 50.89	
Test Date13		Total Casing Denth 5	8 103/9"	
Measuring Point	TOC	Borehole Diameter	, •	
Type of Test Bai		Casing Diameter2	4	
			7.3 - 57.3	
Datalogger Test Rui	No. 7 4, 5	Sand Pack Interval	5.1'- 57.5' 58	.9
(include time and da	ite for Here: 2 = 2 V	188		_
identification purpos	es)	188 Lithology TestedCl	ayen settatione	
	, , , , , , , , , , , , , , , , , , , ,		• •	
MW29-14	O.TST	Depth to Water	н	
			Excess Head	
Actual Time	Elapsed Time	from Top of Casing		11/110
Addai Time	Etapsed Time	(ft)	(ft)	Н/НО
				
			/	
				·
		95		
			/	
		- Coco		
		100		
		78	·	
		2		
		Y		
	\mathcal{T}			
	$ \langle c \rangle V$		•	
	N	7		
	/ /			
 .				
				
/				
		•		
	·			
1/				
(4011-400-0034)(GW4REV.1)(09-1	· 1-91)	•		

			ELAPSED	DEPTH TO H20	EXCESS
			TIME	FROM TOC	HEAD
			(min)	(ft)	(ft)
		•	_		
FILE:	MW29_1E	3.WQ2	0	56.391	-5.501
TEST DATE:	12/18/91		0.0083	56.388	-5.498
START TIME:	09:12:06	AM	0.0166	56.385	-5.495
		•	0.025	56 .381	-5.491
			0.0333	56.381	-5.491
REFERENCE:	50.89	FT	0.0416	56.378	-5.488
			0.05	56.375	-5.485
			0.0583	56.372	-5.482
			0.0666	56.372	-5.482
			0.075	56.369	-5.479
			0.0833	56.366	-5.476
			0.1	56.362	-5.472
			0.1166	56.356	-5.466
			0.1333	56.350	-5.460
			0.15	56.347	-5.457
			0.1666	56.343	-5.453
			0.1833	56.337	-5.447
			0.2	56.334	-5.444
			0.2166	56.328	-5.438
			0.2333	56.324	-5.434
			0.25	56.321	-5.431
			0.2666	56.315	-5.425
			0.2833	56.309	-5.419
			0.3	56.305	-5.415
			0.3166	56.299	-5.409
			0.3333	56.296	-5.406
			0.4166	56.277	-5.387
			_	56.255	-5.365
			0.5 0.5833	56.232	-5.342
			0.6666		-5.320 5.000
			0.75		-5.298
			0.8333		-5.276 5.054
•	•		0.9166		-5.254
			1	56.125	-5.235
			1.0833		-5.216
			1.1666		-5.196 5.477
			1.25		-5.177
			1.3333		-5.158
			1.4166		-5.143
			1.5		-5.124
			1.5833	55.995	-5.105
			1.6666	55.979	-5.089
			1.75	55.963	-5.073
			1.8333	55.944	-5.054
			1.9166	55.928	-5.038

ELAPSE	ED DE	PTH TO H20 E	XCESS
TIME	F	ROM TOC	HEAD
(min)		(ft)	(ft)
	2	55.912	-5.022
	2.5	55.817	-4.927
	3	55.715	4.825
	3.5	55.636	-4.746
	4	55.566	-4 .676
	4.5	55.506	-4 .616
	5	55.462	-4.572
	5.5	55.424	-4.534
	6	55.389	-4.499
	6.5	55.357	-4.467
	7	55.325	-4.435
	7.5	55.294	-4.404
	8	55.265	-4.375
	8.5	55.230	-4.340
	9	55.198	-4.308
	9.5	55.170	-4.280
	10	55.138	-4.248
	12	55.046	-4.156
	14	54.970	-4.080
	16	54.907	-4.017
	18	54.853	-3.963
	20	54.805	-3.915
	22	54.764	-3.874
	24	54.726	-3.836
	26	54.688	-3.798
	28	54.656	-3.766
	30	54.624	-3.734
	32	54.596	-3,706
	34	54.567	-3.677
	36	54.542	-3.652
	38	54.513	-3.623
	40	54.488	-3.598
	42	54.466	-3.576
	44	54.440	-3.550
	46	54.415	-3.525
	48	54.393	-3.503
	50	54.371	-3.481
	52	54.345	-3.455
	54	54.323	-3.433
	56	54.301	-3.411
	58	54.279	-3.389
	60	54.256	-3.366
	62	54.237	-3.347
	64	54.212	-3.322
	66	54.193	-3.303

ELAPSED	DEPTH TO H20	
TIME	FROM TOC	HEAD
(min)	(ft)	(ft)
68	54.171	-3.281
70	54.155	-3.265
72	54.139	-3.249
74	54.120	-3.230
76	54.104	-3.214
78	54.088	-3.198
80	54.072	-3.182
82	54.057	-3.167
84	54.041	-3.151
86	54.031	-3.141
88	54.015	-3.125
90	54.006	-3.116
92	53.993	-3.103
94	53.977	-3.087
96	53.961	-3.071
98	53.952	-3.062
100	53.942	-3.052
110	53.879	-2.989
120	53.825	-2.935
130	53.774	-2.884
140	53.727	-2.837
150	53.682	-2.792
160	53.635	-2.745
170	53.587	-2.697
180	53.536	-2.646
190	53.486	-2.596
200	53.438	-2.548
210	53.400	-2.510
220	53.362	-2.472
230	53.327	-2.437
240	53.298	-2.408
250	53.267	-2.377
260	53.232	-2.342
270	53.207	-2.317
280		-2.288
290		-2.272
300		-2.244
310		-2.221
320		-2.199
330		-2.177
340		-2.155
		-2.136
350		
360		-2.117
370		-2.094
380	52.969	-2.079

ELAPSED	DEPTH TO H20	
TIME	FROM TOC	HEAD
(min)	(ft)	(ft)
390	52.950	-2.060
400	52.927	-2.037
410	52.911	-2.021
420	52.892	-2.002
430	52.873	-1.983
440	52.858	-1.968
450	52.839	-1.949
460	52.820	-1.930
470	52.804	-1.914
480	52.785	-1.895
490	52.766	-1.876
500	52.750	-1.860
510	52.728	-1.838
520	52.708	-1.818
530	52.693	-1.803
540	52.674	-1.784
550	52.655	-1.765
560	52.636	-1.746
570	52.613	-1.723
580	52.594	-1.704
590	52.575	-1.685
600	52.553	-1.663
610	52.534	-1.644
620	52.515	-1.625
630	52.49 9	-1.609
640	52.480	-1.590
650	52.461	-1.571
660	52.442	-1.552
670	52.426	-1.536
680	52.407	-1.517
690	52.391	-1.501
700	52.372	-1.482
710	52.356	-1.466
720	52.337	-1.447
730		-1.428
740	52,299	-1,409
750		-1.393
760		-1.374
770		-1.358
780		-1.339
790 790		-1.320
800		-1.305
810		-1.305 -1.286
· ·		
820		-1.266 -1.251
830	J 32.141	-1.201

ELAPSED TIME	DEPTH TO H20 FROM TOC	EXCESS HEAD
(min)	(ft)	(ft)
(******/		
840	52.125	-1.235
850	52.106	-1.216
860	52,090	-1.200
870	52,071	-1.181
880	52.055	-1.165
890	52,039	-1.149
900	52,020	-1.130
910	52.004	-1.114
920	51,988	-1.098
930	51,969	-1.079
940	51,953	-1.063
950	51,938	-1.048
960	51,922	-1.032
970	51,906	-1.016
980	51.890	-1.000
990	51.871	-0.981
1000	51,855	-0.965
1010	51.839	-0.949
1020	51,827	-0.937
1030	51.808	-0.918
1040	51,792	-0.902
1050	51.779	-0.889
1060	51.763	-0.873
1070	51.747	-0.857
1080	51.735	-0.845
1090	51.719	-0.829
1100	51.703	-0.813
1110	51,690	-0.800
1120	51.674	-0.784
1130	51.662	-0.772
1140	51.646	-0.756
1150	51.633	-0.743
1160	51.617	-0.727
1170	51.601	-0.711
1180	51.5 9 2	-0.702
1190	51.576	-0.686
1200	51.560	-0.670
1210	51.547	-0.657
1220	51.532	-0.642
1230	51.519	-0.629
1240	51.506	-0.616
1250	51.493	-0.603
1260	51.481	-0.591
1270	51.468	-0.578
1280	51.452	-0.562

ELAPSED	DEPTH TO H20	EXCESS
TIME	FROM TOC	HEAD
(min)_	(ft)	(ft)
1290	51.436	-0.546
1300	51.424	-0.534
1310	51.411	-0.521
1320	51.398	-0.508
1330	51.386	-0.496
1340	51.376	-0.486
1350	51.360	-0.470
1360	51.351	-0.461
1370	51.335	-0 445

BAIL DOWN/RECOVERY TEST 37991 - MW29

AQTESOLV RESULTS Version 1.10

05/08/92 08:33:19

TEST DESCRIPTION

Data set..... MW29BDR.DAT

Data set title.... BAIL DOWN RECOVERY TEST 37991 - MW29

Project...... OPERABLE UNIT 1
Client..... EG&G ROCKY FLATS
Location..... 881 HILLSIDE
Test date..... 12/18/91

Knowns and Constants:

ANALYTICAL METHOD

Bouwer-Rice (Unconfined Aquifer Slug Test)

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 1.3384E-005v0 = 4.0270E+000

ROCKY FLATS	HILLSIDE	- MW29	DATA SET: MWZ9BDH.DAT 05/08/92	AGUIFER TYPE: Unconfined SOLUTION METHOD:	Bouwer-Rice TEST DATE: 12/18/91	ESTIMATED PARAMETERS: K = 1.3384E-05 ft/min y0 = 4.027 ft	TEST DATA:	rc = 0.1755 ft rw = 0.292 ft L = 6.22 ft b = 8.5 ft H = 6.22 ft		
Client: EG&G RO	Location: 881 HI	TEST 37991		1111 -	•				0. 800. 1000. 1200. 1400.	
	Project No .: OPERABLE UNIT 1	BAIL DO	10.			tuent (<u>, , , , , , , , , , , , , , , , , , , </u>		0.1 11111111111 0. 200. 400. 800. 80 Time (m	

AOTESOLV RESULTS Version 1.10

08:33:19 05/08/92

TEST DESCRIPTION

Data set..... MW29BDR.DAT

Data set title.... BAIL DOWN RECOVERY TEST 37991 - MW29

Project..... OPERABLE UNIT 1
Client.... EG&G ROCKY FLATS Location..... 881 HILLSIDE Test date..... 12/18/91

Knowns and Constants:

No. of data points..... 233 Aquifer saturated thickness..... 8.5 Well screen length..... 6.22 Static height of water in well..... 6.22

ANALYTICAL METHOD

Bouwer-Rice (Unconfined Aquifer Slug Test)

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate

1.3384E-005 4.0270E+000 y0 =

Client: EG&G UNIT 1 Location: 881 OWN RECOVERY TEST 3799 TITLITITITITITITITITITITITITITITITITIT	ROCKY FLATS	HILLSIDE	- MW29	DATA SET: MW29BDH.DAT 05/08/92	AQUIFER TYPE: unconfined SOLUTION METHOD:	Bouwer-Aice TEST DATE: 12/18/91	ESTIMATED PARAMETERS: K = 1.3384E-05 ft/min yo = 4.027 ft	TEST DATA:	rc = 0.1755 ft rw = 0.292 ft L = 6.22 ft b = 8.5 ft H = 6.22 ft		
Displacement (ft)	EG&G	.: OPERABLE UNIT 1 Location: 881	DOWN RECOVERY TEST	10.			<u> </u>	<u>.</u>		200. 400. 600. 800. Time (min)	

.

INDEX OF BOREHOLE AND SINGLE WELL TEST DATA AND RESULTS

Borehole, well, or piezometer number: 38191 (PZ05) (Work plan designation)

Dat	a Available:
	Packer Test – Set-up
	Packer Test Data Sheet (Flow vs. Time Data)
_	Packer Test - Data Logger Output (Head vs. Time Data)
	Packer Test - Analysis and Results Calculation Sheet
<u>~</u>	Single Well Test - Record of Initial Water Level Measurement
<u>~</u>	Single Well Test – 10 Minute Calibration Plot
<u>~</u>	Single Well Test - Head vs. Time Data Form
<u>~</u>	Single Well Test - Head vs. Time Response Graph(s)
<u>~</u>	Single Well Test - Bouwer and Rice Method Analytical Results
_	Single Well Test – Hvorslev Method Analytical Results

GROUNDWATER LEVELS MEASUREMENTS/CALCULATIONS

	Manufacturer <u>Sol</u>	het we	Project No. Date	ATS PROJECT EMAD (OM 21491 K. Maley S. Kradf:	1 8 ET H	
EQUIPMENT:	Manufacturer	Mode Mode	Data Dua	Serial No. 10		
	Date Passed Name					
QC REVIEW:	Name					
	Well No.				-	
	38191	WD _P	MTD ^c		omments	
	Measurement 1	11.40	19"134"	Krun		
_	Measurement 2	11.375	19,13/4"	SB		
TOWC (MP)	Measurement 3	11,375	19/13/49	KW		
P P T		11.375	19.13/40	+		
		Average WD	Average MTD	Probe End ^d	TD°	Chk'd by
φ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ	Well No.	WD ^b	MTD ^c	C	omments	
тр 🔯 🛱	Measurement 1					
	Measurement 2					
▽ / / / / / / / / / / / / / / / / / / /	Measurement 3					
超三點	Wedsteller 3			+ =		
		Average WD	Average MTD	Probe End ^d	TD°	Chik'd by
	Well No.	WD₽	MTD ^c	C	omments	
	Measurement 1					
	Measurement 2					
	Measurement 3					
	vassi ement o			4 -		
		Average WD	Average MTD	Probe End ^d	TD°	Chk'd by

- Footnotes:

 A = TOWC = top of well casing
 b = WD = depth to water from MP
 c = MTD = measured total depth from MP
 d = Probe End = length beyond measuring point on probe
 e = TD = total depth of well from MP

Average WD

Notes:

All measurements are relative to Mark Point (MP) = north side of TOWC

OC review by supervisor is a check of reasonableness

Measurements 1 and 2 must be within .01 ft of a 3rd measurement must be taken

SLUG TEST DATA FORM

Location OU Borehole No. 3	8191 P205	Name J. UHLINGER Groundwater Elevation Be Total Casing Depth	fore Test 11.375	below TOC
Test Date 1214 Measuring Point	TOC	Borehole Diameter 11	M 13/4"	
Type of Test Sua	+ withdrawal	Casing Diameter 2.4	07° 0D	
Transductor Probe		Screened Interval 12,	2' - 17.2"	
Datalogger Test Ru	In No. O. 1. 7	Sand Pack Interval 10.		
INCHURCALION DUTKI	ate for #2K-319 ses)	Lithology Tested	vel, Sund, C	Yay
	P205-16. TS	τ		. •
\	P205-16. TS	Depth to Water	H	
	1205-16. 75	from Top of Casing	Excess Head	
Actual Time	Elapsed Time	(ft)	<u>(ft)</u>	H/HO
2	0			
				
	<u> </u>			
	——————————————————————————————————————			
	X			
	 `			
		<u>\\\</u>		
		P		
	· · ·			
		1		
				
		```		
			<del></del>	
				<del></del>
(4011-400-0034)(GW4REV1)(09-1	141)			

# SLUG INJECTION TEST DATA FORM 38191 - PZ05

			ELAPSED DEPT		H TO H20 EXCESS	
			TIME	FROM TOC	HEAD	
			(min)	(ft)	(ft)	
		•				
FILE:	PZ05_1B.	WQ2	0	9.542	1.838	
TEST DATE:	12/14/91		0.0083	9.585	1.795	
START TIME:	12:02:33	PM	0.0166	9.904	1.476	
			0.025	9.578	1.802	
			0.0333	9.763	1.617	
REFERENCE:	11.38	FT	0.0416	9.66	1.72	
			0.05	9.621	1.759	
			0.0583	9.693	1.687	
			0.0666	9.683	1.697	
			0.075	9.69	1.69	
			0.0833	9.697	1.683	
			0.1	9.71	1.67	
•	•		0.1166	9.723	1.657	
			0.1333	9.73	1.65	
			0.15	9.723	1.657	
			0.1666	9.746	1.634	
			0.1833	9.753	1.627	
			0.2	9.766	1.614	
			0.2166	9.772	1.608	
			0.2333	9.779	1.601	
			0.25	9.786	1.594	
			0.2666	9.792	1.588	
			0.2833	9.796	1.584	
			0.3	9.799	1.581	
			0.3166	9.805	1.575	
			0.3333	9.809	1.571	
			0.4166	9.828	1.552	
		•	0.5	9.835	1.545	
			0.5833	9.845	1.535	
			0.6666	9.861	1.519	
			0.75	9.858	1.522	
			0.8333	9.858	1.522	
			0.9166	9.861	1.519	
			1	9.871	1.509	
			1.0833	9.871	1.509	
			1.1666	9.865	1.515	
			1.25	9.865	1.515	
			1.3333	9.871	1.509	
			1.4166	9.868	1.512	
			1.5	9.868	1.512	
			1.5833	9.868	1.512	
			1.6666	9.868	1.512	
			1.75	9.868	1.512	
			1.8333	9.871	1.509	
			1.9355	9.871	1.509	
			1.00	J.G/ 1		

### SLUG INJECTION TEST DATA FORM 38191 - PZ05

ELAPSED	DEPTH TO H20	EXCESS
TIME	FROM TOC	HEAD
(min)	(ft)	(ft)
2	9.871	1.509
2.5	9.871	1.509
3	9.881	1.499
3.5	9.891	1.489
. 4	9.901	1.479
4.5	9.904	1.476
5	9.911	1.469
5.5	9.924	1.456
6	9.924	1.456
6.5	9.944	1.436
7	9.947	1.433
7.5	9.947	1.433
8	9.95	1.43
8.5	9.957	1.423
9	9.97	1.41
9.5	9.997	1.383
10	10.006	1.374
12	10.049	1.331
14	10.082	1.298
16	10.122	1.258
18	10.158	1.222
20	10.181	1.199
22	10.214	1.166
24	10.267	1.113
26	10.31	1.07
28	10.316	1.064
30	10.356	1.024
32	10.379	1.001
34	10.419	0.961
36	10.432	0.948
38	10.465	0.915
36 40	10.478	0.902
40 42	10.478	0.866
44	10.527	0.853
46	10.527	0.853
48	10.534	0.846
50	10.531	0.849
52	10.527	0.853
54	10.541	0.839
56	10.55	0.83
58	10.56	0.82
60	10.55	0.83
62	10.59	0.79
64	10.59	0.79
66	10.593	0.787

# SLUG INJECTION TEST DATA FORM 38191 - PZ05

ELAPSED TIME	DEPTH TO H20 FROM TOC	EXCESS HEAD
(min)	(ft) _	(ft)
(11811)		(18)
68	10.606	0.774
70	10.603	0.777
72	10.679	0.701
74	10.682	0.698
76	10.689	0.691
78	10.689	0.691
80	10.699	0.681
82	10.686	0.694
84	10.689	0.691
86	10.689	0.691
88	10.699	0.681
90	10.692	0.688
92	10.695	0.685
94	10.695	0.685
96	10.692	0.688
98	10.695	0.685
100	10.699	0.681
110	10.699	0.681
120	10.728	0.652
130	10.722	0.658
140	10.732	0.648
150	10.725	0.655
160	10.735	0.645
170	10.709	0.671
180	10.715	0.665
190	10.715	0.665
200	10.719	0.661

ELAPSED TIME	DEPTH TO H20 FROM TOC	EXCESS HEAD
(min)	(ft)	(ft)
2	12.195	-0.82
2.5	12.185	-0.81
3	12.175	-0.8
3.5	12.172	-0.797
4	12.172	-0.797
4.5	12.182	-0.807
5	12.182	-0.807
5.5	12.179	-0.804
6	12.162	-0.787
6.5	12,169	-0.794
7	12.15 <del>9</del>	-0.784
7.5	12.175	-0.8
8	12.152	-0.777
8.5	12.152	-0.777
9	12.149	-0.774
9.5	12.146	-0.771
10	12,146	-0.771
12	12.123	-0.748
14	12.119	-0.744
16	1211	-0.735
18	12,106	-0.731
20	12.1	-0.725
22	12.093	-0.718
24	12.083	-0.708
26	12.073	-0.698
28	12.063	-0.688
30	12.057	-0.682
32	12.05	-0.675
34	12.04	-0.665
36	12.03	-0.655
38	12.027	-0.652
40	12.021	-0.646
40 42	12.011	-0.636
· -	12.001	•
44 46	12.001	-0.626 -0.619
48 50	11.988	-0.613
	11.978	-0.603
<b>52</b>	11.971	-0.596
54	11.965	-0.59
56	11.958	-0.583
58	11.948	-0.573
60	11.941	-0.566
. 62	11.935	-0.56
64	11.928	-0.553
66	11.922	-0.547

ELAPSED TIME	DEPTH TO H20 FROM TOC	EXCESS HEAD
(min)	(ft)	(ft)
68	11.915	-0.54
70	11.909	-0.534
72	11.902	-0.527
74	11.895	-0.52
76	11.885	-0.51
78	11.885	-0.51
80	11.879	-0.504
82	11.872	-0.497
84	11.866	-0.491
86	11.862	-0.487
88	11.856	-0.481
90	11.849	-0.474
92	11.843	-0.468
94	11.839	-0.464
96	11.833	-0.458
96	11.826	-0.451
100	11.823	-0.448
110	11.793	-0.418
120	11.767	-0.392
130	11.74	-0.365
140	11.717	-0.342
150	11.694	-0.319
160	11.671	-0.296
170	11.648	-0.273
180	11.609	-0.234
190	11.585	<del>-</del> 0.21
200	11.572	-0.197
210	11.543	-0.168
220	11.523	-0.148
230	11.5	-0.125
240	11.493	-0.118
250	11.454	-0.079
260	11.44	-0.065
270	11.421	-0.046
280	11.398	-0.023
290	11.384	-0.009
300	11.365	0.01
310	11.355	0.02
320	11.338	0.02
330	11.325	0.05
340	11.325	0.06
350	11.302	0.073
360	11.289	0.086
370	11.279	0.096
380	11.262	0.113

			ELAPSED DEPTH TO H		120 EXCESS	
			TIME	FROM TOC	HEAD	
			(min)	(ft)	(ft)	
		1	(11911)		111/	
FILE:	PZ05_1C.WQ2		0	12.228	-0.853	
TEST DATE:	12/14/91		0.0083	12.228	-0.853	
START TIME:	15:24:503 PM		0.0166	12.228	-0.853	
• • • • • • • • • • • • • • • • • • • •			0.025	12.225	-0.85	
			0.0333	12.228	-0.853	
REFERENCE:	11.38 FT		0.0416	12.225	-0.85	
112, 2, 12102			0.05	12.228	-0.853	
			0.0583	12.228	-0.853	
			0.0666	12.228	-0.853	
			0.075	12.228	-0.853	
					-0.853	
			0.0833	12.228		
•			0.1	12.228	-0.853	
•	•		0.1166	12.228	-0.853	
			0.1333	12.225	-0.85	
			0.15	12.225	-0.85	
			0.1666	12.225	-0.85	
			0.1833	12.222	-0.847	
			0.2	12.222	-0.847	
			0.2166	12.218	-0.843	
			0.2333	12.222	-0.847	
			0.25	12.225	-0.85	
			0.2666	12.222	-0.847	
			0.2633	12.222	-0.847	
			0.3	12.222	-0.847	
			0.3166	12.222	-0.847	
			0.3333	12.222	-0.847	
			0.4166	12.218	-0.843	
			0.5	12.218	-0.843	
			0.5833	12.218	-0.843	
			0.6666	12.215	-0.84	
			0.75	12.215	-0.84	
			0.8333	12.215	-0.84	
			0.9166	12.212	-0.837	
			1	12.212	-0.837	
			1.0833	12.208	-0.833	
			1.1666	12.205	-0.83	
			1.25	12.205	-0.83	
			1.3333	12.202	-0.827	
			1.4166	12.202	-0.827	
			1.5	12.199	-0.824	
	•		1.5833	12.199	-0.824	
			1.6666	12.195	-0.82	
			1.75	12.195	-0.82	
			• .		-0.82	
			1.8333	12.195 12.195		
			1.9166	12.195	-0.82	

ELAPSED	DEPTH TO H20	<b>EXCESS</b>
TIME	FROM TOC	HEAD
(min)	(ft)	(ft)
390	11.246	0.129
400	11.236	0.139
410	11.223	0.152
420	11.216	0.159
430	11.2	0.175
440	11.183	0.192
450	11.173	0.202
460	11.16	0.215
470	11.15	0.225
480	11.14	0.235
490	11.127	0.248
500	11.121	0.254
510	11.107	0.268
520	11.094	0.281
530	11.088	0.287
540	11.075	0.3
550	11.065	0.31
560	11.055	0.32
570	11.045	0.33
580	11.038	0.337
590	11.025	0.35
600	11.018	0.357
610	11:009	0.366
620	11.002	0.373
630	10.989	0.386
640	10.979	0.396
650	10.972	0.403
660	10.962	0.413
670	10.953	0.422
680	10.953	0.422
690	10.943	0.432
700	10.936	0.439
710	10.929	0.446
720	10.92	0.455
730	10.91	0.465
740	10.903	0.472
7 <del>5</del> 0	10.897	0.472
760	10.89	0.485
7 <del>6</del> 0 770	10.88	0.485
		0.505
780 700	10.87	0.505
790	10.87	
800	10.86	0.515
810	10.86	0.515
820	10.857	0.518
830	10.844	0.531

ELAPSED TIME (min)	DEPTH TO H20 FROM TOC (ft)	EXCESS HEAD (ft)
840	10.84	0.535
850	10.834	0.541
860	10.827	0.548
870	10.827	0.548
880	10.824	0.551
890	10.817	0.558
900	10.817	0.558
910	10.808	0.567
920	10.806	0.567
930	10.811	0.564
940	10.804	0.571
950	10.798	0.577
960	10.801	0.574
970	10.791	0.584
980	10.781	0.594
990	10.778	0.597
1000	10.775	0.6
1010	10.781	0.594
1020	10.778	0.597
1030	10.775	0.6
1040	10.761	0.614
1050	10.745	0.63
1060	10.742	0.633
1070	10.738	0.637
1080	10.745	0.63
1090	10.735	C.64
1100	10.748	0.627
1110	10.745	0.63
1120	10.742	0.633
1130	10.745	0.63
1140	10.745	0.63
. 1150	10.742	0.633
1160	10.742	0.633
1170	10.738	0.637
1180	10.735	0.64
1190	10.735	0.64
1200	10.728	0.647



# 1200 1000 SLUG WITHDRAWAL TEST 38191 - PZ05 800 600 TIME (minutes) 400 200 -0.2 -0.8-0.4-0.2 0.6 -0.4 0.8 EXCESS HEAD (feet)

### AQTESOLV RESULTS Version 1.10

13:13:56 03/12/92

### TEST DESCRIPTION

Data set ...... pz05inj.dat
Data set title.... SLUG INJECTION TEST 38191 - PZ05
Project...... OPERABLE UNIT 1
Client..... EG&G ROCKY FLATS Location..... 881 HILLSIDE Test date..... 12/14/91

Knowns and Constants:

No. of data points..... 116 Radius of well casing..... 0.0863 Radius of well..... 0.458 Aquifer saturated thickness..... 5.52 Log (Re/Rw) ..... 1.765

A, B, C..... 0.000, 0.000, 1.308

ANALYTICAL METHOD

Bouwer-Rice (Unconfined Aquifer Slug Test)

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate 2.1826E-005

y0 = 1.6409E+000

SIDE	05	DATA SET: PZOSINJ.DAT 03/02/92	AGUIFER TYPE: Unconfined SOLUTION METHOD: Bouwer-Rice TEST DATE:	ESTIMATED PARAMETERS:  K = 2.1828E-05 ft/min  y0 = 1.841 ft	TEST DATA:	rc = 0.0863 ft rw = 0.458 ft L = 4.8 ft b = 5.52 ft H = 5.52 ft			
Project No.: OPERABLE UNIT 1 Location: 881 HILLSIDE	SLUG INJECTION TEST 38191 - PZ05	10. բուուարուարուարուարուա		nent (t	<u> </u>		_	0.1	

### AQTESOLV RESULTS Version 1.10

03/07/92 11:50:20

# TEST DESCRIPTION

Data set..... PZ05WD.DAT

Data set title..... SLUG WITHDRAWAL TEST 38191 - PZ05

Project...... OPERABLE UNIT 1
Client...... EG&G ROCKY FLATS
Location...... 881 HILLSIDE
Test date...... 12/14/91

Knowns and Constants:

A, B, C..... 0.000, 0.000, 1.308

### ANALYTICAL METHOD

Bouwer-Rice (Unconfined Aquifer Slug Test)

RESULTS FROM VISUAL CURVE MATCHING

### VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 3.8877E-006 v0 = 1.4726E+000

ROCKY FLATS	HILLSIDE	PZ05	DATA SET: PZOSWD.DAT 03/02/92	AQUIFER TYPE: Unconfined SOLUTION METHOD:	Bouwer-Aice TEST DATE: 12/14/91	ESTIMATED PAHAMETERS: K = 3.8879E-08 ft/min y0 = 1.479 ft	TEST DATA:	rc = 0.0863 ft rw = 0.458 ft L = 4.8 ft b = 5.52 ft H = 5.52 ft		
Client: EG&G ROC	Location: 881 HILI	38191 -		<del>-</del>	ļmm			C C C	5. 600. 800. 1000. 1200. Time (min)	
	OPERABLE UNIT 1	STAG	10.	— —	; 	<u> </u>		0.0 11 1	0.001	
	Broject No.:				(42		resi	sigsia		

# INDEX OF BOREHOLE AND SINGLE WELL TEST DATA AND RESULTS

Borehole, well, or piezometer number: 38591 (MW34) (Work plan designation)

### Data Available:

	Packer Test - Set-up
	Packer Test - Data Sheet (Flow vs. Time Data)
	Packer Test - Data Logger Output (Head vs. Time Data)
	Packer Test - Analysis and Results Calculation Sheet
<u>~</u>	Single Well Test - Record of Initial Water Level Measurement
<u>~</u>	Single Well Test – 10 Minute Calibration Plot
<u>~</u>	Single Well Test - Head vs. Time Data Form
<u> </u>	Single Well Test – Head vs. Time Response Graph(s)
<u>~</u>	Single Well Test - Bouwer and Rice Method Analytical Results
	Single Well Test - Hvorslev Method Analytical Results

### **GROUNDWATER LEVELS** MEASUREMENTS/CALCULATIONS

CALIBRATION:	Manufacturer <u>S</u>		Personner 1 2	ATS PROJECT OUL SSI Hillside 7.04 C. Bien: VIVS Serial No. 10373	Revision 1.2
TOWC (MP)	Well No. 3 8 59/ Measurement 1 Measurement 2 Measurement 3	WD ^b 8,50  8,50  8,50	MTD ^c 11. <b>T</b> ( 11. <b>T</b> ( 11. <b>T</b> (	Comments	
		Average WD	Average MTD	+ O = // %/ Probe End ^d TD°	Chk'd by
TD   WO	Well No.  Measurement 1  Measurement 2  Measurement 3	WDb	MTDe	Comments	
		Average WD	Average MTD	+ = Probe End ^d TD°	Chk'd by
	Well No.  Measurement 1  Measurement 2  Measurement 3	WD ^b	MTD ^c	Comments	
	: :			+ =	<u> </u>

- Footnotes:

  A = TOWC = top of well casing

  b = WD = depth to water from MP

  c = MTD = measured total depth from MP

  d = Probe End = length beyond measuring point on probe

  e = TD = total depth of well from MP

- Notes:

  All measurements are relative to Mark Point (MP) = north side of TOWC

  QC review by supervisor is a check of reasonableness

  Measurements 1 and 2 must be within .01 ft of a 3rd measurement must be taken



## BAILDOWN/RECOVERY SLUG/TEST DATA FORM

Location 881	Hillside OUI	Name J. Dhlinger	C. Bienolius	
Borehole No. 38	59/ MW34	Groundwater Elevation B		
Test Date _/2/20		Total Casing Depth _//		
Measuring Point		Borehole Diameter	·	
	daws Remose	Casing Diameter 2.05 Screened Interval 2.6		
	Serial No.265825			
Datalogger Test R		Sand Pack Interval 7.00	3 - 10,00	<del></del>
(include time and		Lithology Tested _Allo	vina - Marie	
identification purp		Lindingy Tested	1000 - 000 30	
	34_1a.737			
MW.	34_16.TST	Depth to Water	H	
		from Top of Casing	Excess Head	
Actual Time	Elapsed Time	(ft)	(ft)	H/HO
	<del></del>			
		<del></del>		
		/		
	<del></del>			
				:
	<del></del>			· <del></del>
	1			
		6		
	<b>√</b> \			
	<del></del>	<del>}</del>	·	•
	$\lambda$ (	•		
			<del></del>	
	<u> </u>			
	10, 200			•
<del></del>	14 1a 1			
	N) [/			
				<del></del>
				<del></del>
•	/			
			<del></del>	
	· ·			_
	/		<del></del>	
	· <del></del>	**************************************		<del></del>
/				
<del></del>				
	•			
1				
(4011-400-0034)XGW4REV.1X(	ps-11-91)	·	•	•

			ELAPSED	DEPTH TO H20 I	EXCESS
			TIME	FROM TOC	HEAD
			(min)	(ft)	(ft)
		•			
FILE:	MW34_1E	3.WQ2	0	9.603	-1.123
TEST DATE:	12/20/91		0.0083	9.593	-1.113
START TIME:	09:57:34	AM	0.0166	9.587	-1.107
			0.025	9.581	-1.101
			0.0333	9.571	-1.091
REFERENCE:	8.48	FT	0.0416	9.565	-1.085
			0.05	9.555	-1.075
			0.0583	9.549	-1.069
			0.0666	9.543	-1.063
			0.075	9.536	-1.056
			0.0833	9.530	-1.050
			0.1	9.517	-1.037
			0.1166	9.505	-1.025
			0.1333	9.492	-1.012
•			0.15	9.479	-0.999
			0.1666 0.1833	9.466	-0.986 0.074
				9.454	-0.974
			0.2	9.444 9.432	-0.964 -0.952
			0.2166 0.2333	9.432 9.422	-0. <del>9</del> 52 -0. <del>94</del> 2
			0.233	9.422 9.409	-0.942 -0.929
			0.2666	9.400	-0.929 -0.920
			0.2833	9.393	-0.920 -0.913
			0.2000	9.381	-0.901
			0.3166	9.371	-0.891
			0.3333	9.362	-0.882
			0.4166	9.324	-0.844
			0.5	9.289	-0.809
			0.5833	9.260	-0.780
			0.6666	9.232	-0.752
			0.75	9.209	-0.729
			0.8333	9.187	-0.707
			0.9166	9.168	-0.688
			1	9.149	<b>-</b> 0.669
			1.0833	9.136	-0.656
			1.1666	9.121	-0.641
			1.25	9.111	-0.631
			1.3333	9.098	-0.618
			1.4166		-0.609
			1.5		-0.596
			1.5833		-0.590
			1.6666		-0.580
			1.75		-0.571
			1.8333		-0.564
			1.9166	9.035	-0.555

ELAPSED	DEPTH TO H20	EXCESS HEAD	
TIME			
(min)	(ft)	(ft)	
•	0.000	0.540	
2 2.5	9.029 8.990	-0.549 -0.510	
2.5	8.962	-0.482	
3.5	8.936	-0.456	
4	8.917	-0.437	
4.5	8.902	-0.422	
5	8.889	-0.409	
5.5	8.876	-0.396	
6	8.867	-0.387	
6.5	8.857	-0.377	
7	8.848	-0.368	
7.5	8.838	-0.358	
8	8.829	-0.349	
8.5	8.822	-0.342	
9	8.813	-0.333	
9.5	8.806	-0.326	
10	8.800	-0.320	
12	8.778	-0.298	
14	8.756	-0.276	
16	8.737	-0.257	
18	8.718	-0.238	
20	8.702	-0.222	
22	8.689	-0.209	
24	8.676	-0.196	
26	8.660	-0.180	
28	8.651	-0.171	
30	8.641	-0.161	
32 34	8.632 8.622	-0.152 -0.142	
	8.616	-0.142	
36 38	8.610	-0.130 -0.130	
40	8.603	-0.133	
42	8.597	-0.123	
44		-0.114	
46		-0.107	
48		-0.101	
50		-0.098	
52		-0.095	
54		-0.088	
56		-0.088	
58		-0.085	
60		-0.082	
62		-0.079	
64		-0.076	
66		-0.076	

ELAPSED TIME (min)	DEPTH TO H20 FROM TOC (ft)	EXCESS HEAD (ft)
(1) (1)		
68	8.552	-0.072
70	8.552	-0.072
72	8.549	-0.069
74	8.546	-0.066
76	8.546	-0.066
78	8.543	-0.063
80	8.543	-0.063
82	8.543	-0.063
84	8.540	-0.060
86	8.540	-0.060
88	8.540	-0.060
90	8.537	-0.057
92	8.537	-0.057
94	8.537	-0.057
96	8.537	-0.057
98	8.533	-0.053
100	8.533	-0.053

# BAILDOWN/RECOVERY TEST





### AQTESOLV RESULTS Version 1.10

03/12/92 13:10:01

### TEST DESCRIPTION

Data set..... mw34bdr.dat

Data set title..... BAILDOWN/RECOVERY TEST 38591 - MW34

Project...... OPERABLE UNIT 1
Client..... EG&G ROCKY FLATS
Location..... 881 HILLSIDE
Test date...... 12/20/91

Knowns and Constants:

A, B, C..... 0.000, 0.000, 0.618

ANALYTICAL METHOD

Bouwer-Rice (Unconfined Aquifer Slug Test)

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate K = 7.4389E-004 y0 = 4.6243E-001

ROCKY FLATS	MW34	DATA SET: MM34BDR.DAT 03/03/92	AGUIFER TYPE: Unconfined SOLUTION METHOD: Bouwer-Rice TEST DATE:	ESTIMATED PARAMETERS: K = 0.000744 ft/min yo = 0.4624 ft	TEST DATA: rc = 0.261 ft rw = 0.458 ft L = 1.16 ft b = 1.16 ft	1 . 1 . 2 . 3 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4	
Client: EG&G	Project No.: OPERABLE UNIT 1 Location: 881 HILLSIDE ROJect No.: OPERABLE UNIT 1 ROJECT 38591 - MW3	Ешш		-i	Displacen  O.1  Interplacen  O		0.01 LIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

•

Data Available:

### INDEX OF BOREHOLE AND SINGLE WELL TEST DATA AND RESULTS

Borehole, well, or piezometer number: 38991 (PZ03) (Work plan designation)

# Packer Test - Set-up Packer Test - Data Sheet (Flow vs. Time Data) Packer Test - Data Logger Output (Head vs. Time Data) Packer Test - Analysis and Results Calculation Sheet ✓ Single Well Test - Record of Initial Water Level Measurement ✓ Single Well Test - 10 Minute Calibration Plot ✓ Single Well Test - Head vs. Time Data Form ✓ Single Well Test - Head vs. Time Response Graph(s) ✓ Single Well Test - Bouwer and Rice Method Analytical Results Single Well Test - Hvorslev Method Analytical Results

### **GROUNDWATER LEVELS**

	MEA	ASUREMENTS/	CALCULATION	es
			Date/ Personnel	LATS PROJECT Revision 1.3.  OUL SEI HILLER  Z/16/9/  1. T. Uhlinger  2. C. Bieren 1.3.
EQUIPMENT:	Manufacturer 🌌	inst Mode	:1 !	Serial No. None Ebaseo's
QC REVIEW:	Name		Date	
				•
	Well No.			
	38991 240	WD ^b	MTDc	Comments
	Measurement 1	36.15	41.40	CB
_	Measurement 2	30.15	41.40	JF0
TOWC (MP)	Measurement 3	30,15	41.40	los
A A III		30.15	41.40	+ O - 41.40
		Average WD	Average MTD	Probe End ^d TD ^o Chk'd by
WD TD	Well No.			
\wo <b>8</b>		WD ^b	MTD ^c	Comments
™ 🖁 🖁	Measurement 1			
	Measurement 2			
▼	Measurement 3			
<b>1</b>				
		Average WD	Average MTD	Probe End ^d TD ^o Chk'd by
と 「「「「「「「「」」」」「「「」」「「」」「「」」「「」」「「」」「」「」「」「	1	I AVETATE WID	II AVERBUE MILL	i rrope rng "II)" Chk'd by



Footnotes:

A = TOWC = top of well casing
b = WD = depth to water from MP
c = MTD = measured total depth from MP
d = Probe End = length beyond measuring point on probe
e = TD = total depth of well from MP

Well No.

Measurement 1 Measurement 2 Measurement 3

### Notes:

Average WD

WDb

MTD^c

Average MTD

All measurements are relative to Mark Point (MP) = north side of TOWC QC review by supervisor is a check of reasonableness.

Measurements 1 and 2 must be within .01 R of a 3rd measurement must be taken

Probe End

Comments

TD°

Chk'd by



### Beil-Down Recovery Test SEUG-TEST DATA FORM OFU 12/16/41

Location OUI ~	281 Hillerde	Name J. Uhline	u 5°	ماحرا و ( در
Borehole No. 38	991 7203	Groundwater Elevation B	efore Test 3002	30,15
Test Date 12/1	6/91	Total Casing Depth 4	/. 46°	
	Top Pre casing	Borehole Diamete	47"	
Type of Test	HOWN MECHETY	Casing Diameter 2,0	7 "	
Transductor Probe	Serial No. /25700	Screened Interval 24.	15-39.15	
Datalogger Test R		Sand Pack Interval 27.	15 - 40,15	
(include time and				
identification purp	oses)	Lithology Tested	done	
Ŧ	203_ la .TST	/		
P	203_16.Tst	Depth to Water	н	
		from Top of Casing	Excess Head	
Actual Time	Elapsed Time	(ft)	(ft)	Н/НО
	Ziapscu Time		(11)	
<u> </u>				
		·		
<del></del>				
	\			
	736			
	_		,	
	- C- 1			<del></del>
	8/7	<b>&gt;</b>		
	78.			
		The Constitution of the Co		
		-		
		4. 02		
		1		
<del></del> .		<del></del>		
			·	-
			<del></del>	<del></del>
			<b>\</b>	
			/	

			ELAPSED	DEPTH TO H20 I	EXCESS
			TIME	FROM TOC	HEAD
		_	(min)	(ft)	(ft)
		•			
FILE:	PZ03_1B.	WQ2	0	38.827	-8.807
TEST DATE:	12/16/91		0.0083	38.821	-8.801
START TIME:	14:38:25	PM	0.0166	38.815	<b>-</b> 8.7 <del>9</del> 5
			0.025	38.809	-8.789
			0.0333	38.805	-8.785
REFERENCE:	30.02	FT	0.0416	38.802	-8.782
			0.05	38.796	-8.776
			0.0583	38.783	-8.763
			0.0666	38.780	-8.760
			0.075	38.777	-8.757
			0.0833	38.771	-8.751
			0.1	38.764	-8.744
			0.1166	38.752	-8.732
			0.1333	38.742	-8.722
			0.15	38.733	-8.713
			0.1666	38.720	-8.700
			0.1833	38.711	<b>-8.691</b>
			0.1833	38.698	-8.678
			0.2166	38.685	-8.665
			0.2333	38.682	-8.662
			0.25	38.666	-8.646
			0.2666	38.666	-8.646
			0.2833	38.644	-8.624
			0.3	38.635	-8.615
			0.3166	38.622	-8.602
			0.3333	38.610	-8.590
			0.4166	38.569	-8.549
			0.5	38.518	-8.498
			0.5833	38.468	<b>-8.448</b>
			0.6666	38.423	-8.403
			0.75	38.382	-8.362
			0.8333	38.335	-8.315
			0.9166	38.294	-8.274
			1	38.256	-8.236
			1.0833	38.212	-8.192
			1.1666	38.168	-8.148
			1.25	38.130	-8.110
•	•		1.3333	38.095	-8.075
			1.4166	38.051	-8.031
			1.4100	38.013	-5.031 -7.993
			-		
			1.5833	37.972	-7.952 7.044
			1.6666	37.931	-7.911
			1.75	37.899	-7.879
			1.8333	37.862	-7.842
			1.9166	37.824	-7.804

ELAPSED	DEPTH TO H20	
TIME (min)	FROM TOC (ft)	HEAD (ft)
(FTM(I)	(10)	
2	37.786	-7.766
2.5	37.562	-7.542
3	37.363	-7.343
3.5	37.186	-7.166
4	37.038	-7.018
4.5	36.908	-6.888
5	36.795	-6.775
5.5	36.694	-6.674
6	36.611	-6.591
6.5	36.520	-6.500
7	36.454	-6.434
7.5		-6.380
8		-6.323
8.5		-6.269
9		-6.216
9.5		-6.146
10		-6.118 5.070
12		-5.970 5.907
14		-5.837 5.736
16		-5.736 5.654
18		-5.651 -5.559
20		-5.559 -5.483
22		-5.403 -5.417
24	•	-5.360
26		-5.291
28 30	e	-5.237
32	·	-5.187
34	=	-5.139
3(		-5.101
3	·	-5.057
4		-5.023
4	- i - i	-4.985
4		-4.956
4	•	-4.931
4		-4.893
5	· _	-4.865
5		-4.839
	4 34.840	-4.820
	6 34.809	-4.789
	8 34.790	-4.770
6	0 34.765	-4.745
	2 34.743	-4.723
6	4 34.724	-4.704
6	6 34.702	-4.682

ELAPSED	ELAPSED DEPTH TO H20 EXCES			
TIME	FROM TOC	HEAD		
(min)	(ft)	(ft)		
60	34.683	-4.663		
68 70	34.661	-4.641		
70	34.642	-4.622		
74	34.626	-4.606		
76	34.607	-4.587		
78	34.591	-4.571		
80	34.572	-4.552		
82	34.556	-4.536		
84	34.541	-4.521		
86	34.528	-4.508		
88	34.509	-4.489		
90	34.500	-4.480		
92	34.484	-4.464		
94	34.474	-4.454		
96 98	34.462 34.440	-4.442 -4.420		
100	34.440	<b>-4.420</b>		
110	34.370	-4.350		
120	34.316	-4.296		
130	34.266	-4.246		
140	34.219	-4.199		
150	34.171	-4.151		
160	34.124	-4.104		
170	34.076	-4.056		
180	34.039	-4.019		
190	34.004	-3.984		
200	33.969	-3.949		
210	33.941	-3.921		
220		-3.889		
230 240		-3.858 -3.829		
2 <del>4</del> 0 250	33.818	-3.798		
250 260	33.792	-3.772		
270		-3.744		
280		-3.719		
290		-3.690		
300		-3.668		
310	33.660	-3.640		
320	33.638	-3.618		
330	33.612	-3.592		
340	33.587	-3.567		
350		-3.542		
360		-3.517		
370		-3.495		
380	33.489	-3.469		

ELAPSED	DEPTH TO H20	
TIME	FROM TOC (ft)	HEAD (ft)
(min)	(10)	(10)
390	33.464	-3.444
400	33.442	-3.422
410	33.420	-3.400
420	33.398	-3.378
430	33.376	-3.356
440	33.350	-3.330
450	33.328 33.306	-3.308 -3.286
460 470	33.284	-3.264
470 480	33.262	-3.2 <del>04</del> -3.242
490	33.243	-3.223
500	33.221	-3.201
510	33.202	-3.182
520	33.180	-3.160
530	33.161	-3.141
540	33.139	-3.119
550	33.117	-3.097
560	33.098	-3.078
570		-3.056
580		-3.037
590		-3.015
600		-2.993
610		-2.974 -2.955
620 630		-2.935 -2.936
640		-2.917
650	·	-2.898
660		-2.882
670		-2.863
680		-2.844
690	32.845	-2.825
700		-2.80 <del>9</del>
710		-2.794
720		-2.775
730		-2.756
740		-2.740
750		-2.721
760		-2.702
770		-2.686
780 790		-2.671 -2.652
80		-2.636
81		-2.617
82	-	-2.601
83		-2.585
<b>50</b> .		

ELAPSED	DEPTH TO H20	
TIME	FROM TOC	HEAD
(min)	(ft)	<u>(ft)</u>
840	32.589	-2.569
850	32.574	-2.554
860	32.558	-2.538
870	32.542	-2.522
880	32.526	-2.506
890	32.507	-2.487
900	32.495	-2.475
910	32.479	-2.459
920	32.463 32.447	-2.443 -2.427
930 940	32.432	-2.427 -2.412
9 <del>4</del> 0 950	32.416	-2.412 -2.396
960	32.400	-2.380
970	32.384	-2.364
980	32.372	-2.352
990	32.356	-2.336
1000	32.340	-2.320
1010	32.324	-2.304
1020	32.309	-2.289
1030	32.293	-2.273
1040	32.280	-2.260
1050	32.264	-2.244
1060		-2.229
1070		-2.213
1080		-2.203
1090 1100		-2.184 -2.172
1110		-2.172 -2.159
1120		-2.140
1130		-2.127
1140		-2.112
1150		-2.077
1160	32.081	-2.061
1170	32.091	-2.071
1180	32.078	-2.058
1190		-2.045
1200		-2.033
1210		-2.020
1220		-2.008
1230		-1.995
1240		-1.982
1250		-1.966 -1.951
1260 1270		-1.931
1270 1280		-1.936 -1.925
1201	, 01.340	- 1.323

ELAPSED TIME	DEPTH TO H20 FROM TOC	EXCESS HEAD
(min)	(ft)	(ft)
1290	31.926	-1.906
1300	31.917	-1.897
1310	31.904	-1.884
1320	31.892	-1.872
1330	31.870	-1.850
1340	31.854	-1.834
1350	31.838	-1.818
1360	31.822	-1.802
1370	31.807	-1.787
1380	31.791	-1.771

# BAIL DOWN/RECOVERY TEST 38991 - PZ03 1200 600 800 TIME (minutes) 800 **400** 200 မှ ထု EXCESS HEAD (feet)

### AQTESOLV RESULTS Version 1.10

06/05/92	10:50 == 4
TEST DESCRIPTION	
Data set PZ03BDR.DAT  Data set title BAIL DOWN RECOVERY TEST 38991 - PZ03  Project OPERABLE UNIT 1  Client EG&G ROCKY FLATS  Location 881 HILLSIDE  Test date 12/16/91	
Knowns and Constants:  No. of data points	
ANALYTICAL METHOD	
Bouwer-Rice (Unconfined Aquifer Slug Test)	
RESULTS FROM VISUAL CURVE MATCHING	

VISUAL MATCH PARAMETER ESTIMATES

Estimate

2.6804E-006

y0 = 4.4926E + 000

ROCKY FLATS	HILLSIDE	PZ03	DATA SET: PZ03BDR.DAT 06/05/92	AGUIFER TYPE: Unconfined SOLUTION METHOD:	Bouwer-Aice TEST DATE: 12/16/91	ESTIMATED PARAMETERS: K = 2.6804E-06 ft/min yo = 4.493 ft	TEST DATA:	rc = 0.1755 ft rw = 0.292 ft L = 8.8 ft b = 10. ft H = 8.8 ft	
Client: EG&G ROC	Location: 881 HILL	ERY TEST 38991 -		-			]]]	1111	 800. 1000. 1200. 1400. (min)
	NO .: OPERABLE UNIT 1	1	10.		(3.	t) iner	i i	Bigpia	0.1 200. 400. 600. Time
	project N	ì				• .			

### INDEX OF BOREHOLE AND SINGLE WELL TEST DATA AND RESULTS

Borehole, well, or piezometer number: 39191 (MW28) (Work plan designation)

### Data Available:

- ✓ Packer Test Set-up
- ✓ Packer Test Data Sheet (Flow vs. Time Data)
- ✓ Packer Test Data Logger Output (Head vs. Time Data)
- ✓ Packer Test Analysis and Results Calculation Sheet
- ✓ Single Well Test Record of Initial Water Level Measurement
- ✓ Single Well Test 10 Minute Calibration Plot
- ✓ Single Well Test Head vs. Time Data Form
- ✓ Single Well Test Head vs. Time Response Graph(s)
- ✓ Single Well Test Bouwer and Rice Method Analytical Results
- __ Single Well Test Hvorslev Method Analytical Results

_			
Packer Serial = 5.	Test	Set	lin
I acker	را کرچی		$\circ_{P}$
Packer Serial # 's-		TOD.	
	NA	Bot1	om

Project No. UVI
Date 311/2=144 13/55/9/
Borehole No. 3979/ 25/2/2/2/2
JFUZ:999 mw28
39/9/

Set Up Diagram

Set Up Data

1 .	
	Type of test( s):
ROTOMETER Pressure RESERVOIR	Constant Head Constant Flow Pressure Pulse (Circle)
77777777	Geologist(s) & Company(s) 1. Dhlinger
Ground Surface	Test interval selected 12.0 to 7D @ 26.8
Bottom of 12.0	Bore Hole Diameter As Drilled
Surface Casing	Lithology of test interval Continu
	73/JF0
	Test interval borehole diameter (from caliper log) max 20 min 2.0
	Center of test interval (TI _C ) 22, 2 8,2 7,0
	Level of water in Reservoir Foll Source RFP
	Water level in borehole before test NA
water level when granner set	After Packer Set 9.8
700	Description of borehole water NA
transducer Me5	Water volume added to bor ehole 23 € \$1+ € € 57
Depth to top of packer 12.0	Max. Excess Head Allowed (0.07 *Tl _r ) /6
) J J J	A) Max. Borehole Diff. Pressure (0.43(TL+Max Excess Head)) 7.55  B) Pressure to Stretch Packer Element (see specifications) 75  ps
0 10 0	C) Seating Pressure (0.2*A) 1.9 ps:
Depth to top of packer (2.0)  Pi	Packer Inflation Pressure Calculated ('A+ B+ C) 86.5
Center of test 12.2	Used 175 px 1260 psT ps
Test interval 2013	Packer string weight
Bottom seal NA	Packer String Joint Strength 3888 163
	TEST Interval After Inflation 17.6 to 26.8
	Stabilized test interval shut- in pressure 2.84 ft of water
	Data Logger files used in tests:
Bottom transducers/A	MWZ8_1A,TST
[7]	MWZ8-1A, DAT
V/I	
	Comments: Scal @ Z60 PSI in 7" demeter Section 16+ be low; water to be a Also
	2 most seventire flow meters could hat
Total depth 26.8	be surged of the bulks.
	dia

		***		: 1 1 1			
(PSI)		COMMENTS			METERS		
		RESEVÔIR PRESSURE(PSI)			15 ATTUR FRM		
SS HEAD:	78E	WELLHEAD GAUGE POPESSI IRE (PSI)	(PS1		More Sens		
A SHEET MAXIMUM ALLOWABLE EXCESS HEAD: (0.07 PSIM depth)	STAVILIZED SHUT IN PRESSURE PACKER INFLATION PRESSURE IBANSDUCER IDISM CCATION: INPUT 1—INPUT 3—INPUT 3—INPUT 3	FILES	S LONG		GASE 1/4/R		
	TAVILIZER  TRANSPLE  TRANSPLE  TRANSPLE  IN  IN  IN  IN  IN  IN  IN  IN  IN  I	TRANSDUCER READING (ft)	INPUT 2		HE RE		
TEST D		TRAN	INPUT 1		100 COV		
PACKER T	TYPE INTERVAL—DEPTH—DIAMETER—START		FLOW(GPM)	2-01×167 2-01×167	10014 - 43 201x62.3 201x62.3 201x62.3	(00,00)	
\		ELE SHWW	METER NG	2,8	2,0 6 2,3 8 1,8 6	CLURATE	-
Special special	OT AT INISH IS	FINISH)	FLOW METER IS SERIAL NO.		76.57	ALCT. AS	
	BOREHOLE NO. PROJECT NO. DATE GEOLOGIST(S)	TEMPERATURE(S) ARIJORIAN AQUIFER RESERVOIR AIR BAROMETRIC PRESSURE(START/FINISH)	TIME S /3.04 15	1 1 1 11	1 1, 1 , 1 1		

### SE2000 Environmental Logger 12/05 16:37

### Unit# 00000000 Test 0

Setups:	INPUT 1	INPUT 2
Type	Level (F)	Level (F)
Mode	Surface	Surface
I.D.	1944DE	1905DE
Reference	0.000	0.000
SG	1.000	1.000
Linearity	0.000	0.000
Scale factor	100.000	30.000
Offset	0.000	0.000
Delay mSEC	50.000	50.000

Step 0 12/05 12:39:46

Step 0	12/05 12:	39:46
Elapsed Time	INPUT 1	INPUT 2
0.0000	2.874 2.874	24.941 24.894
2.0000 3.0000	2.874	24.894 24.884
4.0000 5.0000	2.906	24.894
6.0000	2.874	24.913 24.903
7.0000 8.0000	2.906	24.932 25.027
9.0000	2.906	24.951
10.0000	2.906	24.932
11.0000 12.0000	2.906	24.884 24.818
13.0000	2.906	24.676
14.0000	2.906	24.534
15.0000	2.906	24.486
16.0000	2.906	24.553
17.0000	2.874	24.581
18.0000	2.906	24.610
19.0000	2.906	24.638
20.0000	2.874	24.809
21.0000	2.906	24.826
22.0000	2.874	24.913
23.0000	2.906	24.875 24.866
25.0000	2.906 2.906	24.828
26.0000 27.0000	2.906	24.818 24.828
28.0000	2.906	24.903
29.0000	2.906	24.676
30.0000	2.906	24.543
31.0000	2.937	24.562
32.0000 33.0000	2.937 2.937 2.906	23.946 23.643
34.0000 35.0000	2.93/	23.766 23.842
36.0000	2.937	23.927
37.0000	2.937	24.070
38.0000	2.937	24.306
39.0000	2.937	24.060
40.0000	2.937	23.975
41.0000	2.969	24.183
42.0000	2.969	24.411
43.0000	2.969	24.610
44.0000	2.969	24.799
45.0000	3.000	24.941
46.0000	2.969	24.941
47.0000 48.0000	2.969	24.894 24.847
49.0000 50.0000	2.969 2.969 2.937	24.856 24.922
51.0000 52.0000	2.937	24.941 24.922
53.0000	2.937	24.903
54.0000	2.937	24.941
55.0000	2.937	24.998
56.0000	2.937	24.979
57.0000	2.937	24.922
58.0000	2.937	24.951
59.0000	2.969	24.989
60.0000	2.969	24.960
61.0000	2.969	24.847
62.0000	2.969	24.856
63.0000	2.937	25.017
64.0000	2.969	25.102
65.0000 66.0000	2.937	24.648
END	2.937	24.155

### Borehole Packer Test

Date of Test: Borehole:

12/05/91 39191

Project: Client:

OU1 PHASE III RI **EG&G ROCKY FLATS** 

Test Interval:

17.60 - 26.80 ft

Loction:

881 Hillside

Water Level:

Dry

Test Type: Constant Head Injection

Field Permeability:

(after U.S. Department of the Interior, 1974)

$$k = \frac{Q}{2 \operatorname{pi}(L)(H)} \ln (L/r)$$

pi = constant

L = length of test interval:

r = radius of borehole:

H = head applied in test interval: Q = injection rate:

3.14 unitless

9.2 feet

0.323 feet

24.686 feet of water 0.0014 cubic feet/min

k = 3.3E-06 ft/min x 0.508 cm-min/sec-ft

**k** = 1.7E-06 cm/sec

### **GROUNDWATER LEVELS** MEASUREMENTS/CALCULATIONS

			Project No. OUL	Revision 1.2
			Personnel 1. J. Uhlman	
EQUIPMENT:	Manufacturer Solinis #	Model _	2. J. CoEN  Serial No. 1037	
CALIBRATION: QC REVIEW:	Date Passed		Date Due	



			;
Well No.		FU 12/21/11	
39191	wD ^b	KN MID	Comments
Measurement 1	37.56	46.50 48,7	JL
Measurement 2	37,56	46.5048.7	
Measurement 3	37.56	46-50 48,7	JC
			+ =
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by
Well No.			
	WD ^b	MTD ^c	Comments
Measurement 1			
Measurement 2			
Measurement 3			
			_
	Average WD	Average MTD	Probe End ^d TD° Chk'd by
Well No.			
	WD ^b	MTD ^c	Comments
Measurement 1			
Measurement 2			
Measurement 3			
			+
	Average WD	Average MTD	Probe End ^d TD ^e Chk'd by

- Footnotes:

  A = TOWC = top of well easing

  b = WD = depth to water from MP

  c = MTD = measured total depth from MP

  d = Probe End = length beyond measuring point on probe

  e = TD = total depth of well from MP

- Notes:

  All measurements are relative to Mark Point (MP) = north side of TOWC

  OC review by supervisor is a check of reasonableness

  Measurements 1 and 2 must be within .01 R of a 3rd measurement must be taken



### BAIL DOWN RECOVERY TEST SLUG TEST DATA FORM

Location OUI		Name T. Uh (ing.) Groundwater Elevation Before Test 37, 56 from mp				
Borehole No. MA	174 39/9/					
Test Date 12/2/	191	Total Casing Depth 46.50 Blam 65, 48.70 from m.) Borehole Diameter 7' Casing Diameter 2.07' Screened Interval 45.0-35.0				
Measuring Point						
Type of Test The	DOWN RECOVERY					
Transductor Probe	Serial No. 245825					
Datalogger Test R	un No	Sand Pack Interval 32				
/:11	1	Danie I dek Interval	2 17,0			
identification purposes)  MW28-la.757		Lithology Tested Silly	and che time			
	MW28_10.TST MW28_16.TST	Zalology a dated 31/4/2	y cays			
		Depth to Water	H			
		from Top of Casing	Excess Head			
Actual Time	Elapsed Time	(ft)	(ft)	H/HO		
			()			
			•	<del></del>		
		•	,			
			/			
		70	·			
	700					
·						
				<del></del>		
	<b>*</b>					
	7					
	11/					
•	7					
· · · · · · · · · · · · · · · · · · ·						
			_			
	/					
/						
/	·		•			
(4011-600-0024)/GW4REV.13/0	9-11-91)	•	•			

			ELAPSED	DEPTH TO H20	
			TIME	FROM TOC	HEAD
			(min)	(ft)	(ft)
·			_		
FILE:	MW28_1E	3.WQ2	0	44.954	-7.604
TEST DATE:	12/21/91		0.0063	44.954	-7.604
START TIME:	09:11:10	AM	0.0166	44.951	-7.601
		. *	0.025	44.951	-7.601
		_	0.0333	44.951	-7.601
REFERENCE:	37.35	FT	0.0416	44.951	-7.601
			0.05	44.951	-7.601
			0.0583	44.951	-7.601
			0.0666	44.957	-7.607
			0.075	44.954	-7.604
			0.0833	44.954	-7.604
			0.1	44.954	-7.604
			0.1166	44.942	-7.592
			0.1333	44.961	-7.611
•			0.15	44.961	-7.611
•	•		0.1666	44.961	-7.611
			0.1833	44.961	-7.611
			0.2	44.957	-7.607
			0.2166	44.957	-7.607
			0.2333	44.954	-7.604
			0.25	44.954	-7.604
			0.2666	44.954	-7.604
			0.2833	44.951	-7.601
			0.3	44.951	-7.601
			0.3166	44.948	-7.598
			0.3333	44.948	-7.598
			0.4166	44.942	-7.592
			0.5	44.938	-7.588
			0.5833		-7.582
			0.6666	44.926	-7.576
			0.75		-7.572
			0.8333		-7.566
			0.9166	44.913	-7.563
			1	44.910	-7.560
			1.0833		-7.553
			1.1666		-7.550
			1.25		-7.544
			1.3333		-7.541
			1.4166		-7.534
			1.5		-7.531
			1.5833		-7.525
			1.6666		-7.522
•			1.70		-7.519
			1.833		-7.512
			1.916		-7.512 -7.506
			וסו ש.ו	, 44,000	-7.500

ELAPSED	DEPTH TO H20 FROM TOC	EXCESS HEAD
TIME		(ft)
(min)	(ft)	(11)
•	44.050	-7,503
2 2.5	44.853 44.821	-7.471
	44.789	-7.471 -7.439
3 3.5	44.761	-7.43 <del>9</del> -7.411
	44.729	-7.379
4.5	44.700	-7.37 <b>9</b> -7.350
4.5	44.669	-7.319
5.5	44.637	-7.287
5.5	44.608	-7.258
6.5	44.577	-7.235 -7.227
7	44.542	-7.192
7.5	44.507	-7.1 <b>52</b> -7.157
7.3	44.475	-7.125
8.5	44.440	-7.125 -7.090
9.5	44,412	-7.062
9.5	44.367	-7.002 -7.017
9.5 10	44.300	-6.950
12	44.126	-6.776
	43.951	-6.601
14	43.821	-6.471
16	43.720	-6.370
18		-6.284
20 22	43.634 43.542	-6.192
24	43.450	-6.100
26	43.450	-6.017
28	43.256	-5.906
30	43.155	-5.80 <b>5</b>
32	43.053	-5.703
32 34	42.955	-5.605
36	42.891	-5.541
38	42.853	-5.503
40	42.815	-5.465
42	42.685	-5.465 -5.335
44	42.564	-5.214
46	42.444	-5.094
48	42.326	<b>-4.976</b>
46 50	42.326 42.212	-4.862
52	42.101	-4.751 -4.642
54	41.993	-4.643 4.543
56		-4.542 4.437
58		-4.437
60		-4.338
62		-4.243
64		-4.151
66	41.409	-4.059

ELAPSED TIME	DEPTH TO H20 FROM TOC	HEAD
(min)	<u>(ft)</u>	(ft)
68	41.320	-3.970
70	41.231	-3.881
72	41.149	-3.799
74	41.066	-3.716
76	40.987	-3.637
78	40.911	-3.561
80	40.832	-3.482
82	40.759	<b>-3.409</b>
84	40.689	-3.339
86	40.619	-3.2 <del>69</del>
88	40.552	-3.202
90	40.486	-3.136
92	40.422	-3.072
94	40.359	-3.009
96	40.298	-2.948
96	40.238	-2.888
100	40.181	-2.831
110	39.914	-2.564
120	39.676	-2.326
130	39.470	-2.120
140	39.283	-1.933
150	39.121	-1.771
160	38.978	-1.628
170	38.854	-1.504
180	38.746	-1.396
190	38.648	-1.298
200	38.562	-1.212
210	38.483	-1.133
220	38.413	-1.063
230	38.349	-0.999
240	38.295	-0.945
250	38.241	-0.891
260	38.197	-0.847
270	38.153	-0.803
280	38.118	-0.768
290	38.083	-0.733
300	38.057	-0.707
310	38.029	-0.679
320	38.003	-0.653
330	37.984	-0.634
340	37.965	-0.615
350	37.949 37.934	-0.599 -0.584
360	37.934	-0.584
370	37.918	-0.568
380	37.905	-0.555

ELAPSED TIME	DEPTH TO H20 FROM TOC	EXCESS HEAD
(min)	(ft)	(ft)
390	37.892	-0.542
400	37.880	-0.530
410	37.867	-0.517
420	37.854	-0.504
430	37.845	-0.495
440	37.835	-0.485
450	37.829	-0.479
460	37.822	-0.472
470	37.816	-0.466
480	37.810	-0.460
490	37.807	-0.457
500	37.800	-0.450
510	37,797	-0.447
520	37.788	-0.438
530	37.781	-0.431
540	37.784	-0.434
550	37.778	-0.428
560	37.778	-0.428
570	37.778	-0.428
580	37.778	-0.428
590	37.778	-0.428
600	37.778	-0.428
610	37.775	-0.425
620	37.769	-0.419
630	37.765	-0.415
640	37.759	-0.409
650	37.75 <b>6</b>	-0.406
		-0.403
660	37.753 37.749	-0.399
670		-0.396
680	37.746	-0.396 -0.396
690	37.746	
700	37.743 37.743	-0.393 -0.393
710		
720		-0.393
730		-0.396
740		-0.396
750		-0.393
760		-0.393
770	• • • • • • • • • • • • • • • • • • • •	-0.390
780		-0.390
790		-0.390
800	37.737	-0.387
810	37.737	-0.387
820	37. <b>7</b> 37	-0.387
830	37.734	-0.384

ELAPSED TIME	DEPTH TO H20 FROM TOC	EXCESS HEAD
(min)	(ft)	(ft)
840	37.730	-0.380
850	37.730	-0.380
860	37.730	-0.380
870	37.727	-0.377
880	37.727	-0.377
890	37.724	-0.374
900	37.718	-0.368
910	37.718	-0.368
920	37.715	-0.365
930	37.711	-0.361
940	37.708	-0.358
950	37.705	-0.355
960	37.705	-0.355
970	37.705	-0.355
980	37.705	-0.355
990	37.708	-0.358
1000	37.705	-0.355
1010	37.696	-0.346
1020	37.696	-0.346
1030	37.692	-0.342
1040	37.696	-0.346
1050	37.696	-0.346
1060	37.692	-0.342
1070	37.689	-0.339
1080	37.686	-0.336
1090	37.683	-0.333
1100	37.676	-0.326
1110	37.670	-0.320
1120	37.670	-0.320
1130	37.670	-0.320
1140		-0.320
1150	37,673	-0.323
1160		-0.326
1170		-0.333
1180		-0.336
1190		-0.342
1200		-0.342
1210		-0.342
1220		-0.342
1230	• • • • • • • • • • • • • • • • • • • •	-0.342
1240		
1250		
1250		
1270 1280		
120	. 07.000	····

ELAPSED TIME (min)	DEPTH TO H20 FROM TOC (ft)	EXCESS HEAD (ft)
1290	37.686	-0.336
1300	37.686	-0.336
1310	37,686	-0.336
1320	37.683	-0.333
1330	37.680	-0.330
1340	37.680	-0.330
1350	37.680	-0.330
1360	37.683	-0.333
1370	37.683	-0.333
1380	37.686	-0.336
•===		-0.339
1390	37.689	
1400	37.689	-0.339
1410	37.692	-0.342
1420	37.692	-0.342
1430	37.692	-0.342
1440	37.692	-0.342
1450	37.692	-0.342
1460	37.692	-0.342
1470	37.692	-0.342
1480	37.689	-0.339
1490	37.689	-0.339
1500	37.686	-0.336
1510	37.686	-0.336
1520	37.689	-0.339
1530	37.689	-0.339
1540	37.696	-0.346
1550	37.699	-0.349
1560	37.702	-0.352
1570	37.702	-0.352
1580	37.702	-0.352
1590	37.705	-0.355
1600	37.702	-0.352
1610	37. <del>699</del>	-0.349
1620	37.699	-0.349
1630	37.696	-0.346
1640	37.696	-0.346
1650	37.696	-0.346
1660		-0.342
1670		-0.339
1680		-0.336
1690		-0.333
1700		-0.330
. 1710		-0.330
		-0.333
1720		
1730	37.686	-0.336

ELAPSED TIME	DEPTH TO H20 FROM TOC	EXCESS HEAD
(min)	(ft)	(ft)
1740	37.689	-0.339
1750	37.696	-0.346
1760	37.699	-0.349
1770	37.702	-0.352
1780	37.708	-0.358
1790	37.711	-0.361
1800	37.718	-0.368
1810	37.727	-0.377
1820	37.737	-0.387
1830	37.746	-0.396
1840	37.753	-0.403
1850	37.762	-0.412
1860	37.769	-0.419
1870	37.775	-0.425
1880	37.781	-0.431
1890	37.788	-0.438
1900	37.794	-0.444
1910	37.797	-0.447
1920	37.803	-0.453
1930	37.807	-0.457
1940	37.81	-0.460
1950	37.813	-0.463
1960	37.813	-0.463
1970	37.816	-0.466
1980	37.819	-0.4 <del>69</del>
1990	37.822	-0.472
2000	37.829	-0.479
2010	37.832	-0.482
2020	37.832	-0.482
2030	37.835	-0.485
204	37.838	-0.488
205	37.842	-0.492
206	37.842	-0.492
207	0 37.84	=
208	0 37.84	-0.495
209	0 37.846	-0.496
210	0 37.84	-0.498
211	0 37.84	8 -0.498
212	0 37.84	8 -0.498
213	0 37.84	8 -0.498
214	0 37.85	1 -0.501
215		8 -0.498
216		
217		1 -0.501
218		1 -0.501

# BAIL DOWN/RECOVERY TEST DATA FORM 39191 - MW28

ELAPSED	DEPTH TO H20	
TIME	FROM TOC	HEAD
(min)	(ft)	<u>(ft)</u>
2190	37.851	-0.501
2200	37.848	-0.498
2210	37.848	-0.498
2220	37.848	-0.498
2230	37.848	-0.498
2240	37.848	-0.498
2250	37.845	-0.495
2260	37.845	-0.495
2270	37.842	-0.492
2280	37.842	-0.492
2290	37.842	-0.492
2300	37.838	-0.488
2310	37.838	-0.488
2320	37.835	-0.485
2330	37.838	-0.488
2340	37.838	-0.488
2350	37.838	-0.488
2360	37.838	-0.488
2370	37.838	-0.488
2380	37.842	-0.492
2390	37.842	-0.492
2400	37.842	-0.492
2410	37.845	-0.495
2420	37.845	-0.495
2430	37.845	-0.495
2440	37.845	-0.495
2450	37.845	-0.495
2460	37.845	-0.495
2470	37.845	-0.495
2480	37.848	-0.498
2490	37.848	-0.498
	37.848	-0.498
2500	51.5.5	-0.498
2510	37.848	
2520		-0.501
2530		-0.498
2540		-0.498
2550		-0.498
2560	37.848	-0.498
2570	37.848	-0.498
2580	37.848	-0.498
2590	37.848	-0.498
2600	37.845	-0.495
2610	37.848	-0.498
2620	37.848	-0.498
2630	37.848	-0.498

# BAIL DOWN/RECOVERY TEST DATA FORM 39191 - MW28

ELAPSED TIME	DEPTH TO H20 FROM TOC	EXCESS HEAD
(min)	(ft)	(ft)
\(\(\text{I}\)\(\text{III}\)	(11)	
2640	37.848	-0.498
2650	37.848	-0.498
2660	37.851	-0.501
2670	37.851	-0.501
2680	37.851	-0.501
2690	37.854	-0.504
2700	37.857	-0.507
2710	37.857	-0.507
2720	<b>3</b> 7,3 <b>57</b>	-0.507
2730	37.857	-0.507
2740	37.857	-0.507
2750	37.857	-0.507
2760	37.857	-0.507
2770	37.857	-0.507
2780	37.857	-0.507



Version 1.10 10:10:44

05/08/92

AQTESOLV RESULTS

Data set..... mw28bdr.dat

Data set title.... BAIL DOWN RECOVERY TEST 39191 - MW28

Project..... OPERABLE UNIT 1
Client..... EG&G ROCKY FLATS
Location..... 881 HILLSIDE
Test date..... 12/21/91

Knowns and Constants:

A, B, C..... 2.282, 0.367, 0.000

ANALYTICAL METHOD

Bouwer-Rice (Unconfined Aquifer Slug Test)

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 4.1780E-005

y0 = 7.3710E+000

KY FLATS SIDE MW28	DATA SET: mw28bdr.dat 05/08/92 AQUIFER TYPE: Unconfined SOLUTIO WETHOD: Bouwer-Rice TEST DATE: 12/21/91	ESTIMATED PARAMETERS:  K = 4.178E-05 ft/min  yo = 7.371 ft  TEST DATA:  rc = 0.1755 ft  rw = 0.292 ft  L = 7.2 ft  b = 9.64 ft  H = 7.2 ft	
Project No.: OPERABLE UNIT 1  RAII, DOWN RECOVERY TEST 39191 - MW2	10.	Displacement (* 1.	

# INDEX OF BOREHOLE AND SINGLE WELL TEST DATA AND RESULTS

Borehole, well, or piezometer number: 39291 (PZ01) (Work plan designation)

# Data Available: __ Packer Test - Set-up __ Packer Test - Data Sheet (Flow vs. Time Data) __ Packer Test - Data Logger Output (Head vs. Time Data) __ Packer Test - Data Logger Output (Head vs. Time Data) __ Packer Test - Analysis and Results Calculation Sheet ✓ Single Well Test - Record of Initial Water Level Measurement ✓ Single Well Test - 10 Minute Calibration Plot ✓ Single Well Test - Head vs. Time Data Form ✓ Single Well Test - Head vs. Time Response Graph(s) ✓ Single Well Test - Bouwer and Rice Method Analytical Results

✓ Single Well Test – Hvorslev Method Analytical Results

### **GROUNDWATER LEVELS** MEASUREMENTS/CALCULATIONS

	•	Project No. EMAD (ON! X8! Hills, as) Date 121591  Personnel 1. K. Malen  2. J. Uhlinger
EQUIPMENT:	Manufacturer Salinet Model	Serial No. None (EDED) Solvest
CALIBRATION:	Date Passed	Date Due
QC REVIEW:	Name	Date
		•



Well No.			
39291	WD ^b	MTD ^c _	Comments
Measurement I	32.22	47.75	KM
Measurement 2	37.23	47.75	Jfu
Measurement 3	32.22	47.75	KM
	32.22	47.75	+ =
i.	Average WD	Average MTD	Probe End ^d TD° Chk'd by
Well No.			
	WD ^b	MTD ^c	Comments
Measurement 1			
Measurement 2			
Measurement 3			
Modern Miles			
			+
	Average WD	Average MTD	Probe End ^d TD° Chk'd by
Well No.			
Well 140.	WD6	MTD ^c	Comments
Measurement 1		`	
Measurement 2			
Measurement 3			
	Average WD	Average MTD	Probe End TD° Chk'd by

Footnotes:

A = TOWC = top of well casing
b = WD = depth to water from MP
c = MTD = measured total depth from MP
d = Probe End = length beyond measuring point on probe
e = TD = total depth of well from MP

All measurements are relative to Mark Point (MP) = north side of TOWC QC review by supervisor is a check of reasonableness.

Measurements 1 and 2 must be within .01 ft of a 3rd measurement must be taken.



# **SLUG TEST DATA FORM**

Borehole No	9292 P201 591 TOC + withdrawa Serial No. 1759DD a No. 0, 1	Total Casing Depth _ Borehole Diameter _ Casing Diameter _ Screened Interval _ Sand Pack Interval _	10 2.07° 35.8 - 45.8 45.8 - 33.5	<b>b</b>
identification purpos	ies) 180	Lithology Tested	clayen silt	
7201-10			· J J	
P201-16		Depth-to Water	H	
7201-1C	.TST	from Top of Casing		
Actual Time	Elapsed Time	(ft)	(ft)	H/HO_
		·		
<del></del>				
/0;				
	<del></del>			
\	`			
	$\overline{\lambda}$			
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
			<del></del>	
	×			
<del></del>		<del></del>		<del> </del>
		70		
		<del></del>	<b>→</b>	
•			$\mathcal{O}_{\mathbf{x}}$	
			- \	<del></del>
			_ _	
			\(\frac{1}{4} - \frac{1}{4} -	
<del></del>			_ ——	
<u> </u>				
		٠,		
	<del></del>		\	
			··	
(401)-400-4004YGW4RFV1V6-1	1.011			

# SLUG INJECTION TEST DATA FORM 39291 - PZ01

		ELAPSED TIME (min)	DEPTH TO H20 FROM TOC (ft)	EXCESS HEAD (ft)	Н/Н0
FILE:	PZ01_1B.WQ2	0	30.147	1.953	1.32
TEST DATE:	12/15/91	0.0083	30.305	1.795	1.21
START TIME:	09:18:19 AM	0.0166	30.39	1.71	1.16
		 0.025	29.694	2.406	1.63
H0:	1.479 FT	0.0333	30.878	1.222	0.83
REFERENCE:	32.10 FT	0.0416	30.542	1.558	1.05
		0.05	30.169	1.931	1.31
		0.0583	30.194	1.906	1.29
		0.0666	30.39	1.71	1.16
		0.075	30.447	1.653	1.12
		0.0833	30.365	1.735	1.17
		0.1	30.343	1.757	1.19
		0.1166	30.397	1.703	1.15
		0.1333	30.374	1.726	1.17
		0.15	30.4	1.7	1.15
		0.1666	30.4	1.7	1.15
		0.1833	30.409	1.691	1.14
		0.2	30.416	1.684	1.14
		0.2166	30.422	1.678	1.13
		0.2333	30.435	1.665	1.13
		0.25	30.438	1.662	1.12
		0.2666	30.447	1.653	1.12
		0.2833	30.454	1.646	1.11
		0.3	30.507	1.593	1.08
		0.3166	30.441	1.659	1.12
		0.3333	30.463	1.637	1.11
		0.4166	30.482	1.618	1.09
		0.5	30.53	1.57	1.06
		0.5833	30.549	1.551	1.05
		0.6666	30.539	1.561	1.06
		0.75	30.587	1.513	1.02
		0.8333	30.602	1.498	1.01
		0.9166	30.621	1.479	1.00
		1	30.637	1.463	0.99
		1.0833	30.653	1.447	0.98
		1.1666			0.97
			30.666 30.678	1.434 1.422	0.96
		1.25	30.678		
		1.3333	30.694	1.406	0.95
		1.4166	30.704	1.396	0.94
		1.5	30.719	1.381	0.93
		1.5833	30.732	1.368	0.92
		1.6666	30.742	1.358	0.92
		1.75	30.754	1.346	0.91
		1.8333	30.761	1.339	0.91
		1.9166	30.77	1.33	0,90

## SLUG INJECTION TEST DATA FORM 39291 - PZ01

ELAPSED	DEPTH TO H20	<b>EXCESS</b>	H/H0
TIME	FROM TOC	HEAD	
(min)	(ft)	(ft)	
2	30.776	1.324	0.90
2.5	30.843	1.257	0.85
3	30.887	1.213	0.82
3.5	30.932	1.168	0.79
4	30.966	1.134	0.77
4.5	31.017	1.083	0.73
5	31.052	1.048	0.71
5.5	31.083	1.017	0.69
6	31.102	0.998	0.67
6.5	31.134	0.966	0.65
7	31.163	0.937	0.63
7.5	31.194	0.906	0.61
8	31.216	0.884	0.60
8.5	31.239	0.861	0.58
9	31.264	0.836	0.57
9.5	31.283	0.817	0.55
10	31.315	0.785	0.53
12	31.359	0.741	0.50
14	31.438	0.662	0.45
16	31.479	0.621	0.42
18	31.539	0.561	0.38
20	31.574	0.526	0.36
22	31.618	0.482	0.33
24	31.653	0.447	0.30
26	31.685	0.415	0.28
28	31.71	0.39	0.26
30	31.758	0.342	0.23
32	31.77	0.33	0.22
34	31.789	0.311	0.21
36	31.824	0.276	0.19
38	31.837	0.263	0.18
. 40	31.853	0.247	0.17
42	31.878	0.222	0.15
44	31.891	0.209	0.14
46	31.903	0.197	0.13
48	31.929	0.171	0.12
50	31,944	0.156	0.11

# SLUG WITHDRAWAL TEST DATA FORM 39291 - PZ01

			ELAPSED	DEPTH TO H20	<b>EXCES</b>	H/H0
			TIME	FROM TOC	HEAD	
			(min)	(ft)	(ft)	
FILE:	PZ01_1C.	WQ2	. 0	33.758	-1.658	1.27
TEST DATE:	12/15/91		0.0083	33.748	-1.648	1.26
START TIME:	10:09:13	AM	0.0166	33.758	-1.658	1.27
		, -	0.025	33.755	-1.655	1.27
H0:	-1.303	FT	0.0333	33.745	-1.645	1.26
REFERENCE:	32.10	FT	0.0416	33.748	-1.648	1.26
			0.05	33.745	-1.645	1.26
			0.0583	33.723	-1.623	1.25
			0.0666	33.73	-1.63	1.25
			0.075	33.72	-1.62	1.24
			0.0833	33.726	-1.626	1.25
			0.1	33.714	-1.614	1.24
			0.1166	33.698	-1.598	1.23
			0.1333	33.695	-1.595	1.22
•	•		0.15	33.692	-1.592	1.22
			0.1666	33.679	-1.579	1.21
			0.1833	33.679	-1.579	1.21
			0.2	33.673	-1.573	1.21
			0.2166	33.657	-1.557	1.19
			0.2333	33.65	-1.55	1.19
			0.25	33.647	-1.547	1.19
			0.2666	33.647	-1.547	1.19
			0.2833	33.657	-1.557	1.19
	•		0.3	33.688	-1.588	1.22
			0.3166	33.676	-1.576	1.21
			0.3333	33.609	-1.509	1.16
			0.4166	33.568	-1.468	1.13
			0.5	33.565	-1.465	1.12
			0.5833	33.527	-1.427	1.10
			0.6666	33.783	-1.683	1.29
			0.75	33.489	-1.389	1.07
			0.8333	33,479	-1.379	1.06
			0.9166	33.464	-1.364	1.05
			1	33.454	-1.354	1.04
			1.0833	33.47	-1.37	1.05
			1.1666	33.448	-1.348	1.03
			1.25	33.419	-1.319	1.01
				33.407	-1.307	1.00
			1.3333	33.394	-1.307 -1.294	0.99
			1.4166			0.99
			1.5	33.385	-1.285 -1.278	0.98
			1.5833	33.378	-1.278	
			1.6666	33.369	-1.269 4.250	0.97
			1.75	33.359	-1.259	0.97
			1.8333	33.35	-1.25	0.96
			1.9166	33,343	-1.243	0.95

ELAPSED TIME (min)	DEPTH TO H20 FROM TOC (ft)	EXCES HEAD (ft)	Н/Н0
2	33.334	-1.234	0.95
2.5	33.267	-1.167	0.90
3	33.226	-1.126	0.86
3.5	33.188	-1.088	0.83
4	33.157	-1.057	0.81
4.5	33.125	-1.025	0.79
5	33.097	-0.997	0.77
5.5	33.068	-0.968	0.74
6	33.04	-0.94	0.72
6.5	33.014	-0.914	0.70
7	32.998	-0.898	0.69
7.5	32,954	-0.854	0.66
8	32.935	-0.835	0.64
8.5	32.913	-0.813	0.62
9	32.891	-0.791	0.61
9.5	32.872	-0.772	0.59
10	32.846	-0.746	0.57
12	32.783	-0.683	0.52
			-
14	32.72	-0.62	0.48
16	32.663	-0.563	0.43
18	32.612	-0.512	0.39
20	32.568	-0.468	0.36
22	32.53	-0.43	0.33
24	32.498	-0.398	0.31
26	32.463	-0.363	0.28
28	32.432	-0.332	0.25
30	32.41	-0.31	0.24
32	32.384	-0.284	0.22
34	32.362	-0.262	0.20
<b>3</b> 6	32.343	-0.243	0.19
38	32.327	-0.227	0.17
40	32.308	-0.208	0.16
42	32.296	-0.196	0.15
44	32.283	-0.183	0.14
46	32.27	-0.17	0.13
48	32.261	-0.161	0.12
50	32.248	-0.148	0.11
52	32.239	-0.139	0.11
54	32.229	-0.129	0.10
56	32.22	-0.12	0.09
58	32.217	-0.117	0.09
60	32.207	-0.107	0.08
62	32.201	-0.101	0.08
64	32.198	-0.098	0.08
66	32.194	-0.094	0.05
90	32.184	-U.U <del>S-1</del>	J.U1

# SLUG WITHDRAWAL TEST DATA FORM 39291 - PZ01

ELAPSED TIME	DEPTH TO H2 FROM TOC	0 EXCES	H/H0
(min)	(ft)	(ft)	
68	32.188	-0.088	0.07
70	32.185	-0.085	0.07
72	32.179	-0.079	0.06
74	32.175	-0.075	0.06
76	32.175	-0.075	0.06
78	32.172	-0.072	0.06
80	32.169	-0.069	0.05
82	32.163	-0.063	0.05





### AQTESOLV RESULTS Version 1.10

05/08/92 11:35:01

TEST DESCRIPTION

Data set..... PZ01INJ.DAT

Data set title.... SLUG INJECTION TEST 39291 - PZ01

Project...... OPERABLE UNIT 1
Client..... EG&G ROCKY FLATS
Location..... 881 HILLSIDE
Test date..... 12/15/91

Knowns and Constants:

ANALYTICAL METHOD

Bouwer-Rice (Unconfined Aquifer Slug Test)

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 6.6394E-005y0 = 1.4950E+000

ROCKY FLATS	HILLSIDE	PZ01	DATA SET: PZ01INJ.DAT 05/08/92	AQUIFER TYPE: Unconfined SOLUTION METHOD:	Bouwer-Aice TEST DATE: 12/15/91	ESTIMATED PAHAMETERS: K = 6.6394E-05 ft/min yo = 1.495 ft	TEST DATA:	rc = 0.0863 ft rw = 0.292 ft L = 9.6 ft b = 15.4 ft H = 13.5 ft	
Client: EG&G ROC	Project No.: OPERABLE UNIT 1 Location: 881 HIL	SLUG INJECTION TEST 39291 -	10.	1111	(1)		T T T T T T T T T T T T T T T T T T T		0.1

.

### AQTESOLV RESULTS Version 1.10

05/08/92 12:35:01

### TEST DESCRIPTION

Data set..... PZ01WD.DAT

Data set title.... SLUG WITHDRAWAL TEST 39291 - PZ01

Project..... OPERABLE UNIT 1
Client..... EGEG ROCKY FLATS
Location..... 881 HILLSIDE
Test date..... 12/15/91

Knowns and Constants:

### ANALYTICAL METHOD

Bouwer-Rice (Unconfined Aquifer Slug Test)

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 5.2402E-005y0 = 1.2698E+000

CY FLATS	PZ01	DATA SET: PZ01MD.DAT 05/08/92	AGUIFER TYPE: Unconfined SOLUTION METHOD: Bouwer-Rice TEST DATE: 12/15/91	ESTIMATED PARAMETERS:  K = 5.2402E-05 ft/min  yo = 1.27 ft  TEST DATA:	rc = 0.0863 ft rw = 0.292 ft L = 9.6 ft b = 15.4 ft H = 13.5 ft	
Client: EG&G	Project No.: OPERABLE UNIT 1 Location: 881 HILLSIDE Project No.: OPERABLE UNIT 1			in i	osigsid  O.1  Intiliary	0.01 20. 40. 60. 80. 100. Time (min)

# Single Well Test Analysis

Date of Test:

12/15/91

39291

**Project**: Client:

OU1 PHASE III RI

Piezometer Screen Interval:

34.2-43.8

Location:

**EG&G ROCKY FLATS** 

Filter Interval:

31.7-45.95

881 Hillside

Water Level:

30.25

Type of Test: Slug Injection

Hvorslev Analysis Method: (after Fetter, 1988)

$$K = \underbrace{ (r \text{ squared})}_{2 \text{ (L) (To)}} \ln (L/R)$$

### For L/R>8

L = length of the well screen:	9.600	feet
r = radius of the well casing:	0.0863	feet
R = radius of the well screen:	0.292	feet
To = time to recover 37%:	25.7	minutes
L/R = validity check	32.88	

5.3E-05 ft/min x 0.508 cm-min/sec-ft K =

K = 2.7E-05 cm/sec



# Single Well Test Analysis

Date of Test:

12/15/91

Project:

OU1 PHASE III RI

Piezometer

39291

Client EG&G ROCKY FLATS

Screen Interval:

34.2-43.8

881 Hillside Location:

Filter Interval:

31.7-45.95

Type of Test: Slug Withdrawal

Water Level:

30.25

Hvorslev Analysis Method: (after Fetter, 1988)

$$K = \frac{(r \text{ squared})}{2 (L) (To)} \ln (L/R)$$

### For L/R>8

L = length of the well screen:	9.600	feet
r = radius of the well casing:	0.0863	feet
R = radius of the well screen:	0.292	feet
To = time to recover 37%:	26.3	minutes
L/R = validity check	32.88	

K = 5.2E-05 ft/min x 0.508 cm-min/sec-ft

K = 2.6E-05 cm/sec



# APPENDIX B2 MULTIPLE-WELL TEST DATA

### **B2.1 INTRODUCTION**

Multiple-well pumping and tracer tests were performed in the Woman Creek alluvium as part of the Operable Unit No. 1 (OU1) Phase III Resource Conservation and Recovery Act (RCRA) Facility Investigation/Remedial Investigation (RFI/RI) at Rocky Flats Plant (RFP). The multiple-well pumping and tracer tests used an array of 15 wellpoints arranged in a three- by five-well array to further evaluate the hydraulic and contaminant transport characteristics of the Woman Creek valley fill alluvium that lies immediately downgradient of OU1. The multiple-well pumping test was directed toward estimating transmissivity and specific yield, while the tracer test was conducted to estimate effective porosity, linear dispersion, and average linear groundwater velocity in the alluvium.

Three multiple-well pumping and tracer tests were originally planned along Woman Creek between 881 Hillside and Indiana Street in areas expected to have the greatest amount of saturated alluvium (EG&G, 1991a). Due to the absence of saturated conditions at two of the planned sites (Sites 2 and 3), the testing program was modified to a single multiple-well pumping and tracer test (Site 1) (Figure B2-1). Saturated conditions sufficient for the test were ultimately found on the third exploratory boring in the Site 1 vicinity.

The multiple-well pumping and tracer tests were performed in general accordance with the following documents:

- Final Phase III RFI/RI Work Plan for OU1 (EG&G, 1991a)
- Environmental Management Department (EMD) Standard Operating Procedures (SOPs) especially Groundwater SOPs GW.08 Aquifer Pumping Tests and GW 2.07 Tracer Tests (EG&G, 1991b)
- OU1 Technical Memorandum 3, Multiple-Well Pumping Test Plan (DOE, 1991a)
- OU1 Technical Memorandum 4, Multiple-Well Tracer Test Plan (DOE, 1991b)

Due to field conditions encountered some modifications were made to the described guidelines. These modifications are described below in the appropriate sections of this appendix. This appendix and accompanying attachments describe the design and configuration of the tests, the analytical methods, and the test results.

Prior to performing the pumping tests, a simple analytical model, WELFLO, was used to simulate aquifer conditions in the Woman Creek alluvium (Walton, 1989). Inputs for the model included various aquifer and test parameters such as transmissivity, specific yield, pumping rate and duration, well radius, grid spacing, and number of pumping and observations wells. In order to simulate drawdown in the multiple-well array under different aquifer conditions, several model runs were performed using various pumping rates, test durations, and conservative estimates of aquifer transmissivity and specific yield obtained from the Phase III RFI/RI Work Plan for OU1 (EG&G, 1991a) and other pertinent site-specific information.

Prior to installing the multiple-wellpoint array, a single wellpoint, located approximately downgradient of the proposed multiple-wellpoint array, was installed. This wellpoint was used to conduct a step-drawdown pumping test as well as tracer evaluation tests. The step-drawdown test was conducted to determine the optimum pumping rate for the multiple-well pumping test. The tracer evaluation tests were conducted to select the most appropriate (i.e., sufficiently conservative and/or detectable) of the three proposed tracers for the multiple-well tracer test. The two tracers evaluated and selected were distilled water and potassium bromide-spiked formation water. Plans to test rhodamine-WT dye were canceled because satisfactory results were obtained with bromide.

Following the step-drawdown and tracer evaluation tests, the multiple-well pumping test was conducted using the center well of the array as the pumped well. Changes in the water levels in each of the 15 wellpoints were recorded during the pumping and recovery portions of the test. An estimate of the optimum pumping rate for the multiple-well pumping test was determined from the results of the single-well step-drawdown test using analytical techniques from Kruseman and de Ridder (1989). Estimates of aquifer transmissivity and specific yield using the multiple-well pumping test data were determined using analytical techniques presented by Neuman (1975), Cooper and Jacob (1946), and Theis (1935) aided by the computer program AQTESOLV

(Geraghty and Miller, Inc., 1989, updated 1991) and a distance-drawdown method presented in Driscoll (1986).

Since the natural groundwater flow velocity at the test site was suspected to be quite low in the Woman Creek area, a controlled artificial gradient was induced in the three- by five-well array to establish a steady linear flow system for the multiple-well tracer test. Once linear flow had been established, tracer solution was supplied to the five injection wells. The tracer concentrations in groundwater at five extraction wells and the middle well of the array were monitored regularly for tracer breakthrough and concentration increases. Average linear groundwater velocity and linear dispersion were estimated from the tracer test by matching time-concentration data with theoretically derived time-concentration curves. Effective porosity was then calculated using the hydraulic conductivity values determined from the multiple-well pump test data as well as the average linear groundwater velocity and linear dispersion results.

Field activities for the pump and tracer tests were conducted from November 1991 through January 1992. Field activities during the winter months required special measures to protect the test equipment and workers from cold weather, precipitation, and high winds. After the temporary wells had been installed, a 10- by 10-foot canvas tent was erected over the single-well area, and a 16- by 27-foot canvas tent was erected over the multiple-well array area. Two propane space heaters were used in the tents during colder weather. The ambient temperature in the tents during field work was generally between 5 degrees Celsius (°C) and 15°C.

The multiple-well constant-rate pumping test, both single-well tracer evaluation tests, and the multiple-well tracer test were lengthy tests and continued into or throughout several nights. Two pairs of fluorescent lights were hung in the small tent and four pairs of fluorescent lights were hung in the large tent. Electrical power was supplied for the lights and test equipment using a 5-kilowatt (kW) gasoline-powered generator with an equivalent backup generator. High wind conditions posed a particular problem during the multiple-well tracer test, and operations had to be halted several times for safety reasons. All field activities were conducted in accordance with health and safety guidelines. Two-person teams were used for most field activities, although for several tests, one or more extra persons were required.

In spite of the challenging weather and field conditions, the greatest difficulty affecting field operations was that preliminary estimates of hydrologic parameters from the Phase III RFI/RI Work Plan for OU1 (EG&G, 1991a) were substantially different from the parameters actually encountered in the field. For example, pumping rates for the multiple-well test had to be increased to more than ten times the preliminary estimates. Consequently, field operations were delayed on several occasions while test design and equipment selection were revised and more appropriate equipment procured. A chronologic summary of field activities is included as Attachment B2-1.

### **B2.2 PUMPING TESTS**

### **B2.2.1** Single-Well Step-Drawdown Tests

Field equipment and test procedures for the single-well step-drawdown test and the analytical methods used to determine the optimum pumping rate for the multiple-well test are presented below.

### **B2.2.1.1** Well Installation

A single temporary wellpoint (wellpoint 39891) was installed 29.3 feet east (approximately downgradient) of the exploratory boring (pilot hole 1/borehole 39091) in the Woman Creek valley fill alluvium at Site 1 (Figure B2-1). The wellpoint was installed on November 27, 1991, using a B-57 Mobile Drill with hollow stem augers (3.25-inch inside diameter [I.D.]) and the other equipment listed in Attachment B2-2. The wellpoint was installed in general accordance with Technical Memorandum 3 (Multiple-Well Pumping Test Plan, DOE, 1991a). However, due to boulders and cobbles encountered during several installation attempts, it was necessary to auger to a depth of 5 feet before the wellpoint could be successfully driven to the top of the claystone bedrock (approximately 6 feet in this area) without damaging the integrity of the wellpoint. One wellpoint was destroyed during initial attempts to drive it through the boulders and cobbles. The wellpoint was installed so that the well screen fully penetrated the saturated alluvial thickness (approximately 3.9 feet) and extended approximately 1 foot above the water table. The wellpoint was installed based on site-specific hydrogeologic conditions determined from the exploratory boring. In this area, the depth to the base of saturated alluvial material

(top of bedrock) was determined from the exploratory boring to be 6 feet, and the depth to water was approximately 2.6 feet.

The wellpoint was constructed of 1.7-inch-I.D. stainless steel with a screen length of 5 feet and a slot size of 0.010 inch. For completion of the wellpoint a 1.5-inch-I.D. carbon steel extension was attached to the top of the well screen with the use of a bell reducer for an approximate stickup of 1 foot above the ground surface (see Figure B2-2 for general wellpoint construction). A 1.7-inch-I.D. wellpoint was used for the test, instead of the 1.5-inch-I.D. wellpoint specified in Technical Memorandum 3 (DOE, 1991a). The slightly larger wellpoint was chosen in order to more easily accommodate the downhole pumping and tracer test equipment and to avoid time delays associated with custom manufacturing 1.5-inch wellpoints, which are not a commonly available size. Natural formation materials filled the annular space around the wellpoint upon auger retrieval. Table B2-1 provides a summary of the well installation specifications, and Attachment B2-3 is a compendium of the field data sheets for the single wellpoint installation.

Well screen length and slot size were based on site-specific hydrogeologic information obtained from visual logging and a sieve analysis performed on the saturated core material from the exploratory boring as well as visual logging of a nearby well (well 30991) and borehole (borehole 30091). The visual logging and sieve analyses were performed according to Geotechnical SOP GT.01 (Logging of Alluvial and Bedrock Material, EG&G, 1991b). The screen slot size was chosen more conservatively (i.e., smaller) than the sieve analyses alone indicated in order to avoid lengthy well development times and associated test delays. In addition, the visual logging had indicated that a substantial amount of fine material was present.

### **B2.2.1.2** Well Development and Sampling

The single wellpoint was developed on December 2 and 3, 1991, using the equipment listed in Attachment B2-2. The methods were in general accordance with the criteria described in Groundwater SOP GW.08 (Aquifer Pumping Tests, EG&G, 1991b) with additional guidance from Section 5.2.1 of Groundwater SOP GW.02 (Well Development, EG&G, 1991b). A 1.25-inch-outside-diameter (O.D.) bottom-filling bailer was used to remove well casing volumes. A well casing volume (approximately 0.50 gallon) was calculated using water level and total

depth measurements. These parameters were measured according to Groundwater SOP GW.01 (Water Level Measurements in Wells and Piezometers, EG&G, 1991b) and Section 5.2.1.1 of Groundwater SOP GW.02 (EG&G, 1991b). Specific conductance, pH, and temperature measurements were collected at regular intervals during the removal of well casing volumes. A graduated container was used to measure the volume of water removed. The pH and conductivity meters were calibrated prior to collecting measurements using manufacturer's instructions and guidance from Groundwater SOP GW.05 (Field Measurement of Ground Water Field Parameters, EG&G, 1991b).

Well development continued over a 2-day period until a total of ten well casing volumes (5 gallons) were removed from the wellpoint and pH, temperature, and conductivity readings had stabilized within the last four consecutive measurements (i.e., pH readings within 0.2 units, temperature within 1°C, and conductivity readings within 10 percent of each other). In addition, this wellpoint was further developed through the pumping action of the peristaltic pump during the first step-drawdown test attempt on December 3, 1991 (Section B2.2.1.3). This development involved the removal of approximately 5 additional gallons of groundwater. Table B2-2 summarizes well development activities.

A water quality sample (BH01010EBU1) was collected immediately after the wellpoint was developed in general accordance with Technical Memorandum 4 (Multiple-Well Tracer Test Plan, DOE 1991b) and Groundwater SOP GW.06 (Ground Water Sampling, EG&G, 1991b). This sample was obtained in order to provide general background chemistry for the multiple-well tracer test. The water quality sample was collected using a peristaltic pump. The samples were then stored in a sample cooler with the appropriate preservatives. The sample was analyzed for common ion chemistry (sodium, calcium, iron, silicon, aluminum, potassium, magnesium, manganese bicarbonate, nitrate, sulfate, fluoride, chloride, and bromide), total organic carbon, and total dissolved solids. The results of these analyses are presented in Table B2-3, and where applicable site-wide background groundwater quality values for the uppermost aquifer are presented. On the basis of this representative analysis, no special considerations had to be taken into account for the tracer test evaluation. Attachment B2-3 is a collection of the well development and sampling field data sheets.

### **B2.2.1.3** Test Procedures

Two step-drawdown tests were performed on the single wellpoint according to the criteria in Technical Memorandum 3 (Multiple-Well Pumping Test Plan, DOE, 1991a) and Groundwater SOP GW.08 (Aquifer Pumping Tests, EG&G 1991b) using the equipment listed in Attachment B2-2. A diagram of the step-drawdown test setup is presented in Figure B2-3. These tests were performed to determine the optimum pumping rate to be used during the subsequent multiple-well constant-rate discharge test. The step-drawdown tests were performed on a single wellpoint outside of the array prior to installing the multiple-well array. These tests were conducted in order to determine if a multiple-well pumping test would be feasible due to the small amount of saturated alluvial thickness encountered while drilling the exploratory boring. The downgradient single wellpoint was also used for the tracer evaluation tests and ensured that the step-drawdown and tracer evaluations tests would not influence the hydraulic conditions of the multiple-well test area.

Either a 5-pound per square inch (psi) pressure transducer, with an accuracy of  $\pm$  0.14 inch, or a 10-psi pressure transducer, with an accuracy of  $\pm$  0.28 inch, was placed at the bottom of the wellpoint at different times. The different pressure transducers were used on different dates of the step-drawdown test to compare their sensitivities. The transducers were connected to the Hermit SE 2000 data logger for data collection. The transducer cable was secured to the well casing to avoid any potential outside interference (e.g., wind) to transducer operation. The intake line for the peristaltic pump was placed approximately 6 inches above the transducer. A portable computer was used to download the time-drawdown data from the data logger. A water level meter was used to collect manual drawdown measurements for quality control purposes. Flow measurements were collected using an in-line flow meter within the pump discharge line, a stopwatch, and a graduated flask. Water from the test was collected and temporarily stored in lined 55-gallon drums for decanting and subsequent use in the single-well tracer test.

The step-drawdown tests were conducted on December 3 and December 6, 1991. Prior to the start of the tests, static water levels and total depths were measured. The first step-drawdown test (December 3) was performed after it was confirmed that the water level had stabilized sufficiently following completion of development activities. The static water level was entered

into the data logger as the reference level for the pressure transducer. Thus, the transducers measured drawdown relative to static water level. The transducer parameters including linearity, scale factor, and offset were also programmed into the data logger to convert the transducer output to an intermediate pressure, and then to a head value. The data logger was programmed to collect time-drawdown measurements logarithmically according to the schedule in Table B2-4.

Manual time-drawdown measurements were also collected at approximately 5-minute intervals during the test, except for the first 5 minutes of the test in which they were measured more frequently. Manually collected time-drawdown measurements are included in Attachment B2-3. Manual time-drawdown measurements were collected less frequently than Groundwater SOP GW.08 (EG&G, 1991b) outlines because of the combined effect of the low pumping rate and the drawdown measurement accuracy required for the test. It was determined that inserting the water level probe could influence the water level measurements collected simultaneously by the data logger at the required level of accuracy because of the very small expected drawdowns. To compensate, the data logger was programmed to collect measurements at more frequent intervals than the SOP directs.

The step-drawdown test conducted on December 3, 1991 consisted of two steps. The first step was conducted for 60 minutes at an average pumping rate of 0.067 gallons per minute (gpm). A pumping rate of 0.080 gpm was used for the second step. Five minutes into the second step, however, the wellpoint began to be pumped dry. As a result the test was discontinued after an elapsed time of 74 minutes. Attachment B2-4, Table 1 presents the time-drawdown measurements collected by the data logger. The specified pumping rates in Technical Memorandum 3 (Multiple-Well Pumping Test Plan, DOE, 1991a) were used as initial setup guidance but were later modified due to limitations in adjusting the pumping rate of the peristaltic pump.

The second step-drawdown test conducted on December 6, 1991 consisted of eight steps ranging from 0.034 to 0.11 gpm during time periods of 80 to 15 minutes, respectively. Based on the results of the first test, the early steps of the second test were selected at lower pumping rates. These eight steps were comprised of the following average pumping rates and time periods: 0.034 gpm (80 minutes), 0.046 gpm (80 minutes), 0.057 gpm (30 minutes), 0.065 gpm

(40 minutes), 0.083 gpm (50 minutes), 0.096 gpm (30 minutes), 0.10 gpm (30 minutes), and 0.11 gpm (15 minutes). Attachment B2-3 is a collection of the field data sheets and Attachment B2-4, Table 2 presents time-drawdown measurements.

### **B2.2.1.4** Analysis of Test Data

The results of the initial single-well pumping test conducted at wellpoint 39891 on December 3 are presented in Figure B2-4. The step-drawdown test was unsuccessful because the lowest discharge rate of the pump was too high to produce the desired results. The water level in the well was drawn down to the intake of the pump after approximately 65 minutes of pumping.

The results of the follow-up single-well pumping test conducted at wellpoint 39891 on December 6, 1991, are presented in Figure B2-5. The data were analyzed using the Hantush-Bierschenk method (Kruseman and de Ridder, 1989), which computes well loss coefficients. Once the well loss coefficients are determined, the drawdown in the well can be predicted for any realistic discharge at a specified time. The Hantush-Bierschenk method is applicable to confined, leaky, or unconfined aquifers and makes the following assumptions:

- The aquifer is of seemingly infinite areal extent, and is homogeneous, isotropic, and of uniform thickness over the area influenced by the test
- Prior to pumping, the piezometric surface is horizontal (or nearly so) over the area that will be influenced by the test
- The aquifer is pumped stepwise at increased discharge rates
- The pumping well penetrates the entire thickness of the aquifer and receives water bu horizontal flow
- Flow to the well is in unsteady state
- The non-linear well losses are appreciable and vary according to the expression CQ² where C is the non-linear well-loss coefficient and Q is the pumping rate.

The first element of the Hantush-Bierschenk method is to determine the increments of drawdown for each step over a fixed time interval. Examination of the drawdown versus time plot indicates

that most of the drawdown for each time step occurred within the first 30 minutes. Therefore, the fixed time interval used in this analysis was 30 minutes. The next element requires determining total drawdown in the well during the n-th step by summing the drawdown increments. Finally, after matching measured discharge rates to each step, the ratio of total drawdown to discharge can be computed for each step. The results of this data analysis are listed below:

Step (n)	$\Delta s_{w(n)}$ (feet)	S _{w(n)} (feet)	Q _n (gpm)	s _{w(n)} /Q _n (ft/gpm)
1	0.045	0.045	0.032	1.369
2	0.038	0.083	0.037	2.253
3	0.034	0.117	0.057	2.053
4	0.031	0.148	0.065	2.287
5	0.233	0.381	0.082	4.614
6	0.254	0.635	0.096	6.626
7	0.133	0.768	0.102	7.554

 $(\Delta s_{w(n)})$  determined for 30-minute fixed time interval.  $\Delta s_{w(n)}$  not determined for n=8 because the 8th time step is less than 30 minutes long.)

### where:

 $\Delta s_{w(n)}$  = Incremental drawdown in the well during the n-th step

 $s_{w(n)}$  = Total drawdown in the well during the n-th step

 $Q_n$  = Discharge

The values of  $s_{w(n)}/Q_n$  versus the corresponding values of  $Q_n$  are plotted and presented in Figure B2-6. The procedure requires that a straight line be fitted to the data, and Figure B2-6 shows a line fit to the data using linear regression analysis. The slope of the line  $\Delta(s_{w(n)}/Q_n)/\Delta Q_n$  is the value for the nonlinear well loss coefficient, C, which is 84.14. The y-intercept of the line is the value for the linear well/aquifer loss coefficient, B, which is -1.845.

The results of this analysis can be used to determine the drawdown in the well for a given discharge rate using the following equation:

$$s_w = (84.14)Q^2 - (1.845)Q$$
 (for  $t = 30$  minutes)

The following are tabulated drawdowns for various discharge rates calculated using the above equation as well as the corresponding percent drawdown in the well given the saturated thickness of 3.9 feet (determined prior to the start of the test):

Discharge (Q) (gpm)	Drawdown (s _w ) (feet)	Percent of Saturated Thickness
0.03	0.020	0.5
0.04	0.061	1.6
0.05	0.118	3.0
0.06	0.192	4.9
0.07	0.283	7.3
0.08	0.391	10.0
0.09	0.515	13.2
0.10	0.657	16.8
0.11	0.815	20.9
0.12	0.990	25.4

The maximum desirable drawdown for the pumping test should be about 10 percent of the saturated thickness and should not exceed 20 percent in accordance with SOP GW.08 (EG&G, 1991b). Drawdowns beyond 10 to 20 percent exceed the validity of some analysis methods, such as the Cooper-Jacob method. The above table indicates that the maximum drawdown for the multiple pumping test should be reached at a pumping rate of 0.08 gpm and the pumping rate should not exceed 0.11 gpm. The recovery data were also collected for the step-drawdown test of December 6, 1991, and are shown in Figure B2-5. These data were not evaluated since the analysis methods for recovery data only apply to constant-head pumping tests (Driscoll, 1986).

### **B2.2.2** Multiple-Well Tests

Field equipment and test procedures for the multiple-well pumping test and the analytical methods used to estimate transmissivity and specific yield of the Woman Creek valley fill alluvium are presented in the following sections.

### **B2.2.2.1** Well Installation

Fifteen temporary wellpoints were installed on December 7 and 8, 1991, for the multiple-well pumping and tracer tests in the Woman Creek valley fill alluvium at Site 1 using the equipment listed in Attachment B2-5. The wellpoints were designated I1 to I5 for the injection wells, O1 to O5 for the observation wells, and E1 to E5 for the extraction wells for the multiple-well tracer test (Figure B2-1). The wellpoints were installed in a three- by five-well array so that the rows of five wells were oriented perpendicular to the estimated direction of groundwater flow on approximately 2.5-foot centers within the array. The wellpoint spacing was enlarged from the proposed 2 feet due to difficult drilling conditions encountered in the field. The wellpoint array was centrally located between the exploratory boring (borehole 39091) and the single wellpoint (wellpoint 39891) (Figure B2-1). The wellpoints were installed and constructed using the same procedures employed for the single wellpoint installation (Section B2.2.1.1) in accordance with Technical Memorandum 3 (Multiple-Well Pumping Test Plan, DOE, 1991a) (Figure B2-2 illustrates general wellpoint construction). Similar to the single wellpoint installation, the presence of boulders and cobbles made it necessary to auger the drive holes for the wellpoints to minimize damage to the wellpoints. Small diameter solid stem augers (4.0-inch O.D.) were used for the multiple-wellpoint installation. Despite precautions, however, two wellpoints were destroyed during installation due to the presence of numerous boulders and cobbles.

Based on site-specific hydrogeologic information gathered from the exploratory boring, the wellpoints were installed to the top of bedrock, at a depth of approximately 6 feet, with the screens fully penetrating the saturated thickness of the alluvium and extending approximately 1 foot above the water table. Table B2-1 summarizes individual well installation specifications, and Attachment B2-6 presents the field data sheets for the multiple-well installation.

### **B2.2.2.2** Well Development

The wellpoints were developed on December 9, 14, 15, and 16, 1991 in accordance with the criteria described in Groundwater SOP GW.08 (Aquifer Pumping Tests, EG&G, 1991b) with additional guidance from Section 5.2.1 of Groundwater SOP GW.02 (Well Development, EG&G, 1991b) using the equipment listed in Attachment B2-5. Development of the wellpoints in the multiple-well array was not conducted during the single-well tracer evaluation tests (conducted December 10-13, 1991) to ensure that the single-well tracer test area hydrostatic conditions were not influenced by development activities.

The wellpoints were developed using procedures consistent with those for the single wellpoint (Section B2.2.1.2). Specific conductance, temperature, and pH measurements were collected after every one-half of a well casing volume was removed. In addition to the procedures described in Section B2.2.1.2, it was necessary to use more energetic development methods on a few of the wellpoints that were not recovering satisfactorily after attempts to develop them with a bailer. Decanted well development water was added back into four of the wellpoints that were not recovering satisfactorily (wellpoints O2, O3, E2, and E5) and bailed out again in an attempt to aid the development process. This method was only effective with wellpoint O2. A surge block (consisting of a 1.5-inch O.D., 3-foot-long stainless steel slug) was used on four of the wellpoints (wellpoints E1, E2, E4, and E5) in the easternmost row of well array and on the center wellpoint of the array (wellpoint O3). Wellpoint O3 was used as the pumped well during the multiple-well pumping test. The surge block technique was successful in developing the five previously poorly recovering wellpoints. After all of the wellpoints had been developed according to the criteria in Groundwater SOPs GW.08 and GW.02 (EG&G, 1991b), each well in the array was pumped an average of 25 minutes with a peristaltic pump to remove the silt until the purged water appeared relatively clear. The criteria from Groundwater SOPs GW.08 and GW.02 (EG&G, 1991b) required that a minimum of five well casing volumes be removed, that pH measurements had stabilized to within 0.2 units, that temperature had stabilized to within 1°C, and that conductivity had stabilized to within 10 percent for three consecutive volumes. After pumping the wellpoints, a final round of pH, conductivity and temperature readings were collected from each wellpoint. Table B2-2 provides a summary of well development activities, and Attachment B2-6 presents the well development field data sheets.

### **B2.2.2.3** Test Procedures

A multiple-well constant rate pumping test was conducted on December 18 and 19, 1991, using the three- by five-wellpoint array installed at Site 1 (Figure B2-1). The pumping test was conducted in accordance with the criteria in Technical Memorandum 3 (Multiple-Well Pumping Test Plan, DOE, 1991a), and Groundwater SOP GW.08 (Aquifer Pumping Tests, EG&G, 1991b) using the equipment listed in Attachment B2-5. Refer to Figure B2-7 for a diagram of the test setup. The test was performed to further characterize the transmissivity and specific yield of the Woman Creek valley fill alluvium.

Pumping began on December 18 at 12:46 and continued for 8 hours (480 minutes) at an average rate of 1.51 gpm (0.2019 cubic foot per minute [ft³/min]). The pump was shut off at 20:46 after the drawdown in the pumped well equaled approximately 20 percent of the saturated thickness of the alluvium. This was done in accordance with Groundwater SOP GW.08 (EG&G, 1991b). Aquifer recovery was monitored immediately after pumping ceased until 11:36 on December 19 for a total of 14 hours and 50 minutes (890 minutes). The recovery was monitored until it was determined that the maximum recovery was reached (i.e., 87 percent of drawdown in the pumped well) and that water levels were generally decreasing after that point.

Fifteen pressure transducers were used for the test including three 5 psi transducers (accuracy of  $\pm$  0.14 inch) and twelve 10 psi transducers (accuracy of  $\pm$  0.28 inch). A transducer was placed in each of the wellpoints slightly above the wellpoint bottom. The more sensitive 5 psi pressure transducers were placed in wellpoints I1, I5, and E5. These wellpoints were located at the corners of the pump test grid where the least amount of drawdown was expected. The majority of the pressure transducers was the 10 psi type due to unavailability of the 5 psi pressure transducers originally specified for the test in Technical Memorandum 3 (DOE, 1991a). After comparing results obtained during the step-drawdown tests using the two types of pressure transducers and operating information provided by the equipment vendors, it was determined that using a majority of 10 psi transducers with strategically placed 5 psi units would provide the required level of accuracy for the test.

Each of the 15 pressure transducers was connected to one of two 8 channel Hermit SE 2000 data loggers to collect time-drawdown measurements. The transducer cables were secured to the well casings to avoid any potential outside interference to transducer operation (e.g., wind). The Hermit data loggers were programmed to collect time-drawdown at the logarithmic intervals presented in Table B2-4. Prior to the start of the test, static water levels were measured in each of the wellpoints and then programmed into the data loggers as reference levels for each transducer. Thus, the transducers measured drawdown relative to the static water levels. Properties of the transducers, including linearity, scale factor, and offset specific to each transducer were also programmed into the data loggers to convert the transducer output to the desired units.

A diaphragm pump was used in the pumped well, wellpoint O3. The intake line for the diaphragm pump was placed approximately 6 inches above the transducer. Pumping rates ranged from 1.43 to 1.60 gpm during the test with an average pumping rate of 1.51 gpm (0.2019 ft³/min). Water level meters were used to collect manual time-drawdown measurements during the test. These measurements were collected continuously in the 15 wellpoints by two-person teams as often as possible during the first 20 minutes of the test. Measurements were then collected at approximately 10-minute intervals up to an elapsed time of 95 minutes. After this time, measurements were collected every 30 minutes for the rest of the 8-hour period. Attachment B2-6 presents the manual time-drawdown measurements.

Similar to the step-drawdown test, manual time-drawdown measurements were collected less frequently than the guidelines in Groundwater SOP GW.08 (EG&G, 1991b) suggest. This was due to the physical limitations of collecting numerous measurements in 15 wells simultaneously. More importantly, the water level probe could have potentially influenced the water level measurements collected simultaneously by the data logger at the required level of accuracy because of the low expected drawdowns. To compensate, the data logger was programmed to collect measurements at more frequent intervals than the SOP recommended.

Prior to the successful implementation of the pumping test on December 18, several unsuccessful attempts to start the test were made on December 17 using the pumping rate predicted from the single-well step-drawdown test conducted on December 6. The pumping rate was gradually

increased from the predicted rate of 0.08 to approximately 0.50 gpm with minimal measured drawdown. At 0.50 gpm, the capacity of the peristaltic pump was exceeded and the decision was made to try a larger capacity diaphragm pump. The test on December 18 was performed after it was confirmed that the water levels had stabilized from the pumping test activities conducted the previous day.

Due to the increased average pumping rate of 1.51 gpm used in the multiple-well test compared to the 0.08 gpm rate predicted by the single step-drawdown test, flow measurements obtained during the test were made with a graduated container and a stop-watch. This method was used instead of the flow meter originally planned for the test because the pumping rates exceeded the flow meter capacity. Water from the test (approximately 725 gallons) was stored for decanting and later use in the multiple-well tracer test. A portable computer was used to transfer time-drawdown data from the data loggers both during and after the test. While the test was in progress, the time-drawdown data was periodically downloaded and plotted to monitor the drawdown in the pumped and observation wells over time. Attachment B2-7 (Tables 1 and 2) presents the data logger files for the pumping and recovery portions of the test.

#### **B2.2.2.4** Analysis of Test Data

Aquifer hydraulic parameters including transmissivity and specific yield were estimated from the multiple-well pumping and recovery test conducted on December 18 and 19, 1991. The pumping test data were analyzed using methods presented by Neuman (1975), Cooper and Jacob (1946), and a distance-drawdown method presented in Driscoll (1986). Time-drawdown and recovery data, along with the associated graphs, are presented in Attachment B2-7. Data from the recovery phase of the test were analyzed using the Theis Recovery method (1935). The Cooper-Jacob and Theis Recovery methods are both straight-line analysis techniques, while the Neuman method is a curve-matching technique. All three are graphical methods for pumping test data analysis; the data analysis was completed using the AQTESOLV software package (Geraghty and Miller, 1989, updated 1991). The distance-drawdown method was completed to compare the results from the former three methods.

### **Methods and Assumptions**

The Cooper-Jacob method is a modification of the Theis drawdown formula, that fits a straight line to plots of well drawdown versus time on a semilogarithmic scale. As recommended by Kruseman and deRidder (1989), the value for the dimensionless argument for the well function, u, in the Theis equation was selected at 0.05 (i.e.,  $u \le 0.05$  for valid application).

The Neuman curve-matching method uses the concept of a delayed water table response, where water levels in observation wells near the pumping well may decline at a slower rate than the rate determined by the Theis equation. Time-drawdown curves are plotted on a log-log scale and typically show an S-shape. The stages of this S-shaped curve are described as follows:

- The early-time segment is relatively steep and reflects the initial pumping period (i.e., generally the first few minutes of pumping). This is due to instantaneous water release from storage, similar to a confined aquifer.
- A flat segment from the intermediate period of the test is generated as the aquifer pores become dewatered as the water table falls.
- Another steep segment occurs at the later stages of the test due to aquifer flow again becoming horizontal, thus causing the time-drawdown curve to appear similar to the Theis drawdown curve.

The Theis Recovery method can be used for late-time recovery data after the effects of elastic storage have dissipated. As a result, residual drawdown data fall on a straight line when plotted on a semilogarithmic scale, and can be evaluated using the Theis Recovery equation. The distance-drawdown method generates a plot of drawdown versus distance from the pumped well on a semilogarithmic scale. Transmissivity can then be calculated using a relationship between transmissivity, measured discharge, and the slope of the distance-drawdown graph plotted from the data. A total of five observation wells (wellpoints I1, O1, O5, E3, E4) were used to plot the distance-drawdown graph.

The assumptions for the Cooper and Jacob and Theis Recovery methods for unconfined aquifers include the following:

- The aquifer has seemingly infinite areal extent
- The aquifer is homogeneous, isotropic, and of uniform thickness over the area influenced by the test
- Prior to pumping, the water table is horizontal over the area influenced by the pumping test
- The aquifer is pumped at a constant discharge rate
- The pumping well penetrates the entire aquifer and therefore receives water from the entire saturated thickness of the aquifer
- The flow to the well is in an unsteady state
- The diameter of the pumping well is small, so storage in the well can be neglected
- Water is released instantaneously from storage with the decline of hydraulic head
- Flow to the pumping well is horizontal and uniform in a vertical section through the axis of the well
- Flow velocity is proportional to the tangent of the hydraulic gradient instead of its sine (which is actually the case)
- Values of u are small (i.e., radial distance from the pumping well to the observation well, r, is small and time since pumping began, t, is large)
- There is no delayed yield in the aquifer

The assumptions for the Neuman method for unconfined aquifers include the following:

- The aquifer has seemingly infinite areal extent
- The aquifer is homogeneous and of uniform thickness over the area influenced by the test
- Prior to pumping, the water table is horizontal over the area influenced by the test
- The aquifer is pumped at a constant discharge rate
- The flow to the well is in an unsteady state

### **Methods and Assumptions**

The Cooper-Jacob method is a modification of the Theis drawdown formula, that fits a straight line to plots of well drawdown versus time on a semilogarithmic scale. As recommended by Kruseman and deRidder (1989), the value for the dimensionless argument for the well function, u, in the Theis equation was selected at 0.05 (i.e.,  $u \le 0.05$  for valid application).

The Neuman curve-matching method uses the concept of a delayed water table response, where water levels in observation wells near the pumping well may decline at a slower rate than the rate determined by the Theis equation. Time-drawdown curves are plotted on a log-log scale and typically show an S-shape. The stages of this S-shaped curve are described as follows:

- The early-time segment is relatively steep and reflects the initial pumping period (i.e., generally the first few minutes of pumping). This is due to instantaneous water release from storage, similar to a confined aquifer.
- A flat segment from the intermediate period of the test is generated as the aquifer pores become dewatered as the water table falls.
- Another steep segment occurs at the later stages of the test due to aquifer flow again becoming horizontal, thus causing the time-drawdown curve to appear similar to the Theis drawdown curve.

The Theis Recovery method can be used for late-time recovery data after the effects of elastic storage have dissipated. As a result, residual drawdown data fall on a straight line when plotted on a semilogarithmic scale, and can be evaluated using the Theis Recovery equation. The distance-drawdown method generates a plot of drawdown versus distance from the pumped well on a semilogarithmic scale. Transmissivity can then be calculated using a relationship between transmissivity, measured discharge, and the slope of the distance-drawdown graph plotted from the data. A total of five observation wells (wellpoints I1, O1, O5, E3, E4) were used to plot the distance-drawdown graph.

The assumptions for the Cooper and Jacob and Theis Recovery methods for unconfined aquifers include the following:

- The aquifer has seemingly infinite areal extent
- The aquifer is homogeneous, isotropic, and of uniform thickness over the area influenced by the test
- Prior to pumping, the water table is horizontal over the area influenced by the pumping test
- The aquifer is pumped at a constant discharge rate
- The pumping well penetrates the entire aquifer and therefore receives water from the entire saturated thickness of the aquifer
- The flow to the well is in an unsteady state
- The diameter of the pumping well is small, so storage in the well can be neglected
- Water is released instantaneously from storage with the decline of hydraulic head
- Flow to the pumping well is horizontal and uniform in a vertical section through the axis of the well
- Flow velocity is proportional to the tangent of the hydraulic gradient instead of its sine (which is actually the case)
- Values of u are small (i.e., radial distance from the pumping well to the observation well, r, is small and time since pumping began, t, is large)
- There is no delayed yield in the aquifer

The assumptions for the Neuman method for unconfined aquifers include the following:

- The aquifer has seemingly infinite areal extent
- The aquifer is homogeneous and of uniform thickness over the area influenced by the test
- Prior to pumping, the water table is horizontal over the area influenced by the test
- The aquifer is pumped at a constant discharge rate
- The flow to the well is in an unsteady state

- The diameter of the pumping well is small, so storage in the well can be neglected
- The aquifer is isotropic or anisotropic

The assumptions for the distance-drawdown method include the following:

- More than three observation wells are used to construct the plot
- Only valid for u < 0.05 (i.e., r is small and t is large)

The time-drawdown data have been corrected to account for the fact that the pump used did not have proper suction for 2 minutes and 40 seconds, into the test. Thus, this amount of time was subtracted from the total elapsed time for each pumping data point collected by the data logger. The elapsed recovery time for one of the data loggers (wellpoints I1 to O3) was also adjusted by 3 seconds to account for a delayed start. All drawdown and recovery curves are plotted using the corrected data. Table B2-5 presents a summary of the time-drawdown and recovery analyses including the initial saturated thickness, distance from the pumping well, and calculated values of transmissivity, hydraulic conductivity, and the specific yield for each well for each of the three analytical techniques. The table also presents the mean, standard deviation, and range values for each parameter. Table B2-6 presents the data generated from the distance-drawdown analysis, and Table B2-7 provides a comparison of the values from this pumping test with values from previous drawdown/recovery tests conducted in the Woman Creek alluvium. It should be noted that wellpoint O3 was the pumping well, and a valid value for specific yield can not be determined.

# **Cooper-Jacob Drawdown Analysis**

The Cooper-Jacob straight-line analysis was performed on the late time data for all the wellpoints. The minimum time for which the analysis is valid given a u < 0.05 was determined for each wellpoint using the following formula:

$$t = \frac{r^2S}{4Tu}$$

where:

r = distance from the pumping wellpoint to the observation wellpoint

S = coefficient of storage = 0.1

T = transmissivity

The minimal time for which the Cooper-Jacob analysis is valid varied from approximately 20 to 117 minutes depending on the distance of the observation wellpoint from the pumping wellpoint. The results are valid for all the straight line matches presented in this report.

The results of the Cooper-Jacob analysis included hydraulic conductivity values ranging from  $1.8 \times 10^{-2}$  to  $2.2 \times 10^{-2}$  cm/sec with an arithmetic mean of  $1.9 \times 10^{-2}$  cm/sec. The analysis did not produce valid values for specific yield. The values calculated ranged from 0.31 to 2.2 with a mean of 0.81. A normal value for the specific yield of an unconfined aquifer is 0.1.

Neuman Drawdown Analysis

The Neuman curve matching method was also conducted on the drawdown data. The curve matching provided poor matches of the early time drawdown data except for wellpoint O3.

The results of the Neuman analysis included hydraulic conductivity values ranging from  $1.5 ext{ x}$   $10^{-2}$  to  $2.2 ext{ x}$   $10^{-2}$  cm/sec with an arithmetic mean of  $1.9 ext{ x}$   $10^{-2}$  cm/sec. The analysis did not produce valid values for specific yield. The values calculated ranged from 0.30 to 2.2 with a mean of 0.76. A normal value for the specific yield of an unconfined aquifer is 0.1.

Theis Recovery Analysis

The water levels were measured in the wellpoints for approximately 890 minutes after the pump was turned off. At about 700 minutes, the water levels ceased rising though they had not regained prepumping levels and exhibited a residual drawdown ranging from 0.07 to 0.09 feet. The transducers indicated decreasing water levels in wellpoints I1, I2, I4, I5, O1, O3, O5, E1, E3, and E5 from about 700 minutes until the transducers were removed. The rate of water level decrease measured by the transducers averaged 0.12 ft/day. Water levels were measured

periodically in all the wellpoints from after the pump test until the tracer test was conducted in January. These measurements showed that the water table declined 0.7 foot from December 19 until January 3, a rate of approximately 0.05 ft/day. From January 3 to January 22, the water table remained fairly constant, fluctuating about 0.1 ft overall.

The water level data collected at the end of the pump test and thereafter appears to indicate that the water table began dropping during the test. This trend was removed from the recovery data prior to analysis by assuming that the trend is linear. The rate of decline was determined by fitting a line to the decreasing data trend that occurred after 700 minutes using linear regression techniques and deriving an equation for the line. The equation was used to predict the natural water table decline at each wellpoint and subtracting the natural water table decline from the data. Attachment B2-7 contains graphs showing the measured recovery in each well and the adjusted recovery data. Data from wellpoints E2 and O4 are not included as the transducers malfunctioned. The graphs show that the adjusted data contains very little residual drawdown. The adjusted data were used in the Theis recovery analysis.

The results of the Theis Recovery analysis included transmissivity values ranging from 0.1298 to 0.1951 ft²/min with an arithmetic mean of 0.1569 ft²/min and hydraulic conductivity values ranging from 1.90 x 10⁻² to 2.69 x 10⁻² cm/sec with an arithmetic mean of 2.24 x 10⁻² cm/sec. Specific yields were not determined but the ratio of storage during pumping to storage during recovery (S') was determined for each wellpoint. This value ranged from 1.473 to 1.810 with an arithmetic mean of 1.663.

Analysis of the Theis Recovery data are considered to be more reliable than analysis of drawdown data due to the fact that recovery rates are constant (i.e., not affected by external perturbations of the aquifer) as compared to drawdown, which is affected by the well discharge rate. However, transmissivity calculated using the recovery method may give slightly higher values for unconfined aquifers (Kruseman and de Ridder, 1989).

### **Distance-Drawdown Analysis**

Hydraulic conductivity values were calculated from the distance-drawdown transmissivity values using the relationship with saturated thickness. The geometric mean hydraulic conductivity value for this method was approximately 3.6 x  $10^{-2}$  cm/sec. The geometric mean storativity was 0.15. The wellpoints used for the distance drawdown calculations were O1, O5, I1, E3, and E4. Hydraulic conductivity and storativity were calculated for times after pumping started of 60, 100, 200, 300, 400, and 480 minutes. The u value for 60 minutes exceeded 0.05 and the data are not included in this report. The u values calculated for the remaining times were all below 0.05.

### **Summary of Results**

As shown in Table B2-7, the geometric mean of the hydraulic conductivity values determined by each analytical method ranged from 1.9 x 10⁻² to 3.6 x 10⁻² centimeters per second (cm/sec). The previous hydraulic conductivity values were determined for the Woman Creek alluvium by drawdown/recovery tests; values ranged from 3 x 10⁻³ to 3 x 10⁻⁴ cm/sec (EG&G 1991a). Mean values for specific yield for the Cooper-Jacob and Neuman methods were 0.64 and 0.63, respectively. However, both of these methods, values for specific yield exceeded unity, with calculated values of 2.2 and 2.0, respectively. The Theis Recovery method had a specific yield range from 0.50 to 0.84, and a mean of 0.65.

#### **Deviations from Ideal Conditions**

The plots of drawdown to log time for each wellpoint show a deviation from ideal conditions. Ideal conditions would yield plots of drawdown to log time that fall on a straight line. The plots of data from this pump test show the data deflecting upwards approximately 8 minutes after pumping began. After approximately 110 minutes, the data again falls on a straight line with a different slope than the early data. This deflection could indicate several different aquifer conditions: the presence of an impermeable boundary, a change in transmissivity in the vicinity of the wellpoints, or the effects of delayed yield.

An impermeable boundary in the vicinity of the wells is possible given the spotty nature of the alluvial aquifer. Boreholes drilled upvalley and downvalley of the test site were dry or did not produce enough water for a test. The drawdown to log time plots can be used to determine the distance to an impermeable barrier or the point at which transmissivity changes using image well theory (Dawson and Istok, 1991). The distance to the barrier can be determined using the equation:

$$r_i = r_r \sqrt{\frac{t_i}{t_r}}$$

where:

 $r_i$  = distance from the image well to the observation well

 $r_r$  = distance from the pumping well to the observation well

t_i = total time of pumping which produces predicted drawdown at the observation well due to the image well

t_r = total time of pumping which produces drawdown at the observation well due to the pumping well

The resulting distance to the image well is divided by two to determine the distance to the barrier. This analysis was conducted on wellpoints E1, I1, I5, and O5. The results indicate that a barrier or change in transmissivity exists between 8 and 16 feet distance from these wellpoints. The actual results are 14.8 ft from E1, 8.5 ft from I1, 16 ft from I5, and 14.8 ft from O5. Though an impermeable barrier is possible, it is unlikely at the distances calculated by this method. Water levels measured in well 6486 located approximately 125 ft east of the wellpoints indicate similar thickness of saturated alluvium, while well 30991, located approximately 195 ft northwest of the wellpoints, was dry. Well 6486 is approximately 20 feet topographically lower than the wellpoints and well 30911 is approximately 30 ft higher than the wellpoints. The exploratory boring (39091) drilled for this site is located approximately 12 ft west of the wellpoints and the single wellpoint (39891) is located approximately 12 ft east of the wellpoints. The exploratory boring and single wellpoint both had thicknesses of saturated alluvium similar to the multiple wellpoints.

The deviations could indicate a change in transmissivity. The inflections shown on the plots would indicate that the transmissivity of the aquifer is higher in the vicinity of the wellpoints and lower further away from the wellpoints. The development of the wellpoints removed a considerable volume of fine material. This could locally increase the transmissivity of the aquifer around the wellpoints. However, the aquifer would probably not be affected more than 10 ft from the wellpoints. If this is the case, the transmissivities determined from the late-time data would be more representative of natural conditions.

The deviations could also be due to the effects of delayed yield from the aquifer. The data for wellpoint O3 fit the Neuman type curve very well, though the Neuman type curves do not fit the data from the other wellpoints very well.

The preceeding analysis indicates that the deviation seen in the data from the ideal conditions is most probably due to change in transmissivity or delayed yield effects and that analysis of the early time will not provide an accurate characterization of the aquifer hydrologic parameters.

The wellpoints used for the distance drawdown calculations were O1, OS, I1, E3, and E4. Hydraulic conductivity and storativity were calculated for times after pumping started of 60, 100, 200, 300, 400, and 480 minutes. The u value for 60 minutes exceeded 0.05 and this data is not included in this report. The u values calculated for the remaining times were all below 0.05.

#### **B2.3 TRACER TESTS**

#### **B2.3.1** Single-Well Tracer Tests

Test procedures for the single-well tracer evaluation tests are presented below. Field equipment and procedures for installation, development, and sampling of the single wellpoint are presented in Sections B2.2.1.1 and B2.2.1.2. The tracer evaluation tests were conducted to select a sufficiently conservative and detectable tracer for the multiple-well tracer test.

#### **B2.3.1.1** Test Procedures

The single-well tracer evaluation tests for distilled water and potassium bromide were conducted on December 10-11 and 13-14, 1991, respectively. A complete list of equipment used for each test is included in Attachment B2-2. The test setups are shown in Figures B2-8 and B2-9.

Tubing, fittings, and containers in direct contact with the groundwater or tracer were composed of inert materials, such as polyethylene, nylon, polypropylene, vinyl, polyvinyl chloride (PVC), silicone, and stainless steel. The tracer solutions were prepared and stored in a 30-gallon plastic tank.

The distilled water tracer consisted of six 5-gallon containers of distilled water. For the bromide tracer evaluation test, a bromide concentration of 500 milligrams per liter (mg/l) was selected, based on the characteristics of natural groundwater and the performance characteristics of the bromide ion selective electrode (ISE) used for analyses in the field. The practical analytical range of the bromide ISE used was between approximately 0.2 and 1,000 mg/l (see Attachment B2-8 for details). Outside of that range, the electrode response in terms of millivolts becomes nonlinear, requiring more complicated analytical procedures.

A second consideration in the instrumentation was the possibility of analytical interference from other ions present in the groundwater. For the bromide ISE used, the most important interference ion to consider is chloride. According to directions provided by the ISE manufacturer, Orion Research Inc., the concentration of chloride may be as great as 400 times the concentration of bromide (in terms of molarity) before interference becomes a problem. At the time that the bromide tracer concentration was selected, a laboratory-determined chloride concentration value for the Woman Creek groundwater was not available. Instead, chloride concentration was estimated from the specific conductance (SC) of the groundwater (approximately 960 micromhos per centimeter [µmhos/cm]). Assuming that the sole contributor to SC was sodium chloride, the chloride concentration of the groundwater would be about 350 mg/l. Table B2-3 presents the results of the laboratory analyses. Using the recommended maximum ratio of 400 to 1 (molarity), the minimum practical detection limit for bromide due to chloride interference would be about 2 mg/l chloride. Considering the bromide ISE linear

response range, the effect of chloride ion interference, and uncertainties resulting from temperature effects (see Attachment B2-8), the minimum practical quantification limit was estimated to be between 1 and 2 mg/l. Background levels of bromide in the groundwater were below that practical quantification limit.

The bromide solution was prepared by dissolving 84.56 grams of reagent grade potassium bromide in a small quantity of distilled water, and then mixing that solution in 30 gallons of water extracted during the previous test. The extracted water consisted of a mixture of the distilled water tracer and natural groundwater. To prevent stratification in the 30-gallon tank, a propeller mixer was used throughout the injection stage of the bromide test.

The tracer fluid was delivered to the single-well using a peristaltic pump with 1/8-inch-I.D. pumphead tubing. During the tests, a variable area flow meter with a 0- to 0.071-gpm range was placed downstream of the pump to estimate the injection and extraction rates. Those estimates were used to adjust the pumphead speed of the peristaltic pump. Actual injection and extraction rates were calculated using the volumes of produced or injected fluid and elapsed time. The variable area flow meter was checked prior to beginning the single-well tests by pumping a known volume of water through the system and recording elapsed time. The flow rate with the flow meter in situ was very similar to the calibration chart provided by the manufacturer.

To help distribute the tracer fluid over the entire water column height, a perforated, semirigid tube was inserted in the well. All connections were made with vinyl tubing. The first tracer evaluation test was conducted 4 days after completing the step-drawdown test allowing ample time for complete water table recovery.

During the tests, water levels were recorded with a Hermit data logger and pressure transducer. Measurements for the early portion of the distilled water evaluation test were taken with an electronic water level meter. Injection and extraction rates as well as tubing sizes were estimated using the results of the single-well step-drawdown pump tests. A rate of 0.07 gpm was selected. During both the injection and extraction modes of the test, the groundwater level was monitored regularly by checking the Hermit data logger. In accordance with Technical

Memorandum 4 (Multiple-Well Tracer Test Plan, DOE, 1991b), the water column height was not allowed to rise or drop more than 10 percent of the static water column height. During the injection stage of both tracer evaluation tests, the water column height increased by approximately 3 percent. During the extraction mode, however, the water column height dropped by approximately 10 percent and the extraction rate had to be reduced slightly by lowering the pumphead speed. The test parameters are summarized in more detail in Attachment B2-9, Table 1.

For the distilled water tracer evaluation test, the concentration of tracer in the extracted groundwater was determined using two specific conductivity meters. A YSI model 3446 flow-through conductivity cell (30 milliliters [ml] volume) was placed downstream of the pump and flow meter and specific conductivity was read from a YSI model 35 conductance meter and recorded regularly. As an independent check, an Orion model 122 conductivity/temperature meter and temperature-compensated probe-type specific conductivity electrode were used. The electrode was placed in a 100-ml beaker along with the discharge line. The beaker/electrode assembly was suspended above the discharge-water storage tank so that the fluid in the beaker was continually refreshed. The Orion model 122 conductivity/temperature meter automatically compensates for sample temperature using a temperature coefficient of 2.1 percent per °C, and corrects readings to 25 °C. Temperature and temperature-compensated SC measured at the discharge point were recorded regularly.

Temperature was measured using the temperature modes of the Orion model 122 conductivity/temperature meter and the Orion model 250 pH meter. Accuracy was checked against a glass thermometer. During the extraction mode of the distilled water test, the temperature of the extracted groundwater ranged from 5.4°C to 7.8°C. Specific conductivity measurements recorded from the flow-through cell were manually corrected for temperature using 2.1 percent per degree centigrade, which is appropriate for most natural groundwaters. Flow-through cell measurements were corrected to 25°C using the following equation from the instrument operations manual:

$$SC_{25^{\circ}C} = \frac{SC_T}{1 + (T - 25^{\circ}C) K}$$

where:

 $SC_T$  = specific conductivity measured under field conditions

 $SC_{25^{\circ}C}$  = specific conductivity measured at 25°C

T = the temperature of the measured fluid

K = the correction factor  $(0.021/^{\circ}C)$ 

Both SC instruments were checked before use with a 1000  $\mu$ mhos/cm calibration standard. A typical calibration check for the Orion model 122 conductivity/temperature meter (with automatic temperature compensation) was 1056  $\mu$ mhos/cm at 6.3°C (5 percent error). A typical calibration check for the YSI model 35 conductivity meter was 701  $\mu$ mhos/cm at 6.3°C, which, when manually corrected to 25°C, yields 976  $\mu$ mhos/cm (2 percent error). Temperature-corrected data is compiled in Attachment B2-9, Table 2. A total of 66 recordings were made using the flow-through cell.

Routine pH measurements were made with an Orion model 250 pH meter with automatic temperature compensation. The meter was calibrated using commercially prepared pH 4.01, pH 7.00, and pH 10.00 buffer solutions.

For the extraction cycle of the bromide tracer test, a fluid sampling valve was installed downflow of the peristaltic pump and flow meter. Samples were collected in 50-ml plastic beakers at regular intervals and immediately analyzed for bromide concentration. Temperature, pH, and specific conductivity were periodically measured also. A detailed description of analytical methods for bromide is included in Attachment B2-8. Bromide concentration readings in millivolts were converted to bromide concentrations in mg/l using a calibration curve made with 7.7°C standards. Bromide tracer test results are compiled in Attachment B2-9, Table 3. A total of 69 samples were collected and analyzed in the field for bromide.

## **B2.3.1.2** Analysis of Test Data

Results of the single-well distilled water and bromide tracer evaluation tests are tabulated in Attachment B2-9, Tables 2 and 3.

The use of distilled water as a tracer is somewhat unique in that the measured parameter specific conductance is less concentrated in the tracer than in the groundwater. To evaluate the performance of the two tracers on an equivalent basis, breakthrough curves were prepared in which normalized concentration is plotted against time. For the bromide tracer, the concentrations of bromide measured in the extracted fluid (C) were normalized to the initial value of bromide in the tracer solution ( $C_o = 500 \text{ mg/l}$ ). For the distilled water tracer, the measured specific conductivity was normalized to the specific conductivity of the groundwater (960  $\mu$ mhos/cm, measured with the flow-through cell, and corrected to 25°C), and then subtracted from one. This is equivalent to the following:

$$1 \sim K \frac{C}{C_o}$$

where:

$$K = \frac{C_o}{C_f}$$

and where:

 $C_o$  = Specific conductivity of the distilled water at 25°C (approximately 17  $\mu$ mhos/cm)

 $C_f$  = Specific conductivity of the groundwater at 25°C (960  $\mu$ mhos/cm measured with flow-through cell)

C = Specific conductivity of the extracted fluid at 25°C

The normalized concentrations of the distilled water and the bromide tracer solutions are plotted against volume extracted in Figure B2-10. The average extraction rates were slightly different for the two tracer evaluation tests and so the more conventional graphs of normalized concentration against time could not be directly correlated.

The change in tracer concentration during the test followed a predictable trend. The initial samples, collected immediately after beginning the extraction stage of the tracer evaluation tests, had concentrations very similar to the tracer solutions. After only a small volume of fluid had been extracted, the composition of the extracted fluid had substantially changed. The 50 percent concentration point was reached after 2.0 gallons had been removed during the distilled water test and after 3.7 gallons had been removed during the bromide test. Most of the change in concentration of the extracted fluid occurred during the first third of the test (first 10 gallons). The 80 percent concentration point (relative to undisturbed groundwater) was reached after about 6.7 gallons had been removed during the distilled water test and 12.5 gallons had been removed during the bromide test. Thereafter, the concentration asymptotically approached that of the undisturbed groundwater.

In summary, the apparent recovery was much quicker during the distilled water test then during the bromide test. Bromide is considered a relatively conservative tracer, in that bromide is generally not affected by sorptive processes (Davis et al. 1985). In comparison, however, distilled water is probably quite reactive with aquifer constituents even in shallow sediments comprising the aquifer at this test site. The quicker recovery seen with the distilled water is probably the result of mobilizing sorbed ions or dissolving very small masses of minerals in the sediment into the distilled water tracer.

On the basis of these results, bromide was selected as the most appropriate tracer to use for the multiple-well tracer test. The 500 mg/l bromide concentration was chosen as the most appropriate concentration.

#### **B2.3.2** Multiple-Well Tests

Multiple-well test procedures, test data analysis, and procedures for well abandonment and equipment decontamination are presented below. Equipment and field procedures to install and develop the multiple-well array are presented in Sections B2.2.2.1 and B2.2.2.2.

#### **B2.3.2.1 Test Procedures**

The multiple-well tracer test was conducted on January 27 and 28, 1992, after sufficient time had passed to analyze data, redesign tests, and procure equipment again following the constant-rate pumping tests. Although run on January 27, the tracer test was discontinued due to high winds on two separate occasions after stable gradients had been achieved. The water levels were than allowed to re-equilibrate to static conditions prior to restarting the test on each later attempt. A complete list of the equipment used is included in Attachment B2-5, and Figures B2-11 and B2-12 demonstrate the test setup.

The test was performed using the three- by five-well array that had been used for the multiple-well pump test. For the tracer test, the row of five wells on the west side of the grid were used as injection wells, and the five on the east side were used as extraction wells. The center row of wells was used mainly for water level observation. A pressure transducer was placed in each of the 15 wells and connected to one of two Hermit data loggers. The same pressure transducers used in the multiple-well pumping test were placed in each wellpoint except for one. The transducer for wellpoint E2 was replaced due to an apparent malfunction indicated by pumping test results. The pressure transducers and data loggers were programmed to read water column height.

To induce a gradient during the test, water levels in the injection and extraction wells were controlled using ten solid-state liquid-level-control relays coupled with ten diaphragm pumps. For each of the injection and extraction wells, two electrodes were positioned at the desired water level height and fastened to a perforated polyethylene tube using vinyl tape. A ground wire was attached near the bottom of each tube. Each "pump on" electrode was mounted approximately 3/8 inch from the "pump off" electrode. That distance was selected to be long enough to eliminate continuous switching due to water splashing in the wells and short enough to minimize hysteresis. A reference mark was made near the top of each tube corresponding to the desired depth that the tubes should be inserted into the wells. By comparing the position of the reference mark relative to the top of the casing for each well, the electrodes could be positioned easily and with accuracy.

For the injection wells, the liquid-level-control relays were wired in the inverse mode, and each "pump off" electrode was placed above the "pump on" electrode. With that configuration, each pump ran independently until the water level reached the upper electrode, when the pump would be switched off. When the water level dropped just below the lower electrode, each pump was automatically switched on, and the cycle was repeated.

For the extraction wells, the liquid-level-control relays were wired in the direct mode, and each "pump off" electrode was placed below the "pump on" electrode. With that configuration, each pump ran independently until the water level dropped to the lower electrode, when the pump would be switched off. When the water level rose to just above the upper electrode, each pump was automatically switched on, and the cycle was repeated.

To help organize the injection, extraction, and sampling systems, a 4- by 8-foot platform was constructed on saw horses and placed above the multiple-well grid. For each of the five injection wells and the five extraction wells, a control relay box, diaphragm pump, and flow accumulator were mounted on the platform. To simplify construction, minimize back pressure, and reduce the possibility for leaks, a separate length of discharge tubing was used for each extraction well and a separate length of intake tubing was used for each injection well. All connections were made with 1/2-inch-I.D. vinyl tubing. Fittings were composed of nylon, polypropylene, or PVC.

Digital flow accumulators were used for each of the five injection wells and five extraction wells. Flow accumulators were capable of responding to flow rates between 0.3 and 3.0 gpm. Before installation, all ten flow accumulators were connected with 1-foot lengths of 1/2-inch-I.D. tubing and distilled water was pumped through at approximately 1.5 gpm. Accumulators were simultaneously calibrated according to the user's manual. Once calibrated, 30 gallons of distilled water were pumped through the accumulators and the readings recorded. This process was repeated several times and empirical correction factors were generated for each accumulator from the average of the readings. The correction factors were quite small. The largest factor was 2 percent, and the remaining nine values were less than 1 percent. Correction factors are listed in Attachment B2-10, Table 1.

For the injection wells, the ends of the intake tubing were taped together with a weight and placed at the bottom of the 200-gallon or 375-gallon tank or 55-gallon drum. The intake tubing was connected to diaphragm pumps, then to flow accumulators, and finally to the perforated polyethylene tubing inserted into the well casing of each of the five injection wells. The perforated polyethylene tubing inserted into each of the five extraction wells was connected to diaphragm pumps, then to flow accumulators, then to a sampling valve, and finally to discharge tubing. The ends of the discharge tubing were taped together with a weight, and also placed in a tank or drum.

Sampling equipment was also constructed for the middle injection wellpoint (I3) and the middle observation wellpoint (O3). For each of those wells, a 3/16-inch-I.D. perforated polyethylene tube was used to extract water from the wells. The polyethylene tube was connected to a peristaltic pump, which was connected to a sampling valve, and the discharge was returned to the respective well. All connections were made with 1/4-inch-I.D. vinyl tubing.

All sampling valves were mounted at the west end of the 4- by 8-foot platform to facilitate efficient sampling. The first stage of the multiple-well test consisted of establishing a uniform gradient between the row of injection and row of extraction wells (i.e., an east-west gradient). Prior to starting the liquid-level-control relays and pumps, an initial measurement was taken with the Hermit SE2000 data loggers. This was important, because the water levels fluctuated daily on the order of tenths of feet. The initial measurements were used to make small adjustments on the positioning of the perforated tubing/electrode assemblies. Once positioned, the assemblies were fastened at the top of the well casing with vinyl tape.

After preliminary adjustments were made, the liquid-level-control relays were energized and left on until the test was completed. The system was allowed to run for several hours before making adjustments. During that time, the intake and discharge tubing clusters were placed in the 200-gallon tank that had been filled with groundwater during the pump test. While establishing the gradient, the injection and extraction rates were similar, so the net production or loss of fluid was nearly zero.

After an hour or more, a number of readings were taken from each channel of the Hermit data loggers. Averaged readings were compared to the initial (static) water column heights in each well. If necessary, minor adjustments were made in the positioning of the perforated tubing/electrode assemblies. Generally, adjustments were on the order of several hundredths to a few tenths of a foot. Once the water column heights seemed to be satisfactory, a 30-minute recorded run was made with the Hermit data loggers recording at 1 minute intervals to evaluate whether the gradient had stabilized. Stabilization was indicated by a relatively constant water column height in each of the five observation wells for the 30-minute period, as well as the appropriate water column heights in the extraction or injection wells. Generally, minor adjustments had to be made in the position of several of the perforated tubing/electrode assemblies, and a second 30-minute test was conducted for confirmation.

A stable gradient was actually established on three occasions on January 23, 24, and 27, 1992. Tracer injection activities for the first and second occasions were canceled, however, after Health and Safety personnel issued directives to halt operations due to high wind conditions. For each of the three occasions, between 6 and 8 hours were required to induce a satisfactory stable gradient. The third and final attempt was initially hampered by frozen water in many of the intake and discharge tubing clusters, which had to be thawed. Also small air leaks had developed in some of the intake tubing connections of some of the pumps, which inhibited their self-priming capability. Nevertheless, a satisfactory gradient was established after about 8 hours on the third test attempt, and the full tracer injection and recovery procedure was completed.

The following rearrangement of Darcy's Law was used to estimate the desired head relative to the initial water column heights:

$$\Delta h = \frac{n_e(\Delta l)^2}{\Delta t \ K}$$

where:

 $\Delta h = desired head$ 

 $n_e$  = effective porosity

 $\Delta l = travel distance$ 

 $\Delta t$  = average travel time

## K = hydraulic conductivity

Assuming an effective porosity of 20 percent, a travel distance of 5 feet, an average travel time of approximately 4 hours, and a hydraulic conductivity of 2.8 x 10⁻² cm/sec, the desired head is estimated at 0.4 foot:

$$\Delta h = \frac{.20 (5 ft)^2}{(240 \text{ min}) (0.0551 \text{ feet/minute})} = 0.4 \text{ foot}$$

Based on observed well efficiencies during the first two preliminary gradient tests, it was decided to distribute the head difference asymmetrically relative to the initial (static) water column height. About 65 percent (0.25 foot) was appropriated to the injection wells and about 35 percent (0.15 foot) was appropriated to the extraction wells. This was done to balance the injection and extraction rates. The wells were generally more efficient in the extraction mode than in the injection mode. Balancing the rates was important because of the relatively high pumping rates and the limited storage capacity available.

The bromide tracer solution was prepared in a 375-gallon tank by mixing 846 grams reagent grade potassium bromide with approximately 300 gallons of groundwater extracted and decanted during the multiple-well pump test. A triple-beam balance was used to measure the potassium bromide, which was mixed with a small quantity of water before mixing in the large tank. A gasoline-powered pump (approximately 20 gpm capacity) was used to recirculate (and thereby mix) the bromide solution by placing the pump intake hose near the top of the tank and the pump discharge hose near the top of the tank. A propane-powered space heater was placed facing the tank during mixing to raise the average water temperature from 1.7°C to 4.5°C to match that of the in situ groundwater. Pumping was continued for approximately 1 hour.

Additional bromide tracer solution was prepared in four lined 55-gallon drums. Groundwater produced during the multiple-well pump test was mixed with 155 gram aliquots of potassium bromide in each drum. The bromide tracer solution that was prepared in the four drums was transferred to the 375-gallon tank 220 minutes after the tracer test was started.

The tracer test portion of the multiple-well tracer test was started at 15:00 on January 27, 1992. Initially, a two-person team continually collected samples from the five extraction well sampling valves and the sampling valves for the middle injection and observation wells. A third person concentrated on bromide ISE measurements, and a fourth person took readings from the flow accumulators and the Hermit data loggers and checked the pumps and other equipment. The sampling frequency was gradually reduced during the first 3 hours of the tracer test, and only two persons were required for the remaining 6 hours. A total of 271 samples were collected and analyzed in the field for bromide concentration and temperature. Eighty-seven of these samples were collected from extraction wells E1 and E5 to supplement sampling specified in the test guideline documents. The time of collection, the temperature, and the bromide ISE response in millivolts were recorded for each sample. Temperature was measured with an Orion model 122 conductivity/temperature meter and temperature-compensated probe-type specific conductivity electrode. Attachment B2-8 describes analytical methodology for bromide. The tracer-test portion of the multiple-well tracer test was run for a total of 9 hours. The test was stopped when bromide concentrations in the extraction wells and middle observation wells had stabilized.

The corrected flow accumulator readings are included in Attachment B2-10, Table 1. The corrected flow accumulator readings, converted to incremental pumping rates ( $\triangle$ volume/ $\triangle$ t), are listed in Attachment B2-10, Table 2 and plotted in Attachment B2-10, Figure 1.

According to the flow accumulator measurements, a total of 545 gallons of bromide tracer solution was injected and a total of 860 gallons of fluid was extracted. The volume injected as recorded with the flow accumulators, 545 gallons, matches well with the estimated total volume of tracer solution that was mixed ( $\sim$ 300 gallons + 4 x 55 gallons = 520 gallons). Despite distributing the  $\triangle h$  difference asymmetrically between the injection and extraction wells (65 percent increase for injection wells and 35 percent decrease for extraction wells), approximately 60 percent more fluid was extracted than was injected. That difference must be considered when interpreting the profiles of the breakthrough curves.

In addition to the disparity in total injected and extracted fluid volumes, there was a large disparity in fluid volumes pumped into and out of individual injection and extraction wells.

Wells I1 through I5 were injected with 21, 3, 7, 1, and 68 percent, respectively, of the proportion of total tracer volume used. The volumes extracted from wells E1 through E5 were 43, 7, 6, 31, and 14 percent, respectively, of the proportion of total fluid volume produced. Wells I5, E1, and E4 were clearly more productive than neighboring wells. Fortunately, the more productive wells were generally adjacent to less productive wells, providing a compensating effect. In addition, the most productive wells were generally located at the ends of the row of injection and extraction wells. That was expected, because those wells were not affected by two neighboring wells as were the interior wells of each line. Furthermore, the end wells supplied or removed fluid located laterally outside of the multiple-well array in addition to upgradient or downgradient fluid. Differences in well productivity were also attributed to inhomogeneities in the sediment. The variability in injection and extraction well efficiencies were taken into account during data analysis, and the effect on the tracer test interpretation is discussed below in Section B2.3.2.2.

The pressure transducer data are compiled in Attachment B2-10, Table 3. The data are expressed relative to the initial water column heights measured on January 27, 1992 at 08:00, prior to beginning any activities affecting groundwater that day. The pressure transducer data are plotted in Attachment B2-10, Figures 2 through 6 to better display trends, and are then summarized in Attachment B2-10, Table 4. The oscillation shown in the plots of all of the injection well and extraction well water levels was due to the pumps switching on and off. The amplitude in the oscillation was equal to the spacing between electrodes plus a minor component attributed to hysteresis. The average highs and lows were estimated from Attachment B2-10, Figures 2 through 6 and summarized in Attachment B2-10, Table 4. The estimated average amplitude of the oscillation ranged between 0.04 and 0.07 foot, and averaged about 0.05 foot, which is equivalent to 5/8 inch. That value is well within the acceptable range specified in the Final Phase III RFI/RI Work Plan for OU1 (EG&G, 1991a). The average distance between the relative water levels of the injection well/extraction well pair defined the hydraulic head for each well pair, and are compiled in Attachment B2-10, Table 4. The mean hydraulic head for the five injection well/extraction well pairs was 0.39 foot, which was distributed with a 0.24-foot mean increase in the injection wells and a 0.15-foot mean decrease in the extraction wells. Results were very close to the intended values. The relative water level increase for injection

well I5 was purposely reduced (mean level was 0.17 foot) because the productivity of that well was disproportionately high.

Several of the anomalies observed on the relative water level profiles in Attachment B2-10, Figures 2 through 6, are attributable to equipment adjustments made during the tracer test. The water mound in injection well I4 at 220 minutes resulted from manually running the well pump for a brief period to reprime the I4 intake tubing (Attachment B2-10, Figure 5). Note that it required more than 30 minutes to recover, because of the extremely low efficiency of the well. The spikes between 400 and 430 minutes for injection well I5 were also due to pump adjustments (Attachment B2-10, Figure 6). In contrast to the response for well I4, the water level in well I5 recovered quickly because of well I5's higher efficiency.

The relative water levels for the observation wells were more similar to the relative water levels for the extraction wells than for the injection wells (Attachment B2-10, Figures 2 through 6). This response can be explained because the extraction rate was about 60 percent greater than the injection rate, and the radii of influence from the extraction wells would be expected to be larger. An explanation for the apparent water mounding in observation well O4 is not clear (Attachment B2-10, Figure 5). It may be due to a faulty pressure transducer, although the transducer showed no other signs of malfunction. It should be noted that a similar, but less extreme, pattern was recorded for observation well O5 (Attachment B2-10, Figure 6). A more plausible explanation may be that well O4 reflects neighboring well effects such as the low productivity of nearby injection well I4, and the disproportionately high productivity of nearby injection well I5. The small scale oscillation in observation well O3 may result from periodically removing samples with a peristaltic pump for bromide analysis.

The analytical results for the multiple-well tracer test are compiled in Attachment B2-10, Table 5. Bromide measurements recorded as electrode potential in millivolts were converted to concentrations in mg/l using a calibration curve made with standards at  $4.6^{\circ}$ C (Attachment B2-8). The mean temperature of the samples from the five extraction wells was  $4.3 \pm 0.2^{\circ}$ C. Refer to Attachment B2-6 for field data sheets for the tracer test.

## **B2.3.2.2** Analysis of Test Data

In this section, results from the multiple-well tracer test are used to determine longitudinal dispersion and average linear velocity. Coupled with hydraulic conductivity data obtained during the multiple-well constant-rate pumping test results, the tracer test results are also used to determine effective porosity.

The general approach used to interpret the time-concentration data is described in Ogata (1970) and summarized in Freeze and Cherry (1979) and Davis et al. (1985). Calculations were made on a well-by-well basis, in which the three- by five-well multiple-well array was divided into five columns oriented parallel to the induced linear gradient and the natural gradient in the Woman Creek area. By examining five data sets, a general notion of variability was obtained. Refer to Freeze and Cherry (1979, p. 70-76) and Davis et al. (1985, Appendix B) for a discussion of dispersion and velocity.

Time-concentration data are tabulated in Attachment B2-10, Table 5 and plotted in Figure B2-13 for each of the five injection well/extraction well pairs. The time-concentration data from the five extraction wells show some similar features. There was generally a steady increase in bromide concentration for 150 minutes, when a plateau was reached. There was another rise in concentration at approximately 260 minutes, followed by a drop at approximately 300 minutes and another rise at approximately 400 minutes. The trends may be the result of unintended changes in the bromide concentration of the tracer solution (see Attachment B2-10, Table 5). The frequency of the fluctuations may be due to lag time in tracer travel between the injection wells and the extraction wells. The plateau at about 150 minutes may be the time at which equilibrium was reached between the influx of tracer solution contributing to each extraction well and the influx of groundwater from outside (downgradient and laterally located) the multiple-well array. Such a scenario is probable because the extraction rates exceeded the injection rates by an average of approximately 60 percent.

The gross profile of time-concentration data from extraction wells E1 and E2 are similar. Extraction well E5 is also similar, but had an unexplainable decrease in concentration after 200 minutes. The profiles from extraction wells E3 and E4 are substantially steeper than the others.

Only the samples collected from those two wells approached the initial concentration of the

tracer, 500 mg/l. The times required to reach one half of the initial tracer concentration were

also quite variable, ranging from about 25 minutes for extraction well E4 to more than 500

minutes for extraction well E1. These results are reformatted and discussed in more detail

below.

**Theory** 

To solve for longitudinal dispersion and average linear velocity, a curve-matching approach was

applied using type curves generated by Ogata's (1970) solution for the one-dimensional form of

the advection-dispersion equation (see Freeze and Cherry, 1979, p. 389) for a step-function input

of tracer solution into a semi-infinite saturated granular (porous) medium in a unidirectional flow

field. The particular form of the solution selected is appropriate for the conditions under which

the multiple-well tracer test was conducted.

The assumption made for that solution is that a constant-concentration plane is maintained

throughout the test and the following boundary conditions exist:

• The initial concentration everywhere downgradient from the plane formed by the

row of injection wells is zero

• The concentration of tracer solution at the plane formed by the row of injection

wells is maintained at a constant concentration during the test

• The concentration of tracer at some distance upgradient, downgradient, and

laterally from the plane formed by the row of injection wells is zero

Described mathematically, those boundary conditions are:

$$C(L, 0) = 0, L \ge 0$$

$$C(0, t) = C_0, t \ge 0$$

$$C(\infty, t) = 0, t \ge 0$$

where:

C = concentration of bromide

L = distance from the measuring point to the plane formed by the row of injection wells

t = time

The solution for those boundary conditions is:

$$C/C_o = \frac{1}{2} erfc \left( \frac{L - vt}{2 (D_t)^{1/2}} \right) + \frac{1}{2} exp \left( \frac{vL}{D_l} \right) efrc \left( \frac{L + vt}{2 (D_t)^{1/2}} \right)$$

where:

v = average linear velocity

 $D_1$  = longitudinal dispersion

erfc = the complimentary error function

Ogata (1970, Figure 5) solved the equation above for a family of different velocity-dispersion-distance conditions and plotted them on log-probability paper. By plotting  $C/C_o$  versus  $\bar{v}t/L$ , which are dimensionless values, he produced a plot that is applicable for any tracer test configuration satisfying the boundary conditions. However, it is somewhat difficult to intuitively visualize the correlation between conventional breakthrough curve profiles and the universal curves. Consequently, the equation above was solved for specific conditions relevant to the multiple-well tracer test described herein.

For convenience, solutions to the equation were initially determined for the 50 percent breakthrough point (i.e., the time at which  $C/C_o = 0.5$ ). The time required for 50 percent breakthrough was determined by manually fitting a curve to plots of normalized concentration versus time on normal graph paper, and estimating the time reading to the nearest minute at which  $C/C_o$  was 50 percent. Distance was determined using the well coordinates listed in Attachment B2-11 for each injection well/extraction well pair. With those variables defined, remaining unknown parameters are average linear velocity and longitudinal dispersion. Dispersion was then determined iteratively for a given velocity value. Using those self-consistent velocity and dispersion values, a theoretical breakthrough curve was then

produced by calculating  $C/C_o$  at 2- to 10-minute intervals between zero (actually just above zero) and 540 minutes (the length of the test).

The complimentary error function (erfc) was solved using the following close approximation from Press et al. (1989):

$$\operatorname{erfc}(X) = \operatorname{T} \exp(-X^2 + A + T(B + T(C + T(D + T(E + T(F + T(G + T(H + T(I + T(J)))))))))$$
if  $(X < 0)$  then  $\operatorname{erfc}(X) = 2 - \operatorname{erfc}(X)$ 

where:

T = 1/(1 + abs(X)/2)

A = -1.26551223

B = 1.00002368

C = 0.37409196

D = 0.09678418

E = -0.18628806

F = 0.27886807

G = -1.13520398

H = 1.48851587

I = -0.82215223

J = 0.17087277

To help visualize the relationship between average linear velocity, longitudinal dispersion, and time for 50 percent breakthrough, sets of curves were made for four different velocity values for different 50 percent breakthrough times. Figures B2-14 through B2-17 are plots for average linear velocities of 0.1, 0.05, 0.01, and 0.001 foot per minute, respectively, for a distance value of 5 feet. Longitudinal dispersion values range from about 0.02 to 2.5 square feet per minute (ft²/min). The range of velocity values and breakthrough times used to construct Figures B2-14 through B2-17 bracket the range of values for the multiple-well tracer test. It is useful to become acquainted with the profiles to interpret the multiple-well test.

As can be seen in Figures B2-14 through B2-17, as longitudinal dispersion approaches zero, the fluid moves through the system like a plug, and the front arrives almost instantaneously (see in

particular the curve constructed for a "t @  $C/C_o = 0.5$ " value of 50 minutes in Figure B2-14). For large longitudinal dispersion values, the initial arrival of tracer occurs relatively early, but the time required to reach 100 percent becomes great.

#### **Data Analysis**

Two sets of normalized concentration versus time breakthrough curves were prepared for each of the five injection well/extraction well pairs. In Figures B2-18 through B2-22, the measured bromide concentration values were normalized to 500 mg/l, which was the intended concentration of bromide in the injected tracer solution. In Figures B2-23 through B2-27, the measured bromide concentration values were normalized to the average maximum measured bromide concentration, which ranged between 210 and 460 mg/l. The rationale for that procedure is discussed below.

The match between any of the type curves (Figures B2-14 through B2-17) with the breakthrough curves constructed using 500 mg/l for C_o (Figures B2-18 through B2-22) is generally quite poor. Only the breakthrough curve produced from the middle injection well/extraction well pair (wells I3 through E3) was successfully fitted (Figure B2-20). For the remaining well pairs the early results and the late results can be fitted with moderate success, but the entire breakthrough curve cannot be matched well. Even attempts at fitting type curves calculated with unreasonably high longitudinal dispersion values did not produce satisfactory fits.

Closer examination of the test parameters for the multiple-well test reveals several contributing factors for the deviation from the theoretical breakthrough behavior. The most significant factor affecting the results is the disparity between the actual injection and extraction rates. Despite attempts to match those rates, the total volume extracted exceeded the total volume injected by approximately 60 percent (Attachment B2-10, Table 1). Consequently, the bromide concentration in the extracted fluid would never have reached that of the tracer solution, because the extraction wells were extracting non-tracer bearing water from downgradient or lateral sources, as well as the injected tracer solution. The middle extraction well (E3) would be least affected by dilution from groundwater outside the system and it showed the best curve fit as

discussed above. Nevertheless, the breakthrough curve shown in Figure B2-20 for the middle extraction well does not appear that it would reach 100 percent.

Secondly, there was an unintended increase in bromide concentration in the tracer solution during the test (Attachment B2-10, Table 5), possibly as a result of stratification in the 375-gallon tank used to contain the tracer solution. Stratification in the tank may have resulted from substantial freezing of the formation water in the tank prior to the test despite efforts to thoroughly mix and heat the tracer solution during the test.

The effect of the concentration increase may explain the slow steady increase in  $C/C_o$  after approximately 180 minutes in injection well/extraction well pairs 1, 2, 3, and 4. In other words, the system may have been close to equilibrium at that time. The explanation for the decrease in  $C/C_o$  in well pair 5 after 180 minutes is not clear.

The problems discussed above complicate the interpretation of the test results but are not insurmountable. The fact that the tracer concentration measured in the extracted fluid does not reach the initial concentration is not unusual for tracer tests (see Davis et al. 1985, p. 54-56).

To overcome the data problems discussed above, a second set of breakthrough curves was constructed using the average maximum bromide concentration determined from each extraction well as C_o. For each breakthrough curve, a family of type curves was generated using the specific well spacing and breakthrough times and plotted along with the breakthrough curve (Figures B2-23 through B2-27).

The match between certain type curves and the breakthrough curves is very good. A summary of the parameters for the closest matching curve for each well pair is included in Table B2-8. The most reliable results are from well pair 3. That well pair was located at the center of the linear gradient field and also had fairly well matched injection and extraction rates (refer to Attachment B2-10, Figure 1). The least reliable results are probably from well pairs 1 and 5, which were located at each end of the extraction well row and were most likely to have been extracting downgradient and lateral to gradient groundwater.

In the following discussion, the average linear velocity values determined above are used with hydraulic conductivity values calculated from the multiple-well constant-rate pumping test to determine effective porosity. By combining Darcy's Law and an equation expressing the conservation of mass of water, effective porosity can be calculated directly.

$$Q = KA \frac{\Delta h}{\Delta L} (Darcy's Law)$$

$$Q = \overline{v} n A$$

where:

 $Q = volumetric flux (ft^3/min)$ 

K = hydraulic conductivity (ft/min)

A = cross-sectional area  $(ft^2)$ 

h = hydraulic head (feet)

L = distance (feet)

 $\Delta h/\Delta L$  = hydraulic gradient (dimensionless)

 $\bar{v}$  = average linear velocity (ft/min)

 $n_e$  = effective porosity (dimensionless)

Combining the equations and rearranging the variables produces the following equation:

$$n_e = \frac{K \triangle h/\triangle L}{\overline{v}}$$

Effective porosity values were calculated for each of the five injection well/extraction well pairs. Results range from a low of 2 percent to a high of 12 percent and are summarized in Table B2-9.

### **Interpretation of Results**

The most reliable values for average linear velocity, longitudinal dispersion, and effective porosity are probably those determined from analysis of well pair 3. The bromide time-concentration data from that well pair produced a profile closest to the anticipated results. This is easily explained because well pair 3 was in the center of the linear gradient system. Furthermore, anomalies in matching injection and extraction rates were least severe near the central area of the multiple-well array. Results from the well pairs at the ends of the rows (well pairs 1 and 5) should be disregarded because of disproportionate pumping rates in several of those wells and their locations on the fringe of the linear gradient system. The longitudinal dispersion value calculated for well pair 4 was unusually high, and should probably be disregarded. There is a favorable comparison between results from well pair 3 calculated from curves using a C_o value of 461 mg/l (Figure B2-25, Tables B2-8 and B2-9) and the results calculated from curves using a C_o value of 500 mg/l in which early data and late data were matched separately (Figure B2-20, Tables B2-8 and B2-9). In fact, the later results bracket the former results. The most reliable approximate results are as follows:

- Average linear velocity was  $0.07 \pm 0.02$  foot per minute
- Longitudinal dispersion was  $0.2 \pm 0.1$  ft² per minute
- Effective porosity was 5 to 10 percent

Longitudinal dispersion can be more readily compared to published values by dividing it by average linear velocity to yield a value for longitudinal dispersivity:

$$\alpha L = \frac{D_l}{\overline{v}}$$

where:

 $\alpha L$  = longitudinal dispersivity (feet)

 $D_1$  = longitudinal dispersion (ft²/min; or coefficient of dispersion in direction

of L)

v = average linear velocity (ft/min)

Using the values above, longitudinal dispersivity is approximately 3 feet. Longitudinal dispersivity is highly scale dependent and must be considered in context with the fluid transport distance (Davis et al. 1985; Neuman 1990).

The most significant factors affecting the accuracy and precision of the tracer test results stem from unanticipated sediment heterogeneity, particularly the cobble and pebble content of the sediment that affected wellpoint placement, and variability of hydrologic parameters. The multiple-well tracer test had been designed with the expectation of substantially lower pumping rates and longer travel times. In retrospect, considering the high observed pumping rates, the multiple-well tracer test would have benefitted from a larger well spacing. However, it is recognized there were also severe constraints upon test site locations because of the lack of saturated conditions.

During installation of the multiple-well array, several problems were encountered associated with sediment heterogeneity. Several wellpoint locations had to be shifted slightly because of obstructions (boulders or cobbles) encountered during drilling. Furthermore, pilot holes were drilled through a majority of the screened interval because the wellpoints could not be driven through the screened interval to total depth. The net effect of the installation problems was that the distance of undisturbed sediment between the wellpoints was reduced, possibly resulting in an increase in the measured average linear velocity values already exacerbated by in-homogeneous conditions.

Further problems included the necessity of developing several wellpoints by repeated surging to improve their production characteristics. Initially, some of the wellpoints would not produce any fluid. Despite taking great care in development, the production characteristics of the wells were not uniform and in fact were quite unpredictable. However, there was no correlation between pumping rates (see Attachment B2-10, Figure 1) and whether a particular well had been developed by surging. Inspection of the well screens after they had been removed indicated that variabilities in well production rates were not due to screen collapse during installation although several did show distorted shapes. Problems associated with well development and sediment heterogeneity may account for the variability in average linear velocity, longitudinal dispersion, and effective porosity determined for each of the five well pairs.

Considering the nature of the Woman Creek alluvial sediments and complications associated with the installation and development of the wells, the calculated average linear velocities seem to be somewhat high and the effective porosities seem to be too low. Those variables are inversely related (see equation above), and it is best to consider them jointly for analysis. Doubling the effective porosity reduces the velocity by a factor of two, and yields more realistic values. Comparison of the calculated longitudinal dispersivity value with values determined by other workers over an approximately 1.5-meter distance suggests that the value determined herein is somewhat high (see Davis et al. 1985, Table B.1, and Neuman 1990, Figures 1-3).

#### **B2.3.2.3** Well Abandonment and Decontamination

The wellpoints for the single-well and multiple-well tests were withdrawn from the ground on January 29, 1992, following the completion of the multiple-well tracer test. The remaining boreholes were grouted according to Geotechnical SOP GT.05 (EG&G, 1991b) using the equipment listed in Attachment B2-5. Attachment B2-6 presents the borehole abandonment forms.

Although the Site 1 area is not classified as a potentially contaminated area, nor was the presence of contamination indicated during environmental field monitoring conducted during drilling for the test site, the decontamination procedures for equipment established in the Field Operations SOPs (i.e., FO.03, FO.04, FO.12, EG&G 1991b) were followed as general practice. Equipment used at the site was decontaminated both prior to and after its use at the site whether it was being stored at RFP or was removed from the plant.

## **B2.4 SUMMARY OF RESULTS AND CONCLUSIONS**

Estimates of aquifer transmissivity, specific yield, effective porosity, linear dispersion, and average linear groundwater velocity for the Woman Creek alluvium were determined from the pumping and tracer tests and are summarized below.

# **B2.4.1** Pumping Tests

The Neuman, Cooper-Jacob, and Theis Recovery methods all produced similar estimates of aquifer hydraulic conductivity and are presented below:

Analysis Method	Hydraulic Conductivity Range (cm/sec)	Hydraulic Conductivity Geometric Mean (cm/sec)	Specific Yield Range	Specific Yield Geometric Mean
Cooper-Jacob	1.8 x 10 ⁻² to 2.5 x 10 ⁻²	2.0 x 10 ⁻²	0.31 to 2.2	0.64
Neuman	1.5 x 10 ⁻² to 2.4 x 10 ⁻²	1.9 x 10 ⁻²	0.30 to 2.0	0.63
Theis Recovery	1.9 x 10 ⁻² to 2.7 x 10 ⁻²	2.2 x 10 ⁻²	-	-
Distance - Drawdown	3.0 x 10 ⁻² to 4.5 x 10 ⁻²	3.6 x 10 ⁻²	0.11 to 0.18	0.15

The values determined by the distance-drawdown method were also in good agreement. The mean hydraulic conductivity of 2.0 x 10⁻² cm/sec determined from the Cooper-Jacob method probably is the best estimate of the hydraulic conductivity of the alluvial aquifer. Figure 2B-28 is a bar graph that shows by wellpoint the hydraulic conductivities determined using each analysis method. As the figure indicates, the Theis Recovery method estimated the highest hydraulic conductivity of any method for every wellpoint except wellpoint O5. (Note: data from wellpoints E2 and O4 which were not analyzed using the Theis Recovery method). These estimates may be higher than the actual hydraulic conductivity as analysis of recovery data for pumping tests conducted in unconfined aquifers may give a slightly high value of hydraulic conductivity (Water and Power Resources Service, 1981). The Neuman analysis provided the same mean estimate of hydraulic conductivity as the Cooper-Jacob. However, the Neuman method provided less reliable results than the other methods given the poor Neuman curve matches of early time data. The geometric mean hydraulic conductivity estimated from the

distance-drawdown analysis is higher than determined from the other analysis and is probably less representative of the aquifer. The analysis required more extrapolation of data because the observation wells were located in close proximity to each other. The estimated values of hydraulic conductivity for the Woman Creek alluvium fall within the typical range of values for sands and gravels 10 to 10⁻³ cm/sec (Nielsen 1991). Gravels were commonly noted during the installation of the pilot hole and wellpoints in the area. The hydraulic conductivity values obtained from the multiple-well test for the Woman Creek alluvium are believed to be more reasonable than the previously reported single-well drawdown/recovery test values. Also, well bore storage and well construction problems are less likely to influence multiple-well tests compared to single-well tests.

Estimates of specific yield values obtained for the test are unreasonably high, since values for sands and gravels normally range from 0.10 to 0.30 (Nielsen, 1991). Many of the estimated specific yields exceeded unity, thus these analyses are invalid. The specific yield data does show a distinct trend when plotted against the distance of the observation wellpoints from the pumping wellpoint as shown in Figure 2B-29. The closer the observation wellpoint is to the pumping wellpoint, the higher the specific yield. Unity is exceeded when the wellpoint is less than 3 feet from the pumping wellpoint and unrealistic values of specific yield are estimated when this distance is less than 5 feet. The specific yields estimated from wellpoints over 5 feet from the pumping well are in the range of 0.30 to 0.35, with one exception, wellpoint II with a specific yield of 0.46 from Cooper-Jacob analysis. The results of this test indicate that for future tests observation wells should be located a distance greater than 5 feet from the pumping well to obtain realistic estimates of specific yield.

The distance-drawdown analysis provided some consistent estimates for the specific yield ranging from 0.11 to 0.18 with a geometric mean of 0.15. This estimate is within a valid range for this aquifer.

The results of the pumping test are appropriate for the geologic materials present in the area. The drill logs for the pilot borehole and nearby wells indicate that the alluvial material is silty, clayey, gravel. Boulders are apparent in the nearby stream bed and were encountered when the

wellpoints were installed causing problems with wellpoint placement. In addition, considerable silt was removed from the aquifer when the wells were developed.

Doty and Associates reported pump test analysis results for data from some of the wellpoints in a January 1992 report. The January report presented results of a Cooper-Jacob straight line analysis for data from wellpoints O3, O2, O1, and I1 using both the early time and late time drawdown data and unadjusted recovery data. The January report presented geometric means of  $2.7 \times 10^{-1}$  cm/sec for early drawdown data,  $1.8 \times 10^{-2}$  cm/sec for late drawdown data,  $5.3 \times 10^{-1}$  cm/sec for early recovery data, and  $3.1 \times 10^{-2}$  cm/sec for late recovery data. The January report presented results of a distance-drawdown analysis using wellpoints O2, I2, O1, and I1 that estimated a geometric mean hydraulic conductivity of  $1 \times 10^{-1}$  cm/sec. The January report presented data from wellpoints O2, I2, O1, and I1 analyzed using Boulton's method for delayed yield that estimated geometric mean hydraulic conductivities of  $2.7 \times 10^{-2}$  cm/sec for early data and  $1.2 \times 10^{-2}$  cm/s for late data. The January report also presented storage coefficient estimates from the Boulton's method with arithmetic means of 0.7 for early data and 1.44 for late data. The January report concluded that the hydraulic conductivity is  $1.8 \times 10^{-2}$  cm/sec and the storage coefficient is 1.0.

The January report results are similar to the results presented in this report. The hydraulic conductivities estimated using the Cooper-Jacob method for late time data were nearly identical in both reports. The recovery late time data hydraulic conductivities are lower in this report then in the January report because the analysis presented here included an adjustment of the data to remove a trend of decreasing water levels not caused by the pumping test.

The January report presented used the Boulton method of analysis to examine the affects of delayed yield whereas the Neuman method was used in this report. The Boulton method is a curve matching procedure that provides two separate match points, one for early time data and one for late time data that are used to estimate early and late time aquifer properties. The Neuman method matches a curve to the entire data set and estimates one set of hydraulic parameters. The Neuman method was used here instead of the Boulton method because Boulton requires the definition of an empirical constant, known as the Boulton's delay index, which is not clearly related to any physical phenomenon (Kruseman and de Ridder 1989). Though most

of the data did not provide good early time Neuman curve matches, data from wellpoints O3 and O4 were good matches for the entire data set.

Early time drawdown data was not analyzed in this report using the Cooper-Jacob method because most of the early time data exceeded the Cooper-Jacob criteria (u < 0.05) and early time results would reflect the effects of delayed yield and the alterations to the natural aquifer caused by well installation and development. Early time recovery data was not analyzed using the Theis Recovery method because early time data reflect the impacts of elastic storage which set in after pumping stops (Kruseman and de Ridder 1989).

In conclusion, the hydraulic conductivity of the alluvial aquifer in the vicinity of Woman Creek is estimated as  $1.8 \times 10^{-2}$  to  $2.0 \times 10^{-2}$  cm/sec and the specific yield is estimated as 0.15 to 0.2. If an accurate estimate of specific yield is desired, another pumping test should be conducted with a minimum of one observation well located a distance greater than 5 feet from the pumping well.

# **B2.4.2** Tracer Tests

Results from the multiple-well tracer test were used to determine average linear velocity, longitudinal dispersion, and effective porosity. Sets of values were determined for each of the five injection well/extraction well pairs. The most reliable values were obtained from the middle well pair. Approximate values were as follows:

- Average linear velocity was  $0.07 \pm 0.02$  ft/min
- Longitudinal dispersion was  $0.2 \pm 0.1$  ft²/min
- Effective porosity was 5 to 10 percent

Judging from the physical appearance of the Woman Creek alluvium, this calculated average linear velocity may be too high and the effective porosity may be somewhat low. Comparison of the longitudinal dispersivity determined herein with values determined by other workers over similar distances suggests that the value determined from this test is somewhat large. Probable deviations are attributed to unexpected textural characteristics of the Woman Creek alluvium and

complications associated with installation and development of the wells. Extrapolation of the results determined from this study to a regional scale or to materials with differing characteristics should be made with caution. One should consider regional changes in sediment textural properties as well as the scale dependency of dispersion.

=																	
Page 1of 1	Stickup (feet)			0.95		0.82	<b>0.92</b> 1.05	1.06	1.03	<b>0.80</b> 0.80	160	1.00	1.10	1.00	06:0	66'0	0.75
	Depth to Bottom of Screen (feet)			5.8		6.2	6.0	6.1	6.2	62	6.0	6.0	5.9	5.9	6.1	6.0	6.1
	Depth Augered (feet)		SINGLE WELL	5.0	MULTIPLE-WELL ARRAY	6.5	65	5.5 4.5	5.0	6.0	6.0	5.5	5.0	4.7	5.5	5.5	5.5
	Diameter	(men)	SINGT	1.7	MULTIPLE-	1.7	1.7	1.7	1.7	1.7	1.7	1.7	17	1.7	1.1	1.7	1.7
	Installation Surminary	Date Installed		19/27/11			12/08/91 12/08/91	12/08/91	12/08/91	12/07/91	12/07/91	12/07/91 12/07/91	12/08/91	15/0/21	12/07/91	12/07/91	12/07/91 12/07/91
	Table B2-1. Wellpoint Installation Summary	Wellpoint		39891			11 22	13	41	IS 01	00	6 6	පි	E1	E2	E3	E4 E5

Notes: Measurements are from ground surface. Depth to bottom of screen was measured during development of well points. Survey coordinates for the well points are included in Attachment B2-11. Well screen length is 5 feet.

Page 1 of 1	Final Parameters  SC  TOC			960 5.1		868 4.8 1002 5.1	1012 5.3 1016 5.3		996 \$4			9/3 5.4		
		HA		7.73		7.06	6.99	7.02	7.01	707	7.03	7.18	7.00	7.02
	Surge	Block								×	-	××	×	×
	Development Method Add Decanted Development Water	Pump and Bail	SINGLE-WELL		MULTIPLE-WELL ARRAY	×	X	× ×	X	x x x	× ×	X X	×	×
mary		Bail		×		×	××	××	< ×	××	××	××	××	×
Takie R2_2 Wellpoint Development Summ		Dates Developed		12/02, 12/03/91		12/09, 12/15, 12/16/91	1 <b>2/09, 12/15, 12/16/91</b> 12/09, 12/15, 12/16/91	1209, 12/15, 12/16/91	12/09, 12/15, 12/16/91	12/14, 12/15, 12/16/91 12/14, 12/15, 12/16/91	12/14, 12/16/91	12/09, 12/14, 12/15, 12/16/91	12/14, 12/16/91	12/09, 12/14, 12/15, 12/16/91
Table R2.2	Table Dz-z	Wellpoint		39891		11	<b>12</b>	14	15	05	3 E	E1 62	<b>1</b> E3	E5





Chemical

*Background	Upper Tolerance Limit	(//om)	(10)	
			Results (mg/l)	

4.03	0.025 B	0.002 U	0.133 B	0.001 U	900 0	977	0.017	0.003	0.016 B	4.51	0003	31.8	0.197	0 0005 U	0.068	8 45.1	0.004 B	0.002 U	288	U 1000	0.015 B	0.088 E	0.051 U	0.054 BE	
,	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	Cesium	Lithium

Upper limit of tolerance interval reported in the 1990 Background Geochemical Characterization Report (DOE 1990)

- Background values not presented for metals because values in 1990 Geochemical Characterization Report represent dissolved metals concentrations whereas the results presented in this table represent total metals concentrations
  - B Indicates the compound was found in the blank and in the sample E Concentration exceeds calibration range of the instrument U Indicates compound was analyzed for, but not detected

OUI Phase III RFI/RI Report

September 28, 1992 11:30 AM thm

Table B2-3. Water Quality Sample Results

*Background Upper Tolerance Limit (mg/l)	249.35 21.98 3.43 67.08 388.76
Results (mg/l)	0.008 B 0.738 0.017 U 310.0 2.00 U 76.00 1.50 0.08 120.00 620.00 9.00
Chemical	Molybdenum Stontium Tin Bicarbonate as CaCO ₃ Bromide Chloride Fluoride Nitrate/Nitrite Sulfate Total Dissolved Solids

Upper limit of tolerance interval reported in the 1990 Background Geochemical Characterization Report (DOE 1990)

- Background values not presented for metals because values in 1990 Geochemical Characterization Report represent dissolved metals concentrations whereas the results presented in this table represent total metals concentrations
- B Indicates the compound was found in the blank and in the sample E. Concentration exceeds calibration range of the instrument Indicates compound was analyzed for, but not detected tember 28, 1992 11:30 AM thn



OUI Phase III RFI/RI M

	Sample Interval	0.5 second	1 second	5 seconds	0.5 minute	1 minute	10 minutes	100 minutes	500 minutes
Log Schedule	Elapsed Time	0 - 5 seconds	5 - 20 seconds	20 - 120 seconds	2 - 10 minutes	10 - 100 minutes	100 - 1,000 minutes	1,000 - 10,000 minutes	> 10,000 minutes
Table B2-4. Data Logger Standard Log Schedule	Log Cycle	1	2	3	4	\$\$	9	7	<b>∞</b>

Page 1 of 1

Neuman

0.4883 2.0170

0.0189

0.0372 0.0368 0.0353

0.1382

0.5508

0.0181

0.0356 0.0367 0.0385 0.0484 0.0381

0.1325 0.1338

4.51

3.72 3.65 3.37

5

0.3137

0.0344

0.1372 0.1217

2.42 3.24 5.38

0.0391

0.1391

3.56

13

3.54

0.0187

0.1344

2.1720

0.0186 0.0196

0:1191

SC

0.1298

0.071

2.25

8 ප 8 S

0.1723 0.1321

2.53 4.99

3.56 3.47

0.0164 0.0193

0.0187

0.0368 0.0323 0.0380

0.1292 0.1145 0.1353 181.9 1.162

0.0180 0.0182

1.692

1.621 1.721 1.81

0.3075 1.139 1.5800 0.9020 0.3036

0.0193 0.0219

0.0380

0.1398

0.4650 1.1450 1.5740 0.9527

0.0185

0.0364

0.1338

3.68 3.47 3.51

0.0431

0.1494

0.0219 0.0199 0.0175 0.0198

0.0431 0.0391

0.1497

3.05

2 13 4

S

(cm/sec)

(ft/min)

 $(ft^2/min)$ 

S

(cm/sec)

K (ft/min)

 $(ft^2/min)$ 

**-**  $\Xi$ 

3 م

Well

¥

Cooper-Jacob

ŝ

1.736 1.627 609.

Cooper-Jacob and Neuman analyses methods were completed for manual time-drawdown measurements for Wells 04 and E2 due to apparent transducer malfunctions.
Specific yield cannot be determined for the pumped well (Well 03) and therefore is not presented.

gtance from pumping well b = Initial saturated thickness 3, 1992 11:33 AM thm

NC = Not calculated T = Transmissivity



S' = Ratio of pumping storativity to recovery storativity

1.473 1.673

0.0223

0.0440 0.0453

0.1565 0.1482

0.4998

0.0419 0.0358

0.1491 0.1171

0.3450

0.0201

0.0395

0.1292

3.27

E5

0.0378

0.1345

3.84 5.51

3.56

3.44

3.71

3.83

.3394

0.0182 0.0213

0.3363 0.8121

0.0244

0.0151

0.1103

0.7463 0.5952

0.3241

0.0201

0.0396 0.0480 0.0297

0.1476

0.3550

0.0193 0.0248 0.0180 0.0192

0.0380

0.1418 0.1873 0.1315

5.33 3.47

3.73

E **E**2 E3 至

0.1837

0.3498

0.0489

0.0354

0.0230

1.719

1.599

0.5547

0.0185

0.1264

0.5036

0.0358 0.0364

0.1273

0.6971

0.0246 0.0193

SC

1.62  $\frac{9}{2}$ 

		O HAVE TO	T print.	act Analys	is - Coon	nalveis - Cooner- Jacob, Neuman, and Theis Recovery Methods	Neuman, a	and Theis I	Recovery	Methods		Page	Page 2 of 2
Table B.2-5. Multiple-weil rumping reserva-	Multi	Dic-well r	annymin g	Jooh	22	1	ANALYSIS METHOD Neuman	METHOD			Theis Recovery	covery	
Well b		۲,	1	X X	S	T.	K (f./min)	K (cm/sec)	S	T (ft ² /min)	K (fVmin)	K (cm/sec)	. is
(J)	3	(ft ² /min)		(ft/min) (cm/sec)		(IL*/min)	(IIIIIII)	(ass (ma)		. t			
	io Maan	0.1305	0 0391	0.0198	0.6416	0.1337	0.0374	0.0190	0.6268	0.1562	0.0439	0.0223	1.661
Ucomen A -: there	Geometric Mean		0.0393	0.0199	0.7689	0.1348	0.0376	0.0191	0.7690	0.1569	0.0441	0.0224	1.663
Standard Description	Anthineuc Mean	0.0168	0.0042	0.0021	0.5191	0.0178	0.0042	0.0021	0.5157	0.0148	0.0034	0.0017	0.081
	High		0.0489	0.0248	2.1720	0.1837	0.0480	0.0244	2.0170	0.1951	0.0530	0.0269	1.810
	Low		0.0344	0.0175	0.3137	0.1103	0.0297	0.0151	0.3036	0.1298	0.0374	0.0190	1.473

Cooper-Jacob and Neuman analyses methods were completed for manual time-drawdown measurements for Wells 04 and E2 due to apparent transducer malfunctions. Specific yield cannot be determined for the pumped well (Well 03) and therefore is not presented.

NC = Not calculated T = Transmissivity b = Initial saturated thicknessr = Distance from pumping well

K = Hydraulic conductivity S = Specific yield

S' = Ratio of pumping storativity to recovery storativity

Table B2-6 Distance-Drawdown Method	own Method			
Corrected Time (min)	T (ft²/min)	K (ft/min)	K (cm/s)	<b>ω</b>
				91.0
100	0.323	0.089	0.045	0.18
200	0.270	0.074	0.038	0.18
300	0.242	0.067	0.034	0.14
400	0.247	0.068	0.035	0.11
480	0.211	0.058	0.030	0.16
Geometric Mean	0.256	0.071	0.036	0.15
Arithmetic Mean	0.259	0.071	0.036	0.15
Standard Deviation	0.037	0.010	0.005	0.03
High	0.323	0.089	0.045	0.18
Low	0.211	0.058	0.030	0.11

Distance-drawdown analysis conducted on Wellpoints II, OI, O5, E3, and E4.

T = Transmissivity

Hydraulic conductivity



Page 1 of	Woman Creek Previous Results	Drawdown/Recovery		3 x 104 to 3 x 103	
		Distance-Drawdown	2.1 x 10 ⁻¹ to 3.2 x 10 ⁻¹ 2.6 x 10 ⁻¹	5.8 x 10 ⁻² to 8.9x 10 ⁻² 7.1 x 10 ⁻² 3.0 x 10 ⁻² to 4.5 x 10 ² 3.6 x 10 ⁻²	0.11 to 0.18 0.15
	g Test Analysis Method	Theis Recovery	1.3 x 10 ⁻¹ to 2.0 x 10 ⁻¹ 1.6 x 10 ⁻¹	3.7 x 10 ⁻² to 5.3 x 10 ⁻² 4.4 x 10 ⁻² 1.9 x 10 ⁻² to 2.7 x 10 ² 2.2 x 10 ⁻²	Not calculated
ing Test Analyses	RFI/RI Phase III Pumping Test Analysis Method	Neuman	1.1 x 10 ⁻¹ to 1.8 x 10 ¹ 1.3 x 10 ⁻¹	3.0 x 10 ⁻² to 4.8 x 10 ⁻² 3.7 x 10 ⁻² 1.5 x 10 ⁻² to 2.4 x 10 ⁻² 1.9 x 10 ⁻²	0.30 to 2.0 0.63
of Multiple-Well Pum		Cooper-Jacob	1.2 x 10 ⁻¹ to 1.9 x 10 ⁻¹ 1.4 x 10 ⁻¹	3.4 x 10 ⁻² to 4.9 x 10 ² 3.9 x 10 ⁻² 1.8 x 10 ⁻² to 2.5 x 10 ² 2.0 x 10 ⁻²	0.31 to 2.2 0.64
Test Analyses	Table B2-7. Summary		Transmissivity: Range (ft²/min) Geometric Mean (ft²/min)	Hydraulic Conductivity: Range (ft/min) Geometric Mean (ft/min) Range (cm/sec) Geometric Mean (cm/sec)	Specific Yield: Range Geometric Mean

Page 1 of 1

Table B2-8. Summary of Average Linear Velocity and Longitudinal Dispersion Values

Page 1 of 1

Well Pair	L (ft)	C。 (mg/l)	t @ C _{max} (min)	t @ C/C _o = 0.5 (min)	v (ft/min)	D ₁ (ft²/min)
I1-E1	4.78	213	464	95	0.035	0.076
I2-E2	5.04	300	443	91	0.040	0.081
I3-E3	5.85	461	462	47	0.090	0.21
I4-E4	5.05	388	461	16	0.10*	1.2*
I5-E5	4.75	313	118	18	0.18*	0.42*
I3-E3**(early)	5.85	500	•	49	0.050	0.43
I3-E3***(late)	5.85	500	-	49	0.10	0.12

#### Notes:

Results correspond to breakthrough curves plotted in Figures B2-23 to B2-27 except as noted below.

L = distance between the injection and extraction wells (data in Attachment B2-11 and calculations in Attachment B2-10, Table 4).

C_o = either 500 mg/l, the intended tracer concentration, or was defined as the average maximum estimated from the bromide concentration data.

t @  $C_{max}$  = the time at which the average maximum bromide concentration was defined.

t @  $C/C_o = 0.5$  is the time at which 50 percent breakthrough had occurred, estimated from each breakthrough curve.

 $\overline{v}$  = average linear velocity for the type curve that most closely matches the observed breakthrough curve (Figures B2-23 to B2-25).

 $D_i$  = longitudinal dispersion for the type curve that most closely matches the observed breakthrough curve (Figures B2-23 to B2-25).

- *  $\bar{v}$  and  $D_l$  were determined by interpolating between two type curves that bracketed the observed breakthrough curves (Figures B2-23 to B2-25).
- ** Results correspond to the breakthrough curve plotted in Figure B2-20 (C_o = 500 mg/l), with early data matched.
- ***Results correspond to the breakthrough curve plotted in Figure B2-20 (C_o = 500 mg/l), with late data matched.

Well Pair	K (ft/min)	Δh (ft)	ΔL (ft)	ah/aL	⊽ (ft/min)	n _e (%)
I1-E1	0.047	0.42	4.78	0.088	0.035	12
I2-E2	0.045	0.40	5.04	0.078	0.040	9
13-E3	0.043	0.41	5.85	0.071	0.090	3
14- <b>E</b> 4	0.045	0.42	5.05	0.083	0.10	4
I5-E5	0.041	0.32	4.75	0.067	0.18	2
I3-E3**(early)	0.043	0.41	5.85	0.071	0.050	6
13-E3***(late)	0.043	0.41	5.85	0.071	0.10	3

### Notes:

Results correspond to breakthrough curves plotted in Figures B2-23 to B2-27 except as noted below.

K = hydraulic conductivity calculated using the Theis Recovery method. Values listed are averaged values from the injection, observation, and extraction wells, except for sets 2 and 4, for which no conductivity values were available for the extraction well (E2) and observation well (O4), respectively, due to pressure transducer malfunctions.

Ah = hydraulic head (Attachment B2-10, Table 4).

 $\Delta L$  = distance between the injection well and extraction well (data in Attachment B2-11, Table 1 and calculations in Attachment B2-10, Table 4).

 $\Delta h/\Delta L = hydraulic gradient.$ 

 $\overline{v}$  = average linear velocity (Table B2-8).

 $n_{t}$  = calculated effective porosity (see text).

- ** Results correspond to the breakthrough curve plotted in Figure B2-20 (C_o = 500 mg/l), with early data matched.
- ***Results correspond to the breakthrough curve plotted in Figure B2-20 (C₀ = 500 mg/l), with late data matched.



## * For single well point 39891:

Borehole diameter 6 inches Static water level 2 feet Bottom of borehole 5 feet

U.S. DEPARTMENT OF ENERGY Rocky Flats Plant, Golden, Colorado

881 Hillside Area Operable Unit No. 1 Phase III RFI/RI Report

**General Wellpoint Construction** 

Figure B2-2 June 1992





U.S. DEPARTMENT OF ENERGY

Rocky Flats Plant Golden, Colorado

881 HILLSIDE AREA OPERABLE UNIT NO. 1 PHASE III RFI/RI REPORT

December 3, 1991 Step-Drawdown Test Results Figure B2-4



■ Drawdown Discharge

U.S. DEPARTMENT OF ENERGY

Rocky Flats Plant Golden, Colorado

881 HILLSIDE AREA OPERABLE UNIT NO. 1 PHASE III RFVRI REPORT

December 6, 1991 Step-Drawdown Test Results Figure B2-5



# U.S. DEPARTMENT OF ENERGY

Rocky Flats Plant Golden, Colorado

881 HILLSIDE AREA OPERABLE UNIT NO. 1 PHASE III RFI/RI REPORT

December 6, 1991 Step-Drawdown Test Results Hantush-Bierschenk Analysis Figure B2-6









881 HILLSIDE AREA OPERABLE UNIT NO. 1 PHASE III RFI/RI REPORT

Single-Well Tracer Evaluation Tests Breakthrough Curves Figure B2-10







881 HILLSIDE AREA OPERABLE UNIT NO. 1 PHASE III RFI/RI REPORT



Multiple-Well Tracer Test Bromide Concentration vs. Time for Wells E1-E5 Figure B2-13



$\nabla$ = 0.1 ft./min. L= 5.0 ft.	
t @ C/C ₀ = 0.5 (min.) (a) 10	D _g (ft. ² /min.) 2.2
20 30 40	0.80 0.35 0.13
(e) 50	0.0026

881 HILLSIDE AREA OPERABLE UNIT NO. 1 PHASE III RFI/RI REPORT

Type Curves for Velocity=0.1 ft./min. Figure B2-14





681 H DE AREA
OPERAF UNIT NO. 1
PHASE L AFI/RI REPORT



Type Curves for Velocity= 0.05 ft./min. Figure B2-15



$\nabla$ = 0.1 ft./min. L= 5.0 ft.	
t @ C/C _o = 0.5 (min.) (a) 10 20 30 40 50 60 90 120	D _k (ft. ² /min.) 2.7 1.3 0.86 0.63 0.49 0.40 0.25 0.17
240 (j) 360	0.058 0.020

881 HILLSIDE AREA OPERABLE UNIT NO. 1 PHASE III RFI/RI REPORT

Type Curves for Velocity =0.01 ft./min. Figure B2-16



$\overline{v}$ = 0.001 ft./min. L= 5.0 ft.	
t @ C/C _o = 0.5 (min.)  (a) 10 20 30 40 50 60 90	Og (ft. ² /min.) 2.7 1.4 0.91 0.68 0.54 0.45 0.30
120 240 (j) 360	0.22 0.11 0.071

881 HILLSIDE AREA OPERABLE UNIT NO. 1 PHASE III RFI/RI REPORT

Type Curves for Velocity =0.001 ft./min
Figure B2-17



> 881 HILLSIDE AREA OPERABLE UNIT NO. 1 PHASE III RFI/RI REPORT

Multiple—Well Tracer Test Breakthrough Curve for Wells 11—E1 (C₀=500 mg/l) Figure B2—18



881 HILLSIDE AREA OPERABLE UNIT NO. 1 PHASE III RFI/RI REPORT



Multiple-Well Tracer Test
Breakthrough Curve for Wells 12-E2
(Co=500 mg/l)
Figure B2-19



$C/C_0 = 0.5 @ 49$	min.
▼ (ft./min.)	D ₂ (ft. ² /min.)
(a) 0.1	0.12
0.09	0.18
80.0	0.24
0.07	0.30
0.06	0.37
0.05	0.43
0.04	0.50
0.03	0.57
(i) 0.01	0.70

U.S. DEPARTMENT OF ENERGY Rocky Flats Plant Golden, Colorado

881 HILLSIDE AREA OPERABLE UNIT NO. 1 PHASE III RFI/RI REPORT

Multiple-Well Tracer Test Breakthrough Curve for Wells 13-E3 Figure B2-20

JUNE 1992







 $C_o$  = 213 mg/l L= 4.78 ft. C/Co = 0.5 @ 95 min. V D₀ (ft. /min.) (ft.2/min.) (a) 0.045 0.026 0.040 0.051 0.035 0.076 0.030 0.10 (e) 0.025 0.13

U.S. DEPARTMENT OF ENERGY Rocky Flats Plant Golden, Colorado

881 HILLSIDE AREA OPERABLE UNIT NO. 1 PHASE III RFI/RI REPORT



Multiple-Well Tracer Test Breakthrough Curve for Wells 11-E1 Figure B2-23



U.S. DEPARTMENT OF ENERGY Rocky Flats Plant Golden, Colorado

881 HILLSIDE AREA OPERABLE UNIT NO. 1 PHASE III RFI/RI REPORT

Multiple-Well Tracer Test Breakthrough Curve for Wells 12-E2 Figure B2-24

JUNE 1992



U.S. DEPARTMENT OF ENERGY Rocky Flats Plant Golden, Colorado

> 881 HILLSIDE AREA OPERABLE UNIT NO. 1 PHASE III RFI/RI REPORT



Multiple—Well Tracer Test Breakthrough Curve for Wells 13—E3 Figure B2—25



 $C_o = 388 \text{ mg/l}$  L = 5.05 ft.  $C/C_o = 0.5 \text{ @ } 16 \text{ min.}$  V (ft./min.) O.20 O.16 O.12 O.12 O.080 O.080

U.S. DEPARTMENT OF ENERGY Rocky Flats Plant Golden, Colorado

881 HILLSIDE AREA OPERABLE UNIT NO. 1 PHASE III RF1/RI REPORT

Multiple-Well Tracer Test Breakthrough Curve for Wells 14-E4 Figure B2-26

JUNE 1992



C _o =313 mg/l L= 4.75 ft. C/C _o = 0.5 <b>@</b> 18	min.
(ft. /min.) (a) 0.25 0.20 0.15 0.10 (e) 0.050	D _k (ft. ² /min.) 0.068 0.31 0.57 0.84 1.1

U.S. DEPARTMENT OF ENERGY Rocky Flats Plant Golden, Colorado

881 HILLSIDE AREA OPERABLE UNIT NO. 1 PHASE III RFI/RI REPORT



### Aquifer Pumping Test December 18-19, 1991



Cooper-Jacob Neuman Theis Recovery

U.S. DEPARTMENT OF ENERGY

Rocky Flats Plant

Golden, Colorado

881 HILLSIDE AREA OPERABLE UNIT NO. 1 PHASE III RFI/RI REPORT

Summary of Estimated Hydraulic Conductivities by Wellpoint Figure B2-28

**JUNE 1992** 



### U.S. DEPARTMENT OF ENERGY

Rocky Flats Plant

Golden, Colorado

881 HILLSIDE AREA OPERABLE UNIT NO. 1 PHASE III RFI/RI REPORT

Estimated Specific Yields
vs
Distance from
Pumping Wellpoint
Figure B2-29

JUNE 1992

# Attachment B2-1 Field Activities Chronology

Phase III RFI/RI Report

Day Date	Time	Activity
T-W 11/05-06/9	1 -	Site reconnaissance of three planned multiple-well pumping and tracer test sites (Sites 1, 2, and 3).
Th 11/07/91	-	Drill borehole 38691/monitoring well 37 in Site 1 vicinity. Bedrock encountered at 6.5 feet, total depth of 10.2 feet; borehole is dry; borehole abandoned.
	-	Drill monitoring well 37 offset/borehole 38791 located 20 feet north of Borehole 38691. Bedrock encountered at 6.5 feet, total depth of 10.2 feet; borehole is dry; borehole abandoned.
W 11/13/91	-	Drill pilot hole 1/borehole 39091 for Site 1, located 98.7 feet east of borehole 30091/borehole 54. Borehole was offset twice due to auger refusal. Bedrock encountered at 6 feet, total depth of 8 feet. Approximate depth to water of 2.6 feet; borehole abandoned (11/14/91).
Sat 11/16/91	-	Drill pilot hole 2/borehole 39391 for Site 2. Bedrock encountered at 4.5 feet, total depth of 8 feet; borehole is dry; borehole abandoned.
T 11/26/91	. <del>-</del>	Drill pilot hole 3/borehole 39791 for Site 3. Bedrock encountered at 4.5 feet, total depth of 8 feet; borehole is dry; borehole abandoned.
W 11/27/91	-	Install single wellpoint (39891) for single-well step-drawdown and tracer evaluation tests, located 29.3 feet east (approximately downgradient) of pilot hole 1/borehole 39091. Augered to an approximate depth of 5 feet, driven to an approximate depth of 6 feet. Approximate depth to water of 2 feet.
M 12/02/91	· -	Development of wellpoint 39891. Wellpoint bailed dry after removal of approximately six well casing volumes (3 gallons).
T 12/03/91	-	Continue development of single wellpoint until parameters (i.e., pH, conductivity, and temperature) stabilize. Collect water quality sample (BH01010EBU1) after development complete.
	14:59	Start step-drawdown test.

Day	Date	Time	Activity
		16:13	Stop step-drawdown test, wellpoint is pumped dry during second step of test. Test conducted for an elapsed time of 74 minutes.
F	102/06/91	10:20	Start second step-drawdown with lower pumping rates than test of 12/03/91.
	·	16:15	Stop pumping; test consisted of eight steps for an elapsed time of 355 minutes. Monitoring well recovery.
		16:35	Stop data logger after well recovery.
Sat	12/07/91	-	Install wellpoints for multiple-well pumping and tracer tests. Nine wellpoints installed (Wellpoints E1 to E5, and O1 to O4).
Sun	12/08/91	-	Continue installation of wellpoints. Six wellpoints installed (wellpoints O5 and I1 to I5). All wellpoints were driven to an average depth of 6 feet.
M	12/09/91	-	Development of wellpoints in multiple-well array.
		-	Field preparation for single-well tracer test evaluation for distilled water.
T	12/10/91	-	Field preparation, continued.
		16:10	Began injection stage with distilled water.
		23:02	Finished injection stage; injected 30 gallons in 412 minutes.
		23:12	Began extraction stage.
W	12/11/91	09:20	Finished extraction stage; extracted 38 gallons in 583 minutes.
Th	12/12/91	-	Field preparation for single-well tracer test for potassium bromide solution.
F	12/13/91	-	Field preparation, continued.
		08:58	Began injection stage with bromide solution.
		15:55	Finished injection stage; injected 30 gallons in 407 minutes.
881/F	RPT0061 9/30/92	9:54 am pf	OU1 Phase III RFI/RI Report

<u>Day</u>	Date	Time	Activity
		16:02	Began extraction stage.
Sat	12/14/91	04:22	Finished extraction stage; extracted 41 gallons in 633 minutes. Development of wellpoints in multiple-well array, continued.
Sun	12/15/91	•	Development of wellpoints, continued.
M	12/16/91	•	Completed development of wellpoints; field preparation for multiple-well constant-rate pumping test.
Т	12/17/91	12:00	Field preparation, continued. Start multiple-well pumping test.
		16:56	Multiple-well pumping test discontinued after six successively higher pumping rates failed to induce measurable drawdown in the wellpoints.
w	12/18/91	12:46 20:46	Start multiple-well pumping test. Stopped pump after an elapsed time of 480 minutes, start monitoring recovery.
Th	12/19/91	11:36	Shut off data loggers and stopped monitoring recovery after an elapsed time of 890 minutes.
M	12/30/91	-	Measured water levels in wellpoint array.
Th	01/02/92	-	Measured water levels in wellpoint array.
M	01/06/92	-	Measured water levels in wellpoint array.
M	01/13/92	-	Measured water levels in wellpoint array.
Th	01/21/92	-	Field preparation for multiple-well tracer test.
w	01/22/92	-	Field preparation, continued.
Th	01/23/92	-	Field preparation, continued.
		09:50	Began establishing gradient; adjust electrodes.
		14:40	Gradient satisfactory, system stabilized.

Day	Date	Time	<u>Activity</u>
		15:05	RFP wide field operations halted due to high winds.
F	01/24/92	-	Field preparation, continued.
		08:46	Began establishing gradient; adjust electrodes.
		12:20	Made final adjustments.
		13:45	RFP-wide field operations halted due to high winds.
Sat	01/25/92	-	No activities attempted due to high winds.
Sun	01/26/92	-	No activities.
M	01/27/92	-	Field preparation, continued; thaw ice in tubing.
		10:30	Began establishing gradient; adjust electrodes.
		13:56	Made final adjustments.
		15:00	Began injecting bromide tracer solution.
T	01/28/92	00:04	Test stopped.
		-	Began dismantling tracer test equipment.
w	01/29/92	-	Finished dismantling and removing tracer test equipment. All wellpoints removed; boreholes grouted and abandoned.

# Attachment B2-2 Single-Well Test Equipment

Phase III RFI/RI Report

### WELL INSTALLATION

The following is a list of equipment and materials used for the single wellpoint installation:

- B-57 Mobile Drill (3.25-inch-I.D. hollow stem augers, 6.25-inch drill bit)
- 1.7 inch I.D. stainless steel wellpoints (two 5-foot screen lengths, 0.010-inch slot size)
- 1.5 inch I.D. carbon steel extension rod (5-foot length)
- Bell reducer
- · Weighted tape measure
- Tape measure
- Solinst electronic water level meter (sufficiently accurate to measure water levels to the nearest 0.01 foot)
- Distilled water
- Plastic sheeting/scissors
- Clipboard/black permanent pens
- · Copy of site map
- Field logbook/watch
- Copy of EMD SOPs
- Appropriate field form (Form GT.2A; Hollow-Stem Auger Drilling Field Activities Report)
- Appropriate health and safety instrumentation, equipment, and personal protective equipment (PPE)

### WELL DEVELOPMENT AND SAMPLING

The following is a list of equipment and materials used for development and sampling of the single wellpoint:

### Development:

- Teflon bottom filling bailer (1.25-inch O.D., 3 feet long)
- Portable pH meter (Orion Model 230A) with appropriate pH buffer solutions
- Portable conductivity meter (YSI Model 33 (12/02/91) or Hach Model 44600 (12/03/91))
   with appropriate conductivity standard
- Solinst electronic water level meter (sufficiently accurate to measure water levels to the nearest 0.01 foot)
- Distilled water
- Plastic sheeting/scissors
- Nylon rope
- Borosilicate beakers
- Graduated flask
- Nalgene wash bottle filled with distilled water
- · Paper towels
- Card table
- 55 gallon drum(s) for temporary containment of development water
- Clipboard/black permanent pens
- Field logbook/watch
- Copy of EMD SOPs
- Appropriate field forms (Forms GW.1A and GW.2A)
- Appropriate health and safety instrumentation, equipment, and PPE

### WELL DEVELOPMENT AND SAMPLING

#### Sampling:

In addition to the above, the following equipment was used for sampling:

- 5 kW generator/extension cord/gasoline/funnel
- Geotech variable speed peristaltic pump with Masterflex No. 16 pumphead, 60 to 350 rpm, appropriate lengths of tubing (silicone and nylon) and barb valves
- Appropriate sample bottles
- Sample cooler with sufficient blue ice to cool samples to 4°C
- Appropriate sample preservatives (nitric acid, sulfuric acid)
- · Chain of custody forms
- Sample labels/custody seals
- Appropriate field form (Form GW.6B)

#### STEP-DRAWDOWN TEST

The following is a list of equipment and materials used for the single-well step-drawdown test:

- 5 kW generator/extension cords/gasoline/funnel
- Geotech variable speed peristaltic pump, Masterflex No. 16 pumphead, 60 to 350 rpm, with a minimum capacity of 0.03 gpm, with appropriate lengths of tubing (silicone and nylon), tubing weight, and barb valves
- Variable-area flow meter, 65 mm column, 0 to 267 ml/min range (0 to 0.071 gpm) and a graduated flask
- Hermit SE 2000 data logger (8 channel)
- 5 psi pressure transducer (accuracy of  $\pm$  0.14 inch) or 10 psi pressure transducer (accuracy of  $\pm$  0.28 inch) with cable, reel, and jumper cables
- Portable IBM compatible personal computer
- Solinst electronic water level meter (sufficiently accurate to measure water levels to the nearest 0.01 foot)
- Distilled water
- Plastic sheeting/scissors
- Card table
- 55-gallon drum(s) for temporary containment of pumping test water
- Calculator/clipboard/black permanent markers
- Field logbook/watch (readable to 1-second increments)
- Copy of EMD SOPs
- Appropriate field form (Aquifer Pumping Test Data Sheet)
- · Appropriate health and safety instrumentation, equipment, and PPE

# TRACER EVALUATION TEST DISTILLED WATER TRACER

The following is a list of equipment and materials used for the single well tracer evaluation tests for distilled water.

- Distilled water
- 30-gallon HDPE tank with spigot
- Geotech variable speed peristaltic pump, with Masterflex no. 16 pumphead, 60 to 350 rpm
- Appropriate lengths and sizes of tubing (vinyl, silicone, polyethylene) and appropriately sized reducing unions, union elbows, and pipe adaptors
- Variable-area flowmeter, 65 mm column, 0 to 267 ml/min range
- Stopper, solid rubber, microstopper size, fastened into polyethylene tubing
- Flow-through conductivity cell, K = 1.0/cm, 30 ml volume (YSI model 3446)
- Conductivity meter, digital (YSI model 35)
- pH, temperature electrode with Orion model 250A meter (with automatic temperature compensation)
- pH, temperature electrode with Orion model 230A meter (with automatic temperature compensation)
- Conductivity, temperature electrode with Orion model 122 meter (with automatic temperature compensation)
- Beaker, 100 ml, polypropylene

#### General:

- 5kW generator/extension cord/gasoline/funnel
- Tape measure
- Hermit SE 2000 data logger (8 channel) 10 psi pressure transducer (accuracy of ± 0.28 inch) with cable, reel, and jumper cables

# TRACER EVALUATION TEST DISTILLED WATER TRACER

- Card table
- Plastic sheeting/scissors
- Calculator, clipboard/black permanent pens
- Field logbook/watch
- Copy of EMD SOPs
- Appropriate health and safety instrumentation, equipment, and PPE
- Solinst electronic water level meter (sufficiently accurate to measure water levels to nearest 0.01 foot)

# TRACER EVALUATION TEST BROMIDE TRACER

The following is a list of equipment and materials used for the single-well tracer evaluation test for bromide:

- Bromide solution
- 30-gallon HDPE tank with spigot
- Mixer, 500 to 1,000 rpm, 1/20 horsepower, 30-inch shaft, 2-inch diameter three-bladed propeller
- Geotech variable speed peristaltic pump, with Masterflex no. 16 pump head, 60 to 350 rpm
- Appropriate lengths and sizes of tubing (vinyl, silicone and polyethylene) and appropriately sized reducing unions, pipe adaptors, and branch tee.
- Variable-area flow meter, 65 mm column, 0 to 267 ml/min range
- · Stopper, solid rubber, microstopper size, fastened into polyethylene tubing
- Stopcock valve, PVC

#### General:

- 5kW generator/extension cord/gasoline/funnel
- Tape measure
- Hermit SE 2000 data logger (8 channel) 10 psi pressure transducer (accuracy of ± 0.28 inch) with cable, reel, and jumper cables
- Card table
- Plastic sheeting/scissors
- Calculator, clipboard/black permanent pens
- Field logbook/watch
- Copy of EMD SOPs

881/RPT0061 9/30/92 9:54 am pf

# TRACER EVALUATION TEST BROMIDE TRACER

- Appropriate health and safety instrumentation, equipment, and PPE
- Solinst electronic water level meter (sufficiently accurate to measure water levels to nearest 0.01 foot)

# Attachment B2-3 Single-Well Field Data Sheets

Phase III RFI/RI Report

PROJECT NUMBER	oul
DATE	12/7/11
PROJECT NAME	BBI HIUSIDE
BOREHOLE IDENTIFICATION	PUMP/TRALER TEST ARRAY
WEATHER CONDITIONS	SUNNY WARM TOKEF CALM
RIG TYPE	8-57 MOBILE DELL
DRILLING COMPANY/DRILLER	BOYLES BROTHERS 10. TARVIE
GEOLOGIST/ENGINEER	S. COMPLAN - GEOLOGIST
CREW MEMBERS	T. SAVILO - HEALTH & SAFETY R. SHARD - DELLER'S HELATE
WATER LEVEL/TIME	INSTRUCT ET TO ES and DI to 04 (see map below)
TOTAL DEPTH (50,54's Barbar )	E126.54 E2 = 6.44 E3 = 65 4 E4 = 6.54 E5 = 6.77
DECONTAMINATION	FIELD 01 = 6.44 03 = 6.34 04 = 6.54
ENVIRONMENTAL MATERIALS	
TYPES, VOLUMES, AND	NONE - DUE ANT BUMALIS FLUED WITH NAMED BROWNING
DRUMS USED	MATERIALS - NO DELESS SUPPLYED TO BE DRAWNED
DIAMETER OF BORING	~4 1/2 INCHES USED 4" DID SOLD STORM ANGERS
TYPE AND SIZE OF AUGERS	
AND BIT	4° O.D. SOLIO STEM ALGERS, 44" DAILL BIT
SAMPLING TYPES, DEPTHS	NONE
	SEE REVIETS PLUT NOLE 1 (39091) FOR PUMP!
	TRALAL TEST AREAY
HAMMER SIZE	[40 1b
DEPTH TO BEDROCK	6.0' SEE RESULTS PILOT HOLE I (39091) FOR AMPLITAGER TEXT
END-OF-DAY STATUS	INSTRUCTO DRIVE PUNTS EI tO ET and OI to 04 SEE MAP BELOW
CHRONOLOGICAL RECORD	0906 SHAR DAWNE DRIVER. ET
OF ACTIVITIES	OGIA DRILLERS ARE ON A ROLL DESTROYED I DRIVERENT MALL CANCE TO  SMALL 1.D. SANDSR'M ANDR  OGIL STREET AUGUSTUME DITH 4"0.0. SOND STEM RUSER AT E I
	0140 FINISH &! 1126 STATES 1232 FINISHED ES
	1950 STRATEL 1021 PANSHED EL 1240 STRATOL 134 FAMSHED OF 1034 STRATES 1854 FAMSHED ET 1511 SPATOL 1440 FAMSHED UZ 1050 STRATES 11144 FAMSHED ES
. )	MAD LINIMI 135 Jake out 10 morning 7
COMMENTS	I 2 3 4 5 1570 WIDE TO GAIT FOR THE DAY
WILL ENTRIL 05 and 6	0 * * * * * ·
IL to I5 Sw. 12/B	)
,	X= installed 12/7/91

PROJECT NUMBER	ONI
DATE	12/8/91
PROJECT NAME	BBI HILKIPE
BOREHOLE IDENTIFICATION	Pump HEALER TEST ARRAY (Temporary drive points for pump I Trace Test)
WEATHER CONDITIONS	Sunny warm T= 55°F Culm
RIG TYPE	3-57 Mebile Drill
DRILLING COMPANY/DRILLER	Boyles Brothers / D. James
GEOLOGIST/ENGINEER	C. Bioninlus - Geologist ( By S. Contran)  S. Bradfield Dailers Helper
CREW MEMBERS	M. Billman - Heathe Sufety J. Bicine - Bilkie Helper
WATER LEVEL/TIME	Not measure d
TOTAL DEPTH (TD54'= Rottom	05 = 635 I = 6.60 I = 6.50 I 3 = 6.64 I 4 = 6.72 I 5 = 6.43
DECONTAMINATION	FIELD
ENVIRONMENTAL MATERIALS	·
TYPES, VOLUMES, AND	NONE - DRIVEPT ANNULUS FILLED WITH NETHAL FRANKTIM
DRUMS USED	MATELIALS - NO PYLESS CUTTINES TO BE PRIMARY
DIAMETER OF BORING TYPE AND SIZE OF AUGERS	4 " UID SUIT Stem augers 4"/4" dill bit
AND BIT	None
SAMPLING TYPES, DEPTHS	
	14016.
HAMMER SIZE	
DEPTH TO BEDROCK	Institute drive points 05 and II to IS see map be la
END-OF-DAY STATUS	0735 can has installed 05
CHRONOLOGICAL RECORD	0744 Crew has installed IS 0757 11 = 4
OF ACTIVITIES	0808 " 13
	0826 II II TI for II crew on This on bell reducer
	Tent is a 160, setup over site 1053 craw leaves site for the day
COMMENTS	MAP IX X X X
Will start developing well pts.	0
12/9/91	

PROJECT NUMBER	oul
DATE	12/7/11
PROJECT NAME	BRI HILLSIPE
BOREHOLE IDENTIFICATION	PLMP / TRALER TEST ARRAY
WEATHER CONDITIONS	SUNNY WARM TOSSEF CALM
RIG TYPE	8-57 MOBILE DELL
DRILLING COMPANY/DRILLER	BOYLES BLOTHERS / D. TARVIE
GEOLOGIST/ENGINEER	S. CONDLAN - GEOLDEIST
CREW MEMBERS	T. SAVILO - HEALTH IS APPRY R. SHARP - DELLER'S HELATE
WATER LEVEL/TIME  TOTAL DEPTH (50,541; Ramus)  DECONTAMINATION	## MERSURED  INSTANCE E1 TO E5 and DI to 04 (SEE map below)  E1 = 0.54 E2 = 0.44 E3 = 6.54 E4 = 6.54  O1 = 0.44 O2 = 6.44 O3 = 6.34 O4 = 0.54  FIELD
ENVIRONMENTAL MATERIALS	
TYPES, VOLUMES, AND	NONE - THE BOTT AMMILES FLUED LATH MATHRAL EXPORTION
DRUMS USED	MARRIALS - NO DEERS CORREST TO BE DRIVERED
DIAMETER OF BORING TYPE AND SIZE OF AUGERS AND BIT SAMPLING TYPES, DEPTHS	4° D.D. SOLIO STEM AUGERS 4'4" DELL AT
	SEE RESULTS PLLT HOLF 1 (39091) FOR AMP!
	TRACEL TEST AREAY
HAMMER SIZE	140 lb
DEPTH TO BEDROCK	6.0' SEE RETUITS PILOT HOLE I (39091) FOR AME/TRALER TEST
END-OF-DAY STATUS	INSTRUCTO DRIVE PUNTS EL TO ES and OL TO 04 SEE MAP BELON
CHRONOLOGICAL RECORD	0906 Star Daving Daver, El
OF ACTIVITIES	OP14 DRILLERS ARE ON A ROLL PETTONED   DRIVEPORT WILL CAME TO  CHAIL I.D. SOND STEM MEDI  OP2   STELL AMERINA WITH 4"O.D. SOND STEM RUSER AT E I  OP40 FINISH & I  OP50 STELL EL 1021 FINI
• )	MAD WINTER ILLAS FINISHED EX
COMMENTS	1 2 3 4 5 1500 MIDT TO QUIT FOR THE DAY
WILL ENTRIL 05 and (g)	O # X X
11 to 15 Sw. 12/B	)
	X= installed 12/7/91

PROJECT NUMBER	- ON 1
DATE	12/0/91
PROJECT NAME	BBI HILKIDE
BOREHOLE IDENTIFICATION	Pump HARLER TEST ARRAY (TEMPOTORY drive points for)
WEATHER CONDITIONS	Sunny warm T= 55F culm
RIG TYPE	B-ST Mobile Drill
DRILLING COMPANY/DRILLER	Boyles Brothers D. Jame
GEOLOGIST/ENGINEER	C. Bienialus - Geologist ( by S. Confran)
CREW MEMBERS	M. Billman - Heatht Sufety J. Bleson - Dilkie Helper
WATER LEVEL/TIME	Not measure of 05 = 635 I. = 6.60 I 2 = 6.50 I 3 = 6.64
TOTAL DEPTH (TD54' = Rotton	05 = 6.35
DECONTAMINATION	FIRD
ENVIRONMENTAL MATERIALS	·
TYPES, VOLUMES, AND	WONE - DRIVEDT ANNULUS FILLED WITH NAMED FORMATION
DRUMS USED	MATERIALS - NO EXCESS (NOTINES TO BE PRUMED
•	
DIAMETER OF BORING	~ 11/2 INCHES ICED 4"U.D. SOLID STEM ALCERS
TYPE AND SIZE OF AUGERS	
AND BIT	4 " U.O suid stem augers 4'10" Lill b.+
SAMPLING TYPES, DEPTHS	Wonz
	See results pilot he 1 (39091) for pump!
	tour test arms
HAMMER SIZE	14016.
DEPTH TO BEDROCK	6.0' complete polot hale 1/39, 21) for peoplineer test
END-OF-DAY STATUS	Institute drive points OS and I 1 to IS see map be la
CHRONOLOGICAL RECORD	0735 can has installed 05 0746 com has installed IS
OF ACTIVITIES	0746 crew has installed IS 0757 11 I I I
	0808 " = 3
	0732 Have dilled to T.O for II crew on this as bell reducer
	1035 Craw has installed II. Tent is a 150, setup over site 1053 craw leaves site for the day
COMMENTS	MAP IX X X X
will start developing well ots.	
12/9/91	
let IIII	X = installed 12/8/91

#### WELL INSTALLATION

The following is a list of equipment and materials used for installation of the multiple-wellpoint array in addition the list provided in Attachment B2-2:

- 1.7-inch-I.D. stainless steel wellpoints (5-foot screen length, 0.010-inch slot size) for a total of 20
- 1.5-inch-I.D. carbon steel extension rods (5-foot length) for a total of 20
- Bell reducers
- Appropriate amount of 4-inch-O.D. solid stem augers (replaced 3.25-inch-I.D. hollow stem augers used in single wellpoint installation)

#### WELL DEVELOPMENT

The following is a list of equipment and materials used for development of the multiple-well array in addition to the list provided in Attachment B2-2:

- Teflon bottom filling bailer (1.25-inch-O.D., 3-foot length) for a total of 2
- pH meter (Orion Model 250A) with appropriate buffer solutions
- Conductivity meter (Orion Model 122) with appropriate conductivity standard (replaced conductivity meters used for single well development)
- Geotech variable speed peristaltic pumps with appropriate lengths of tubing (nylon and silicone) and connectors
- Surge block (consisted of 1.5-inch O.D., 3-foot length, stainless steel slug)

#### **PUMPING TEST**

The following is a list of equipment and materials used for the multiple-well pumping test in addition to the equipment used for the step-drawdown test in Attachment B2-2:

- Backup 5 kW generator
- SHURFlo Model 1424-814-78 diaphragm pump (capable of pumping rates up to 1.6 gpm)
- Hermit SE 2000 data logger (8 channel) for a total of 2
- 5 psi pressure transducers (accuracy of  $\pm 0.14$  inch) for a total of 3
- 10 psi pressure transducers (accuracy of  $\pm$  0.28 inch) for a total of 18
- Solinst electronic water level meter (sufficiently accurate to measure water levels to the nearest 0.01 foot) for a total of 2
- Polyethylene storage tanks (375-gallon and 200-gallon) for temporary storage of the pumping test water

# MULTIPLE-WELL TRACER TEST EXTRACTION WELLS EI THROUGH E5

(five sets of the following equipment)

The following is a list of equipment and materials used for the multiple-well tracer test extraction wells in addition to the genral tracer equipment list provided in Attachment B2-2:

- Diaphragm pump, self priming, 1.85 gpm maximum
- B/W Controls liquid level control relay, high sensitivity with NEMA 1 enclosure, wired in direct operation mode, with 22 kW sensitivity resistor
- Electrode suspension wire, heavy-insulated 18 gauge copper
- Stopper, solid rubber, no. 00, fastened into polyethylene tubing
- Appropriate lengths and sizes of tubing (vinyl and polyethylene) and appropriately sized pipe adaptors, reducing bushings, and branch tee
- Stopper, solid rubber, fastened into polyethylene tubing
- Electrodes (2), shielded, wire suspension type, 303 stainless, 2-inch long, 9/16-inch diameter (B/W Controls type E-1S-shielded)
- Digital flow accumulator, nylon, 0.3 to 3.0 gpm range
- Stopcock valve, PVC
- Polyethylene Storage Tanks (200- and 375-gallon) and lined 55-gallon drums

# MULTIPLE-WELL TRACER TEST INJECTION WELLS I1 THROUGH I5 (five sets of the following equipment)

The following is a list of equipment and materials used for the multiple-well tracer test injection wells in addition to the general tracer equipment list provided in Attachment B2-2:

- Stock formation water or bromide solution, in 200-gallon tank, 375-gallon tank, or lined 55-gallon drums
- · Diaphragm pump, self priming, 1.85 gpm maximum
- B/W Controls liquid level control relay, high sensitivity with NEMA 1 enclosure wired in inverse operation mode with 22 kW sensitivity resistor
- Electrode suspension wire, heavy-insulated 18 gauge copper
- Electrodes (2), shielded, wire suspension type, 303 stainless, 2-inch long, 9/16-inch diameter (B/W Controls type E-1S-shielded; no. 6013-W6)
- Appropriate lengths and sizes of tubing (vinyl and polyethylene) and appropriately sized pipe adaptor and reducing bushings
- Digital flow accumulator, nylon, 0.3 to 3.0 gpm range
- Stopper, solid rubber, no. 00, fastened into polyethylene tubing

# MULTIPLE-WELL TRACER TEST SUPPLEMENTAL SAMPLING; WELLS I-3 AND O-3

(two sets of the following equipment)

The following is a list of equipment and materials used for the multiple-well tracer test supplemental sampling wells in addition to the general tracer equipment list provided in Attachment B2-2:

- Peristaltic pump, Geotech with Masterflex no. 17 pumphead, 60 to 350 rpm
- Appropriate lengths and sizes of tubing (polyethylene, vinyl, and silicone) and appropriately sized connectors, pipe adaptor, and branch tee
- Stopcock valve, PVC
- Stopper, solid rubber, microstopper size, fastened into polyethylene tubing

#### **ABANDONMENT**

The following is a list of equipment and materials used for wellpoint abandonment:

- · Jack with chain
- Grout plant with 1-inch hose
- Reduced pH bentonite grout
- Cement bentonite grout
- · RFP water
- Black permanent pens
- Appropriate PPE
- Copy of EMD SOPs
- Appropriate field form (Form GT.5A)

Page	1	of	

			WELL	DEVELO	PMENT AND	SAMPLING	POKM	Page 1	of 1
					n / Hydruge				
Nell ID	PAMP	TRAC	ER T	EST WE	LI POINT ARR	AY WELL	PUNT T	II (SEE MAP BELLA	り
iurvey k	ocation coo	rdinates	: Norti	·	East				-
Date this	s report _	12/9	191,1	2/15/91,D	ate well install	lation /2 /8	/9/ Dat	e well development/2/ 12/15	19191
	ignation: _							12//5	191,12/10/91
round	elevation: F	st:			Survey:				_
creened	interval: _	ارا ر	704	6.1 (For	installation) ddmins developme	Formation	: <u>Woman Cr</u>	Well stick up: "/. 0 3 \$ 6 (12/5) 3 19 (12/19)	MAM
de <b>as</b> wi	ng point (M	P): To	of we	ll casing/o	ther. Top of	WELL CA	34 12/9/91	Well stick up: "1.0	11]) 7.33(12/15/19
Vater le	vel (below)	MP): \$	itart: _	2.84	· <u></u>	End:	reasured !	219/12/14/	II) B. B. (ISMANI)
				3 05	• •	W.		(BGS) ~ 1.84'	
4-4b-4	d to		nter le	Electr	onic water bed	4 (161) F	ctimated rec	harpe rate: Alst eshout	ed
/olume	of saturates	d annul	us ( <u>as</u> sı	ıme 30 per	cent porosity):	Not us	ed to calculate out S	op to 2 sec 5.7.1	<u>.</u> 1
'olume	Celmisting	- 401	(46'20)	Volume	=1Tr2h = 1	T (0.0305	31)2 4.21	= 0-06635x 7.484	ell= 0.50 mll
	of water u		•					4+3	
epth of	sediment (	(below)	MP): B	efore: _7	.65'	पुनारा, । घाडारा 🕽	After	7.05	,
)evelopi	ment equip	ment: .	Te	flen buile	14" 0.D	A , Bei	staltic pur	P 350cpm (12/16/9)	
ampling	equipment	t:	10+ 50	mpled	PH 4,01 =	4.00 DB.	1°C 7'	thoo measured this	-
H mete	T No. 5/N	001757		Calibration	E: 2H 10.01	= 10.14 =	13.00	0 15.1°C	· ·
pecific	conductance	e meter	No.: _	2N 48110	23 Calibra	tion:	mesured	1040 maks & H. 40	
.T.U. <b>z</b>	neter No.: 1	NA pv	6N 50	<u> 12.08</u> C	alibration:	√A	·	<u></u> .	<b>-</b>
Time	Pumping Rate	FIU	pH	Temp.	S.C.		aL of H ₂ O moved	Physical Description of Water	
	gpen				€ •C	Gallons	Casing Vols.		
113 4	L.2	1	7.70	7.1	734	0	0	DK. bran, vy sitty	
1156	A. Stale.	-	7.36.	6.1	645	2.25	1/2	11	
1159		-	7.41	5.1	601	0.50	1	61	
1204		_	7.52	6.1	602	0.75	15	g1	
1209		-	7.50	5-1	693	1.0	2	. "	
1212		-	7.44	5.1	727	1.25	242	.1	
12.16		_	7.1	leit	725	1.50	3	*1	1

12/9/11

1220

1224

1227

5 1234 Comments:

724

731

732

6.1

12/15 Pumped/builed sitt from bottom wellownt is producing well-no parameters collected
12/16 Pumped well a 25 minute until water clear
Callacked final round of measurements after additional development activities: (4011-000-0027) (CANDLENT) (CANDENT) (CAND 10-61) (CAND 10-61) (CAND 10-61)

3/2

4

5; H is decreasing

1.75

2.0

2.25

							•		
					1 Hydrogenlo				•
Vell ID	Pump	TRACE	e T	ST WOUL	DINT MERA	y was A	WITE	(SEE MAR BELOW)	
urvey k	ocation coo	rdinates	: North	· ·	East				
ate thi	report _	12/	9/91,1	2/15/11, De	te well install	ation 12/	8/91 Date	e well development /2/	
/ell des	ignation:			12/14/1	•	·		<del></del>	414/91
	aleustion: I	سا ،	12	SEE MA B	Survey:				
creencé	(from toren	i garbare,	) 5.96 +	5.96' (in	es sured at times	Formation	Noman Co	at Valley Fil Allemin	<u>in</u>
lesenri	e point (M	IP): Tot	0 - 6	O'(HELS	dering development. TOP o	ent anni) Fuell ca	2116-	Well stick up: ~ 1.0	(133)
loton la	ag prant (s.	7 (D/)	tart.	2 44'		End: NA	maured	386.3.41(1415191) 12/11/1 4.30(12)1	dairy Justy. 91417
						سيت سس	acpts	m (BGS) -2.01	440 344 (12)15
				6.93'	oric eleter le	va 1	7 ·	1/ <b>4</b>	
								harge rate: Not estimate	
olume	of saturated	d annulu	rs ( <b>a</b> ssu	ıme 30 perc	ent porosity):	ومنكوعي	Yeluna	per SOP GN. 2 SCC.	5.2.1.1
olume	Calculation	: <u> </u>	لحمقته	ng volum	c = Treh	= 11 (0.0	7083)239	1 = 0,00 289 x 748 3	. 0.47 gall. = 0.65 and
uantity	of water n	sed duri	ing dril	ling:	NE				-
epth of	sediment	(below l	MP): B	elore:	93	भगग)	After:	Not measured 12/9/9	٠ .
						eristatic s	mp 3500	om (12/15/91,12/14/1	ر <u>ب</u>
									-
	Ori	on Hole	1230A	Calibration	PH 4.01=	4.00 W 13.1 In.H. a. 13	OC PH 7	00 measued 7,11.20 15.10C	
n mete	1 140' <u>"2\W</u>	80112		Orion Hod	:	Con	iductivity 5	tended = 1,000 pendes 2 cued godo mentes es	see.
pecuic (	CORGUCIANE	c melei	140 12	2 3/4 1811	JES CERUIA				2144°c
pecuic (	CORGUCIANE	c melei	140 12	2 3/4 1811	libration:				- 144°C
pecuic (	CORGUCIANE	c melei	140 12	2 3/4 1811	JES CERUIA				
pecuic (	CORGUCIANE	c melei	140 12	2 3/4 1811	JES CERUIA	Com. Vo	of H ₂ O soved	Physical Description of Water	•

12/9/41

Time	Rate		FTU pH Temp. °C	Temp.	S.C. umbos/cas e.*C		ol of H ₂ O moved	Physical Description of Water	
	ge.				E-C	Gallous	Casing Vols.		
1239	£.15	_	7.43	6.1	708	0	0	DK bom silty	
1241	1.	_	7.54	6.1	778	0.25	1/2	"	
1243			7.52	6.1	770	0.50	1: 1		
1245		-	7.50	6.1	768	0.75	112	и .	
1248			7.50	6.1	813	1.0	2	11	
1251		-	251	6.1	837	1.25	21/2	н	
1253		_	7.53	7.1	787	1.5	3	decreasing sitt conti	
1255		-	7.55	6.1	836	1.75	34	1	
1301		-	7.62	6.1	\$55	2.0	4	. 14	
130+		-	7.04	6.1	846	1.25	41/2	ч .	
1304	<b>+</b>		7.01	10.10	2 507	7.5	\$	11	
Commen	ls:	MA	2]	<u> </u>	<i>•</i>		11		
		. •		0.			· · ·	• •	

Ε 12/15 Pumped well a 25 minute antil water clear Collected additional round of measurements. after additional development activities: 12/16

(4011-500-0027) (GWZREVJ)(50-10-91) PH 7.00 Temp 5-1 COND 1002 Ht. gray

12/4/91

## WELL DEVELOPMENT AND SAMPLING FORM

				•					
Recorder	's Name a	nd Title		. CONDEAN	HY DEOGEOU	.06157		Les mos spar	. 12
						vene	1111 7 13	( SEE MAP BELOW)	•
_					East				
Date this	report _	12/9/	نلبلة	115/41 DI	ste well installs	uion _121	BMI_Dat	e well development 12/9	
Well desi	gnation: _	# 13	SEE	MAP BE	LOW		·		12/14/91
Ground e	levation: E	ist:			Survey: .				•
Screened	interval:	1.	1 40 6	1. ( -3-	sored at time.) -	Formation	Noman ce	eck willy fill accurate	
Measurin	g point (M	).( [P): <b>To</b> j	of wel	i casing/of	deducing develop her:	an casing	<u></u>	Well stick up: ~1.0' (	1.03')
Water lev	rel (below)	MP): S	itart:	3.05	•	End:	measured 13/5/	1 3.41 ((12/14/4))	- 3.67 (12ksh1) 3.56(12kkl)
	•	-		7.08	·	w	ater elevation	(BGS) <u>-2.02'</u>	
Method 1	sed to me	asure W	ater lev	el: <u>mek</u>	ric water less r (solinst m	1.	dimeter the	harge this: N/H W/A lack	
Volume (	of saturates	d annuli	ns (assu	me 30 pero	cent porosity):	- Yelune	300	LN. 2 Src. 5.2.1.1	
Volume (	Calculation	: 401	casing	Volume:	= Trah	- T(0.0	7083.)24.	03 = 0.06352 TX 7.489	al=0.489al
Quantity	of water to	sed duri	ine drill	ing Now	£				
Depth of	sediment	(below !	MP): B	elore: 7.	08		After	Not masswed 12/1/91	
Develope	nent equip	ment:	Tel	lan bail	1/4" 0.1	2/1/11,12/15 2. Ren	191) staltic <u>Par</u>	: Not measured 12/9/91  p 350 cpm (12/15/91	(19 إمالا 12 ر
				moled			• .		
	. Orio	n Hodel	230A		PH 4.015 4			300 medical 311 213,	lo¢ :
pri meter	NO	2014 32		Fion Mode	1 122 Calibras	Cond	. Std. = 10	40 D 144. C	
							cesura 10	• •	
F.T.U. m	eter No.: _	NA p	V 50P	2.08 Ca	libration:	<del>.</del>			
			,						•
Time	Pumping Rate	FTU	Hq	*C	S.C.		oL of H ₂ O noved	Physical Description of Water	
	the				æ °C	Gelloss	Casing Vols.		•
1313	1.6	-	7.48	6.1	853	0	D	DK. brown vid. silty	
1317	1		7.49	7.1	797	0.25	ソレ		
1319			7.52	7.1	828	0.50	1:1	01	
1322			7.59	6.1	759	0.75	11	/	
1325			7.58	7.1	85D.	1.0	2		•
1329		_	7.64	6.1	904	1.25	21/2	11	
1332	<b>——</b>	<u> </u>	7.68	7.1	929	1.50	3	1+. 60m 45531 7	
1335		-	7.68	<u>b.1</u>	933	1.75	312	1th brown 1055 city	
1338	<del></del>	<del> </del>	7.64	6.1	938	2.25	41/2	(,	
1341	<u> </u>		7.71	<u>                                      </u>	938			ا <del>رسی در سی در در در در در در در در</del>	• .
0-	-4		TMAP		2 3.	4 5			·.
Comme	nus:		Y				-N .		

12/15 Pamped bested 5:14 from bottom wellpant is a good produce -no parameter of collected 12/14 Pumped well a 25 minutes until water clear Conducted additional round of measurements after additional development activities; Conducted additional ph 6.19 Temp 5.3 COND 1012 H. grang

Recorder's Name and Title

## WELL DEVELOPMENT AND SAMPLING FORM

Page	z	of	2
, ,	_		

Vell ID								
ervey i	location co	ordinat	es: Nort	Ь	East _			
ate thi	is report			1	Date well insta	llation	Da	te well development
/eli de:	signation:					•		<del></del>
						_		·
Teened	d interval:				·	_ Formatio	<u>e:</u>	
		-	-	-				Well stick up: _
ater ic	vel (below	MP):	Start: _			_ End:		
								on (BGS)
								barge rate:
								·
								·
••		-4-						,
I meter	r No			Calibratio	n:			<del></del>
meter ecilic c	r No	e mete	r No.: _	Calibratio	n: Calibra	tion:		
i meter ecilic c	r No	e mete	r No.: _	Calibratio	n:	tion:		
i meter ecilic c r.U. m	r No conductant eter No.:	æ mete	r No.: _	Calibratio	n: Calibra	tion:		
i meter ecilic c	r No conductance eter No.: Pumping Rate	e mete	r No.: _	Calibratio	Calibra Calibration:	tion:		
I meter ecilic c f.U. m	r Noconductance eter No.: Pumping Rate gpm	E mete	r No.: _	Calibratio C	Calibra Calibration:  S.C.  S.C.  S.C.  S.C.  S.C.  S.C.  S.C.  S.C.  S.C.  C. S.C.  S.C.	tion:	cel, of H ₂ O moved Casing Vols.	Physical Description of
I meter ecilic c r.U. m	Pumping Rate gran	E meter	PH 7.68	Calibratio	Calibra Calibra Calibration:  S.C. Machon/can E°C	Com. V Res Gellons 2 · 5	ol. of H ₂ O moved Casing Vols.	Physical Description of Water  H. bauer
I meter ecific c	Pumping Rate gran	E meter	PH 7.68	Calibratio	Calibra Calibration:  S.C.  S.C.  S.C.  S.C.  S.C.  S.C.  S.C.  S.C.  S.C.  C. S.C.  S.C.	Com. V. Ret	cel, of H ₂ O moved Casing Vols.	Physical Description of Water
I meter ecilic c r.U. m	Pumping Rate gran	E meter	PH 7.68	Calibratio Coloratio	Calibra Calibra Calibration:  S.C. Machon/can E°C	Com. V Res Gellons 2 · 5	ol. of H ₂ O moved Casing Vols.	Physical Description of Water  H. bauer
I meter ecilic c r.U. m	Pumping Rate gran	E meter	PH 7.68	Calibratio Coloratio	Calibra Calibra Calibration:  S.C. Machon/can E°C	Com. V Res Gellons 2 · 5	ol. of H ₂ O moved Casing Vols.	Physical Description of Water  H. bauer
I meter ecilic c r.U. m	Pumping Rate gran	E meter	PH 7.68	Calibratio Coloratio	Calibra Calibra Calibration:  S.C. Machon/can E°C	Com. V Res Gellons 2 · 5	ol. of H ₂ O moved Casing Vols.	Physical Description of Water  H. bauer
I meter ecilic c r.U. m	Pumping Rate gran	E meter	PH 7.68	Calibratio Coloratio	Calibra Calibra Calibration:  S.C. Machon/can E°C	Com. V Res Gellons 2 · 5	ol. of H ₂ O moved Casing Vols.	Physical Description of Water  H. bauer
I meter ecilic c r.U. m	Pumping Rate gran	E meter	PH 7.68	Calibratio Coloratio	Calibra Calibra Calibration:  S.C. Machon/can E°C	Com. V Res Gellons 2 · 5	ol. of H ₂ O moved Casing Vols.	Physical Description of Water  H. bauer
I meter ecilic c r.U. m	Pumping Rate gran	E meter	PH 7.68	Calibratio Coloratio	Calibra Calibra Calibration:  S.C. Machon/can E°C	Com. V Res Gellons 2 · 5	ol. of H ₂ O moved Casing Vols.	Physical Description of Water  H. bauer
I meter ecilic c r.U. m	Pumping Rate gran	E meter	PH 7.68	Calibratio Coloratio	Calibra Calibra Calibration:  S.C. Machon/can E°C	Com. V Res Gellons 2 · 5	ol. of H ₂ O moved Casing Vols.	Physical Description of Water  H. bauer
meterific configuration of the second of the	Pumping Rate gpm	E meter	PH 7.68	Calibratio Coloratio	Calibra Calibra Calibration:  S.C. Machon/can E°C	Com. V Res Gellons 2 · 5	ol. of H ₂ O moved Casing Vols.	Physical Description of Water  H. bauer
I meter ecilic c r.U. m	Pumping Rate gpm	E meter	PH 7.68	Calibratio Coloratio	Calibra Calibra Calibration:  S.C. Machon/can E°C	Com. V Res Gellons 2 · 5	ol. of H ₂ O moved Casing Vols.	Physical Description of Water  H. bauer

(4011-600-6022) (GW2REV.1)(09-16-91)

12/9/91

F.T.U. meter No.: NA OU GW Sop 2 Calibration:

#### WELL DEVELOPMENT AND SAMPLING FORM

Page 1 of 1
Recorder's Name and Title 5. CONDEAN / HYDROGEDUCC-15T
Well ID Pume ITRACER TEST WELPOINT ARRAY MOULONT #14/SEE MAP BEOW)
Survey location coordinates: North East
Date this report
Well designation: # I4 SEE MAP BELOW 12/16/9,
Ground elevation: Est: Survey:
Screened interval: 6.18 +0 6.18' (Measured of time) Formation: Woman CREEK VALLEY GLE ALLUVIUM
Measuring point (MP): Top of well casing/other: Top of war Casing Well stick up: ~1.0 ( section)
Water level (below MP): Start: 3.09' End: Not mercand 12/9/11 3.46'(12/14/91) 640 5.59 (12/15/9)
Well depth (below MP): 7.15' Water elevation (BGS) *2.06'
Method used to measure water level: recke (Solinst Hold 101) Estimated recharge rate: Not coli mode!
Volume of saturated annulus (assume 30 percent porosity):
Volume Calculation: Well casing volume = Tr2h = T( 0000831)2 4:06 = 0.06379 x 3.45 pl 0.484
Quantity of water used during drilling: NDNE #0.59
Depth of sediment (below MP): Before: 71/5' After: W+ mental to be for the sediment (below MP): Before: 11/5/9/17
Development equipment: Teston beiles 14"0.P., Peristaltic pung 350 rpm (12/15/19), 12/16/41)
Sampling equipment: Not Sampled  Orion Mode 12300   One M
pH meter No. SIN 001752 Calibration: 01=10.14 "
Specific conductance meter No.: SN 9811023 Calibration:

12/9/91

Time	Pumping Rate som	FTU	рĦ	Temp. °C	S.C. smbos/cm e: °C	Com. V Re	oL of H ₂ O moved	Physical Description of Water
	gram .				£ *C	Gallous	Casing Vols.	
1237	4.15	_	7.16	U.)	938	0	0	Lt. boun, silby
1240	1		7.48	201	930	0.25	1/2_	•1
1242		_	7.52	6.1	935	0.50		• •
1244			7.48	7.1	910	0.75	الإس	3,our xIM
246			7.43	7.1	944	1.0	2	fs.
1249		_	7.44	4.1	944	1.25	21/2_	•¢
1252		-	7.46	71	946	1.5	3	ıl
254		)	7.41	71	955	1.75	31/2	•(
256		-	7.45	かし	957	2.0	4	•1
1303		_	7.43	4.1	952	2.25	41/2	Duressing 54 con
305	<b>↓</b>		7.40	6.1	958	2.5	5	1 11

12/15 Pumped/bailed 5:14 from bottom wellpoint is a good producer - no parameters, 12/14 Pamped well a 25 minutes with water and elements after additional develop, activities:

(481-200221100222110011011) Collected final round of measurements after additional develop, activities:

[PH 7:00 Temp. 8.35; Conf., 10/10 14. born]

Pegelof1.

Well ID Pump I TRACER TEST W	TELL FORMT ARRAY	WELLAUNT IS	SE MAP BELL	
Survey location coordinates: North				_
Date this report 12/4/9/ 12/15/91.	Date well installation	12/8/9/ Date	well development /2	4191,12/15
Well designation: SEE MAP RELOW				- 12/10/9/
Ground elevation: Est:	Survey:			-
Screened interval: 0.89 + 5.89' (	For astullation) For	mation: Woman Co	K. Valley Fill Allers	184
Measuring point (MP): Top of well casin	and during development with glother: Top of W	al cours	Well stick up: 1. 0	و المعلقة
Water level (below MP): Start:			12/9/9/ 3.50 (12	<u>.11</u> 4141) <u> </u>
Well depth (below MP):	ectonic water kre	Water elevation	(BGS)2.15 '	- 3.05 C
Method used to measure water level:	ectionic water feed	Estimated rech	arge rate: Note shim	aked .
Volume of saturated annulus (assume 30	10	tused to calcula per sop 60.2	te well colling volu-	_
Volume Calculation: well casing rate	- T-4 = TI	0.07UES') 3000	0.064 x 7.48 1. W -	عبو 48.0
Quantity of water used during drilling:	Vonk		A 3	_ =0.590
Depth of sediment (below MP): Before:	7.22	After:	Not measured 12/5	41
Development equipment: Teflor b	br 1 14" 0.D F	ristallic pump	350 rpm (12115)	<u>91</u> ,12116191
Sampling equipment: Not sampled	0 # 4 0/ = 4 m/	2) 12 11°C	2 - 10 (mgd 3)	
Sampling equipment: Not sampled  Orion Model 230A  OH meter No. SIN 00 17 52 Calibra  Orion No.	uion: OH 10:01 = 10:0	14 213.11°C PH T	20 13.11°C	_
pecific conductance meter No.:	95-11023 Calibration:	me sure of	= 1.040 maks 2 14.4	<u> </u>
F.T.U. meter No.: N/A pur SOP 2.0 F	_		•	•

12/9/91

Time	Pumping Rate	FIU	PH	Temp. *C	S.C. umbos/cm	Cam. Vo Res	at of H ₂ O boved	Physical Description of Water	
	gpm				æ°C	Gallons	Casing Vols.		
1154	2.15	_	7.38	3.11	953	•	0	Clear	
1152	1	_	p. 45	6.71	975	0.25	٧ <u>ـ</u> _	HA Arres	
1157		-	4.58	\$410 4747 ···	940	0.50	, •	M. Arma	
1202	·	_	7.40	6.11	9+2	0.25	11/2		
1207		-	346	6.11	972	7.00	2	boun	
12.11		-	7.42	6.11	966	425	21/2	••	
1214		1	7.47	6.11	969	1.5	3.0	4	
1218		-	7.47	6-11	968	1.85	71/2	et ·	
1221		_	2.40	6.17	968	2.0	4	44	
1223		-	3.57	<b>6.77</b>	968	2.25	4 1/2.	7	
1228	¥		7.33	6.4	949	2 1/2	5	st. been	
Commer	its:		20	L19[9]		1 2	3		

0 12/15 Pumped/builed sift from bottom wellprint is a good producer-no parameters
12/14 Pamped well a 25 minutes with water was clear
(2011-20000000) (GWZNEVI)(COILLEGED AND FOUND OF MEASUREMENTS after additional development activities.

PH 7:02 Temp 5:4 Cond. 1015 CLEAT

nlaa	de Nome es	ad Tida	~	Course of	l Hyprofedu	721X	•	·	•
Well III	S PLEME E	94 <b>110</b> 5	<u>:حب</u> Ler Ti	st wer	AMT AREA	4 wale	UINT #D	I (SEE MAP BOLOW	) : :
					East			•	•
Survey 10 Date this	renori	12/9	: NOTU  91 . 12	/10/91 Da	te well install	stion 12/4	-/9/ Date	well development /2/	191,12/11/91
				MAP BE		·			•
					Survey	·			
coned	levalion: E (From Grand interval:	رسيس ل	^ -	500' /M	" ( وقيمه المعلمة	Formation:	Woman C	EER ALEY FILL ALL	num
Mensurin	point (M	P): Tor	of we	.2 (TO M	her: Top a	copent)  Full Cal	(140-	Well stick up: 4/.0'	المناسبة )
Vater les	rei (below)	MP): S	itart:					9/5/ 4 // /- / / 4   4	
Vall dan	th (helow )	MP):		6.931		W	ner elevation	m (BGS) ~ 1.95'	124(12/16/
Method t	used to me	asure w	ater lev	er -war	CALLED TOP	- 1012	d to rate	late well easing wal	k-1 
Volume (	of saturated	i sonuli	25 <b>(25</b> 5U	me 30 pero	ent porosity):	Der 30P	6W. Z >	( 5/2.111	
Volume (	Calculation	ظــــــ :	Jeil Co	ising volu	= TT/2	h = 17/4	2.07.053)2	-4.22 = 0.0667 3 3	1.487=1 = 0.5
					<u>~</u>				717
							After:	Not me word 12/9/9/	
Jeselone	nent canin	ment:	Te	flon ball	C 14" O.P.	(1214141) Per	istaltic s	N.t me wied (2) 1914	Hicks)
line	nem egup	 	ر بدی	-/0.6		- <b>N</b>			
	Crib	- Hodel	230A	Cattle-sties	PHANI	+ 4.00 a3 1	3.1°C	PH the measured the	e
H mete	r No <i>5/f</i>	N 001 T 5	0	John World	122	Cond	. std . = 1,0	1040 multi 25 C	14.4°C
Specific o	conductance	e meter	No.: <u>S</u>	N 78 40 2	Calibrai	108:	W. Sinis		
F.T.U. m	eter No.: _	N _A	pu So	<u>1 208</u> Ca	libration:		<u></u>		•
Time	Pumping Rate	FTU	Hq	Temp.	S.C. unbos/cm e °C	Casa, Vo Res	L of H ₂ O loved	Physical Description of Water	
	gen					Collons	Casing Volk		
1315	4.15		7.58	4.1	7.92	0	0	Dk. b.on vy. sity	
1318		_	7.58	6.1	849	0.25	1/2		
1320			7.59	۱. ی	837	0.5	• ,		
132 \$		_	7.63	6.1	811	0.75	11/2		
1327			7.64	7.1	832	1.0	2_	.,	•
1330			7.66	4.1	884	1.25	21/2		
1333			7.65	7.1	906	1.5	3	Lt. boun less silty	
1337			7.58	6.1	939	1.75	312	•1	9
1740			7.57	6.1	943	12	4	"	
	1	T/-	2.56	10.1	952	2.25	41/2		

12/9/91

·							
Comments:	TMAP I	2 3	4 5	•		• •	
·	O O						
<u> </u>			a,			·	
12/14 Pumpu	1 well = 25 min	which had	n water c	uar			•

Page 2	of Z	_
--------	------	---

Recorder's Name and Title				<del></del>							
Well ID											
Survey location coordinates: North	East										
Date this report	_ Date well installs	ntion	Date	Date well development							
Well designation:				· · · · · · · · · · · · · · · · · · ·							
Ground elevation: Est:	Survey: .	· ·									
Screened interval:	·	Formation:									
Measuring point (MP): Top of well casin	g/other:			_ Well stick up:							
Water level (below MP): Start:		End:									
Well depth (below MP): Water elevation (BGS)											
Method used to measure water level:		Es	timated reci	narge rate:							
Volume of saturated annulus (assume 30											
Volume Calculation:											
Quantity of water used during drilling:											
Depth of sediment (below MP): Before:			After:								
Development equipment:											
Sampling equipment:											
pH meter No Calibr	ation:										
Specific conductance meter No.:											
F.T.U. meter No.:											
Time Pumping FTU pH Tem	umbos/cm	Cass. Vo	of H ₂ O poved	Physical Description of Water							
	€ °C	Gallous	Casing Vols.								
1346 4.16 - 757 61	955	2.5	5	Lt. bom							
1352 757 6.1		2.75	5 h	• • • • • • • • • • • • • • • • • • • •							
1354 - 7.50 6.	1 952	3.0	<u> </u>								
	<del></del>										
		<del> </del>									
	l l	l									

Comments: 12/14 Collected from round of measurements after additional

development activities

Total 7.01 Temp 5.4 Cond 914 1th gray

12/9/91

(4011-40-4027) (GW2REV1)(00-10-91)

### WELL DEVELOPMENT AND SAMPLING FORM

Page lof. 1

						ay wer	PONT	2 (SE MAY BELOW	)
-					East				<b>.</b>
Date this	report _	2/14/	<u>41/12/</u>	15/91, D	ate well instal	lation/2	-/7/91 Date	e well development /2_	[14]11 LISI
Well des	ignation: _	#02	Spen	hap Beco					-
Ground (	elevation: I	et:			Survey:				-
creened	· · · · · · · · · · · · · · · · · · ·		_ / /	5.90' (MI	styleton)	Formation	: Wenen	rs. Valley Fill Allw	<u>u~</u>
Measurin	ng point (N	(P): To	p of wel	(To my	ther: _Tep	of well c	asing	_ Well stick up: 4/.0	15.
Water le	vel (below	MP): \$	Start:	2.67 /10	14141) 5.33(12/11	Arad:	m (14/14/21)	3.22 (12/15/11) 3.2	T(121
Vell den	th (below)	MP):		6.89' 1	12.444.}	W	ater elevatio	nr (BGS) <u>~1.84</u>	_
dethod :	used to me	asure w	ater lev	واددا	ronic Weder 1. Wer (Solinst 17	evel	& 12/14/4 timated recl	harge rate: Not esti	-ak
/Al	of estimate	d annul	/seen	me 20	cent norneitul	Not use	d to calco	harge rate: Not estimated well casing	- 1
	Calminic	للاسبه ،	( <b></b>	me so per	win porceasily):	/ a - :	m ca () = 4 2	2'	J. Ja.
OHUME (		<del></del>	· ( 45)	יין איין	1 = 1117 - h	TT ( 0, 0	TO T	וצ'ב מסנג מלרי א	7
<i>lospitt</i> y	Of Maries R		mg wm	mg	<u> </u>				•
epth of	sediment	(below)	MP): B	elore:	2.89 1 (nis)	11) 14 11 11 11 11 11 11 11 11 11 11 11 11	After:	Not messed	•
evelop	nent equip	ment:	Tel	lon beile	14"0.D	Perist	Hic Pum	p 350 rpm (12/14/	Ŋ
amalina	equipmen	tN	of Sam	-oled					_
-upy-	, -1								. `
LJ	equipmen	1 am 2	44	Calibratica		4-24-3	ec ' ' '	marker 4:04.9 N.4.4	),2
LJ	- N- 04	1 am 2	44	Calibratica		4-24-3	ec ' ' '	_	-)12
IJ	- N- 04	1 am 2	44	Calibratica		4-24-3	ec ' ' '	1 1042 D 4.6.5	-)12
H mete pecific (	r No. <u>SA</u> conductano	meter	No.: _	Calibration		9.70 2 10.7 Cion:	ec ' ' '	_	-)12 - -
H mete pecific (	r No. <u>SA</u> conductano	meter	No.: _	Calibration	n: 10.01 = 12 2 1023 Calibra	9.70 2 10.7 Cion:	ec ' ' '	_	-)' ²⁴ - -
H mete pecific (	r No	meter	No.: _	Calibration Control Mode SN 9811 SNP 201 C	10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01	9.70 2 10 7 tion:	measure	25°C   1047 D 9.6°C	-)/24 - -
H mete pecific ( T.U. m	r No conductance seter No.: _	MA pu	No: _	Calibration  Calibration  Con Modu  SN 9811  SN 9811	le 122 (023 Calibra	9.70 2 10 7 tion:	ond sth. = 4 masures	1047 2 9.6°C	-)// ² -
H mete pecific ( T.U. m	r NoSA conductance neter No.: Pumping Rate gpm	MA pu	No.: _	Calibration Prior Medi SN 9811 SUP 200 C	s.c. 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 10.01 = 1	Com. Vo	measure	Physical Description of	-
H mete	r No	MA pu	PH 7.54	Calibration Coron Mode SN 9811 SUP ZOC	ac calibration:  ac calibration:  ac calibration:  ac calibration:  ac calibration:  ac calibration:	1.70 2 10 .7  tion:  Chan Ve Res  Galloss  0.50	ond std. = 4, massar2.s  pl. of H ₂ O  noved  Casing Vols.	Physical Description of Water	-
H meter pecific (T.U. m	r NoSA conductance neter No.: Pumping Rate gpm	MA pu	PH 7.54	Calibration Prior Madd SN 9811 SUP 222 C	sc mhos/cm a °C	9.70 210.7 tion:  Com. Vo. Res  Gallous  0.50  0.75	ond sth. = 1, measure  on of H ₂ O noved  Casing Vols.	Physical Description of Water  11	-)/24
H meter pecific of T.U. m	r NoSA conductance neter No.: Pumping Rate gpm	MA pu	PH 7.54 7.22	Calibration Conon Modu SN 9811 SUP 201 C	sc.  SC.  SC.  SC.  SC.  SC.  SC.  SC.  S	9.70 2 10.7  tion:  Case Verent Veren	ond sth. = 4, masure  masure  Casing Vols.  1 1/2- 2 1/4	Physical Description of Water  11	-
H meter pecific (C.T.U. m	r NoSA conductance neter No.: Pumping Rate gpm	MA pu	PH 7.59 7.94 7.22 7.15	Calibration Prior Medi SN 9811 SUP 222 C	10.015 R 122 R 122 R 122 R 123 R 124	1.70 210.7 tion:  Can Vi Ren Gallous  0.50  0.75  1.125	ond sth. = 10 m(4) w/2 o  onl of H ₂ O noved  Casing Vols.  1 1/2  2 1/4  2 1/2	Physical Description of Water  11	-)12H
H mete pecific ( T.T.U. m	r NoSA conductance neter No.: Pumping Rate gpm	MA pu	PH 7.54 7.94 7.22 7.95 8.13	Calibration Prior Medi SN 9811 SUP 222 C	10.01= 12.12 10.23 Calibra alibration:  SC SV7 774 777 722 714	9.70 2 10.7  tion:  Case Vi Res  Gallous  0.50  0.75  1.125  1.25	ond sth. = 4  masure  as of H ₂ O  noved  Casing Vols.  1 1/2-  2 1/4  2 1/2  3	Physical Description of Water  11 11	-)12H
H mete pecific (C.T.U. m	r NoSA conductance neter No.: _ Pumping Rate grun  2.15	MA pu	PH 7.54 7.94 7.22 7.15	Calibration Prior Medi SN 9811 SUP 222 C	10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10	9.70 20 10.77  tion:  Com. Vo. Res  Gallous  0.50  0.75  1.125  1.75	cond. stk. = 4, measures  measures  Casing Vots.  1 1/2- 2 1/4 2 1/2 3 3 1/2-	Physical Description of Water  11  11  11	-)1 ²
H mete pecific ( F.T.U. m  The 1110 1112 1124 1124 1124	r NoSA conductance neter No.: Pumping Rate gpm	MA pu	PH 7.54 7.94 7.22 7.95 8.13 7.65 7.42	Calibration Prior Medi SN 9811 SUP 222 C	10.015 R 122 R 122 R 122 R 122 R 123 R 124 R 124 R 144 R 144 R 144 R 144 R 144	9.70 210.7 tion: C Can. Ve Res 0.50 0.75 1.125 1.25 1.75 2.75	Cando 544. = 4, mass w/2 s  mass w/2 s  pl. of H ₂ O noved  Casing Vols.  1 11/2 21/4 21/2 3 31/2 51/2	Physical Description of Water  11  11  11  11  11  11  11  11  11	_)izi
H mete pecific (C.T.U. m. 1110 1112 1124 1124 1121 11325	r NoSA conductance neter No.: _ Pumping Rate grun  2.15	MA pu	PH 7.54 7.94 7.22 7.365 7.42 7.36	Calibration Medical SN 984 SN	10.01= R 122 R 122 R 122 R 122 R 123 R 124 R 125 R 144 R 154	9.70 210.7 tion:  Cam Vi Ren  Gallous  0.50  0.75  1.125  1.5  1.75  2.75  3.25	cond. 544. = 4, m(4) w/2 of H ₂ O noved  Casing Vols.  1 1/2- 2 1/4 2 1/2 3 3 1/2- 5 1/2- 6 1/2	Physical Description of Water  11  11  11  11  11  11  11  11  11	- -
H mete pecific ( F.T.U. m  The 1110 1112 1124 1124 1124	r NoSA conductance neter No.: _ Pumping Rate grun  2.15	MA pu	PH 7.54 7.94 7.22 7.95 8.13 7.65 7.42	Calibration Prior Medi SN 9811 SUP 222 C	10.015 R 122 R 122 R 122 R 122 R 123 R 124 R 124 R 144 R 144 R 144 R 144 R 144	9.70 210.7 tion: C Can. Ve Res 0.50 0.75 1.125 1.25 1.75 2.75	Cando 544. = 4, mass w/2 s  mass w/2 s  pl. of H ₂ O noved  Casing Vols.  1 11/2 21/4 21/2 3 31/2 51/2	Physical Description of Water  11  11  11  11  11  11  11  11  11	
H meter pecific (C.T.U. m. 1110 1112 1124 1124 1121 11325	Pumping Rate gran	PTU	PH  7.59  7.94  7.22  7.95  8.13  7.65  7.42  7.36	Calibration Madde SN 984 SN 98	10.01= R 122 R 122 R 122 R 122 R 123 R 124 R 124 R 144 R 154 R 154 R 1954 R 1954 R 1954	9.70 210.7  tion:  Com. Vo. Res  Gallous  0.50  0.75  1.125  1.5  1.75  2.75  3.25  3.75	cond. 544. = 4, m(4) w/2 of H ₂ O noved  Casing Vols.  1 1/2- 2 1/4 2 1/2 3 3 1/2- 5 1/2- 6 1/2 7 1/2-	Physical Description of Water  11  11  11  11  11  11  11  11  11	) i i
H meter pecific (C.T.U. m. 1110) 11120 11124 1124 1124 1125 11325	Pumping Rate gran	PTU	PH  7.54  7.94  7.22  7.95  8.13  7.65  7.42  7.36	Calibration Medical SN 984 SN	10.01= R 122 R 122 R 122 R 122 R 123 R 124 R 124 R 144 R 154 R 154 R 164	9.70 210.7  tion:  Com. Vo. Res  Gallous  0.50  0.75  1.125  1.5  1.75  2.75  3.25  3.75	cond. 544. = 4, massacze  massacze  massacze  massacze  notasacze  notasacze	Physical Description of Water  Brown  11  11  11  11  11  11  11  11  11	
H mete pecific (C.T.U. m. 1110 1115 1120 1122 1124 1122 1124 1122 1122 1122	Pumping Rate gran	PTU  L//4 /	PH  7.54  7.94  7.22  7.95  7.42  7.35  1.35	Calibration Prior Medi SN 9811 SUP 201 C  Temp. °C  5.7  5.7  5.3  5.5  6.1  6.0  6.3  6.9  6.9  6.4  6.4  6.4  6.4  6.4  6.4	10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10	9.70 210.7  tion:  Com. Vo. Res  Gallous  0.50  0.75  1.125  1.5  1.75  2.75  3.25  3.75	cond. 544. = 4, massacze  massacze  massacze  massacze  notasacze  notasacze	Physical Description of Water  Brown  11  11  11  11  11  11  11  11  11	) i zi
H meter pecific (C.T.U. m. 1110 1115 1120 1122 1124 1122 1122 1122 1122 1122	Pumping Rate gran  L:15  L:24pm	PTU  L//4 /	PH 7.59 7.14 7.22 7.35 7.42 7.35	Calibration Prior Medi SN 9811 SUP 201 C  Temp. °C  5.7  5.7  5.3  5.5  6.1  6.0  6.3  6.9  6.9  6.4  6.4  6.4  6.4  6.4  6.4	10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10	9.70 210.7 tion: C Com. Vo Res Galloss 0.50 0.75 1.125 1.5 1.75 2.75 3.25 3.35	Cond. 544. = 4, massacze  pl. of H ₂ O noved  Cosing Vols.  1 1/2- 2 1/4 2 1/2 3 3 1/2 5 1/2 6 1/2 7 1/2 12/14 Conto	Physical Description of Water  Brown  11  11  11  11  11  11  11  11  11	
H mete pecific (C.T.U. m)  Time  1110  1121  1124  1124  1124  1125  1528	Pumping Rate gran  L:15  L:24pm	FTU  List water	PH  7.54  7.94  7.22  7.95  7.42  7.35  1.35	Calibration Prior Medi SN 9811 SUP 201 C  Temp. °C  5.7  5.7  5.3  5.5  6.1  6.0  6.3  6.9  6.9  6.4  6.4  6.4  6.4  6.4  6.4	10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10.01= 10	9.70 210.7 tion: C Com. Vo Res Galloss 0.50 0.75 1.125 1.5 1.75 2.75 3.25 3.35	Cond. 544. = 4, massacze  pl. of H ₂ O noved  Cosing Vols.  1 1/2- 2 1/4 2 1/2 3 3 1/2 5 1/2 6 1/2 7 1/2 12/14 Conto	Physical Description of Water  Brown  11  11  11  11  11  11  11  11  11	- 124

=:

## WELL DEVELOPMENT AND SAMPLING FORM

`	Well ID .	7km	P/ TRAC	EL TE	7 WELLP	7 7 7	y ware	<u> </u>	3 SEE MAP BELUM	ر. ر
:	Survey loc	ation coor	dinates	North	vi pando F	East				
1	Date this	report _12	114/91	12/16/	9/ Da	ue well install	ation	7/4/ Date	: well development /2//	4/91,12/1
7	Well desig	znation:	# 0	13 SE	E MAP BE	FLOY				
(	Ground el	levation: E	st:			Survey:	- h/s \	alad 1/		•
5	Screened :	interval: _	0.1	, p +	5.80'	مروط ملسام المرود معلمالين مروط المرود	Formation:	Woman Cr	K. Vally Fit Allander	a transd
J	Measuring	g point (M	P): Top	of well	casing/ot	her: Top o	f Well Casi	9	k. Valley F77/ Allen aren brown 1 120/11 Well stick up: AJ.0'/2 6.64/11/15/11/ 6.22/	ونسك م
•	Water lev	el (below)	MP): S	tacti	7 7 4 '	L.42 (1214791)	P.RC. VA	F1+1-2.1./	417 = (7 = 1···	WMMI)
•	Well dept	h (below l	VIP): _		6.771	(1-19/9) 69	4 (12hohi)Wi	nter elevatio	a (BGS) 2.38'	
	-	-		_	Ekehr	oric water leve	·	. برد. أمدد أددد ــــــــــــــــــــــــــــــ	hamma makes Not estimate	ted
. •	Volume o	f saturated	l annult	15 ( <b>25</b> 5U	me 30 perc	ent porosity):	plat need to	CORMATE COP CO	well esting volume  2 sec. 5.2.1.1	•
•	Volume (	Calculation	:w	I casiv	n volume	- = Tr-Lh	= 11 (0.03	0f3·)25.43	1- 0.05406ft3y 7146	5-1-0.
					ing: N					<del>11</del> 12
•	Depth of	sediment (	below !	MP): B	efore: C	(12/14/9)		After:	Not newwed	
1	Depti or	ant equip	ment	- Hon	haller 1	(12/14/9),	7-1,5/91) Pon Stalts	c pump 3	(12/10/11) 350 rpm/1 surge bloc	K (12/16/19
		ednibwer ednib					712123		X	-
	Specific o	No <u>Sin</u>	e meter	No.: _	orbo Mulal SN 931102	3 Calibra	.70 2 10.7- e	4 849' = 1000	2,916 g Fryww &b	
	Specific o	No <u>Sin</u>	meter	No.: _	orbo Mulal SN 931102	<u> 10.015</u> ع	.70 2 10.7- e	1 94d. = 1800 4454R\$ 18	ALL HAILP LEW	שולבו  -  -
	Specific o	NoSie onductance eter No.: Pumping Rate	meter	No.: _	orbo Mulal SN 931102	10.012 7 122 3 Calibra alibration: _A	100:	1 94d. = 100C ******* 10 ************************************	ALL HAILP LEW	
	Specific o	NoSinonductance eter No.: Pumping	0022 4°	No.:	Temp.	10.0129 /22 3 Calibra alibration: _A S.C. mahos/ca c °C	Com. Vo	at of H ₂ O soved  Casing Vols.	Physical Description of Water	
	Specific of F.T.U. ma	NoSie onductance eter No.: Pumping Rate	0022 4°	No.: er GN S	Temp.	10.0127 122 3 Calibra alibration: _A  SC	Case Ve Res Gallons  0.40	ok of H ₂ O soved  Casing Vols.	Physical Description of Water	
	Time	NoSinon onductance eter No.: Pumping Rate gpm	0022 4°	No.: cr GN S pH 7-53 5-36	Temp.  S.6  5.6  5.9	16.0127  /22  Calibra  alibration:A  SC	Com. Vo	at of H ₂ O soved  Casing Vols.	Physical Description of Water	
12/14	Time 1144 11231	NoSinon onductance eter No.: Pumping Rate gpm	0022 4°	No.: we we w	Temp.  5.6  5.6  5.9  L 15 Dr.4	16.0127  /22  Calibra  Libration: _A  S.C.  Libration: _A  S.C.  A	Com. Vo. Res. 0.40 0.80	L of H ₂ O soved  Casing Vols.	Physical Description of Water  14. box-	
12/14	Time	NoSie onductance eter No.: Pumping Rate gpm	0022 4°	No.: well s	Temp.  5.6  5.9  L 15 DAY  6.9	16.0127  /22  Calibra  alibration:A  SC	Case. Ve Rest 0.40 0.80 0.10 0.10 0.10 0.10	Casing Vols.	Physical Description of Water  H. graylbra, charley	
12/14	Time 1144 11231	NoSie onductance eter No.: Pumping Rate gpm	0022 4°	No.: we we w	Temp.  5.6  5.9  L 15 DAY  6.9	16.0127  /22  Calibra  Libration: _A  S.C.  Libration: _A  S.C.  A	Case. Ve Rest 0.40 0.80 0.10 0.10 0.10 0.10	Casing Vols.	Physical Description of Water  14. box-	
12/14	Time  1144  1147  1231  0945	NoSince _Since _Sinc	0022 4°	No.: U GN S PH 7.53 8.36 WEL 7.62	Temp.  S.6  S.6  S.9  LIS DRY  6.9  LIS DRY	SC Calibration: _A  AFTER REPORT	Casa, Ve Res  Galloss  0.40  0.80	Casing Vols.  1 2 2 1/4 9/ error/ With	Physical Description of Water  H. brown  H. grayforn, clarky  LET RECHARGE	
12/14	Time:  1144 1147 1231 0945	NoSie onductance eter No.: Pumping Rate gpm	0022 4°	No.:  FH   7.83  8.30  WEL  4.62	Temp.  *C  5.6  5.9  L 15 D24  6.1	SC.  SC.  SC.  SC.  SC.  SC.  SC.  SC.	Case. Ve Rest 0.40 0.80 0.10 0.10 0.10 0.10	Casing Vols.	Physical Description of Water  H. graylbra, charley	
12/14	Time  1144  1147  1231  0945	NoSince _Since _Sinc	0022 4°	No.:	Temp. °C  5.6  5.9  15 Dry  6.9  15 Dry  6.1  5.8	SC Calibration: _A  AFTER REPORT	Com. Vo. Res.  Gallons  0.40  0.80  Dites  1000  0.10  Dites  1000  0.30	Casing Vols.  1 2 2 1/4 9/ Price Will 2 3/4	Physical Description of Water  Bours  11  1t. bours  H. gray born, charles  LET RECHARGE	
12/14	Time  1144 1147 1231 0945  1512 1514	NoSince _Since _Sinc	0022 4°	No.:  FH   7.83  8.30  WEL  4.62	Temp.  *C  5.6  5.9  L 15 D24  6.1	10.01=7  /22  Calibra  SC  SC  SC  ACC  CC  741  704  667  AFTER REM  988  988  988	Com. Vo. Res.  Gallons:  0.40  0.80  0.10  0.30  0.30  0.70  0.90	2 1/4 2 1/4 3 1/4 3 3/4 4 1/4	Physical Description of Water  Brown  11  11. gray churty  11  11  11	
12/14	Time  1144  1147  1231  0945	No. Sie No.: Pumping Rule gpm 2.15	PTU  FTU  1057	PH 7-83 8-36 WEL 7-62 WGL 7-18 7-11	5.6 5.6 5.9 LIS DRY 6.9 LIS DRY 6.1 5.8 5.7 5.8	10.0127  /22  Calibra  SC	Came. Ve Res O. 4D O. 50 O. 50 O. 70 O. 90	2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  7/  7/  7/  7/  7/  7/  7/  7/	Physical Description of Water  Bours  11  1t. bours  H. gray boundary  11  11  11  11  11  11  11  11  11	امالدا
12/14	Time  1114  1147  1231  0945  1512  1514  1518	No. Since No.:	PTU  FTU  1057  Guld 100	PH 7-83 8-36 WEL 7-62 WGL 7-18 7-11	5.6 5.6 5.9 LIS DRY 6.9 LIS DRY 6.1 5.8 5.7 5.8	10.01=7  /22  Calibra  alibration: _A  SC	Came. Ve Res O. 4D O. 50 O. 50 O. 70 O. 90	2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  2 1/4  7/  7/  7/  7/  7/  7/  7/  7/  7/	Physical Description of Water  Brown  11  11. gray churty  11  11  11	امالدا
12/14 12/14/91	Time  1144  1147  1231  0945  1512  1514  1518  Commer	No. Sie No.:	PTU  FTU  1057  Guld 100	PH 7-83 8-36 WEL 7-62 WGL 7-18 7-11	5.6 5.6 5.9 LIS DRY 6.9 LIS DRY 6.1 5.8 5.7 5.8	10.0127  /22  Calibra  SC	Came. Ve Res O. 4D O. 50 O. 50 O. 70 O. 90	2 1/4  1 2 1/4  1 2 1/4  1 3 1/4  3 1/4  4 1/4  P-2	Physical Description of Water  Bours  11  1t. bours  H. gray boundary  11  11  11  11  11  11  11  11  11	امالدا
	Time  1144 1147 1231 0945 1512 1514 1518 1523	No. Sie No.:	PTU  FTU  1057  Guld 100	PH 7.53 8.36 WELL 7.62 WILL 7.13 7.14 Well 7.64	5.6  5.6  5.6  5.9  15 Day  6.9  15 Day  6.9  5.8  5.7  5.8  5.8  sint brite  wellowint drict rece	10.0127  /22  Calibra  SC	Came. Ve Res O. 4D O. 50 O. 50 O. 70 O. 90	2 1/4  1 2 1/4  1 2 1/4  1 3 1/4  3 1/4  4 1/4  P-2	Physical Description of Water  Bours  11  1t. bours  H. gray by churchy  11  11  11  11  11  11  11  11  11	امالدا

Page 2 of 2

SEE PAGE 1

Survey location coordinates: North
Well designation:  Ground elevation: Est:  Survey:  Screened interval:  Measuring point (MP): Top of well casing/other:  Water level (below MP):  Water elevation (BGS)  Method used to measure water level:  Volume of saturated annulus (assume 30 percent porosity):  Volume Calculation:  Quantity of water used during drilling:  Depth of sediment (below MP): Before:  Development equipment:  Sampling equipment:  Sampling equipment:  Drin Wald 250A  PH 4.01 = 4.00 D10.7°C  Ph 4.00 maker 2.00 Drin Maker 2.00 Dri
Ground elevation: Est:  Survey:  Screened interval:  Measuring point (MP): Top of well casing/other:  Well stick uses the set of the
Screened interval:
Measuring point (MP): Top of well easing/other:  Water level (below MP): Start:  Well depth (below MP):  Method used to measure water level:  Volume of saturated annulus (assume 30 percent porosity):  Volume Calculation:  Quantity of water used during drilling:  Depth of sediment (below MP): Before:  Development equipment:  Sampling equipment:  Development equipment:  Development of sediment (below MP): Before:  Development equipment:  Sampling equipment:  Development of sediment (below MP): Before:  Development equipment:  Sampling equipment:  Development of sediment (below MP): Before:  Development equipment:  Development of sediment (below MP): Before:  Development equipment:  Development of sediment (below MP): Before:  Develop
Water level (below MP): Start:
Well depth (below MP):  Method used to measure water level:  Volume of saturated annulus (assume 30 percent porosity):  Volume Calculation:  Quantity of water used during drilling:  Depth of sediment (below MP): Before:  Development equipment:  Sampling equipment:  Development equipment:  Development equipment:  Orion model 250A  Calibration:  Orion model 112  Conductivity of Water elevation (BGS)  Estimated recharge rate:  Estimated recharge rate:  After:  Depth of sediment (below MP): Before:  After:  Development equipment:  Orion model 112  Conductivity of Manuer 2000 percent porosity):  Calibration:  Specific conductance meter No.:  S/M 481102-3  Calibration:  Measure: 104 7 maker.
Method used to measure water level:  Volume of saturated annulus (assume 30 percent porosity):  Volume Calculation:  Ouantity of water used during drilling:  Depth of sediment (below MP): Before:  Development equipment:  Sampling equipment:  Drian model 250A  Calibration:  Orion model 112  Conductivity of water used during drilling:  Depth of sediment (below MP): Before:  After:  Development equipment:  Orion model 112  Conductivity of water used during drilling:  Orion model 112  Conductivity of water used during drilling:  Conductivity of water used during drilling:  Depth of sediment (below MP): Before:  Development equipment:  Orion model 112  Conductivity of water used during drilling:  Conductivity of water used during drilling:  Depth of sediment (below MP): Before:  Development equipment:  Orion model 1250A  Calibration:  Conductivity of water used during drilling:  Conductivity of water used during drilling:  Orion model 250A  Calibration:  Conductivity of water used during drilling:  Co
Volume of saturated annulus (assume 30 percent porosity):  Volume Calculation:  Quantity of water used during drilling:  Depth of sediment (below MP): Before:  Development equipment:  Sampling equipment:  Development equipment:  Development equipment:  Orion model 250A  Calibration:  Orion finds   11 depth   10,01 = 9.70 per 1.70 per 1.000 per
Volume Calculation:  Quantity of water used during drilling:  Depth of sediment (below MP): Before:  Development equipment:  Sampling equipment:  Development equipment equipm
Ouantity of water used during drilling:  Depth of sediment (below MP): Before:  Development equipment:  Sampling equipment:  Drian model 2504  Calibration:  PH 4:01 = 4:00 210.7°C  Ph 4:00 = 4:00 210.7°C  Ph 4:00 = 4:00 210.7°C  Conductivity 5th 9 1000 makes  Specific conductance meter No.:  S/M 481102-3  Calibration:  Machinel 1047 makes
Development equipment:  Sampling equipment:  Drien mold 250A  Calibration:  Drien mold 250A  Calibration:  Drien mold 112  Conductivity 5th. 9 1000 makes  Specific conductance meter No.:  S/N 4811023  Calibration:  Makes:  After:  Ph 4:01 = 4:00 210.7°C  Ph 3:00 makes 2:00 20  Conductivity 5th. 9 1000 makes  Specific conductance meter No.:  S/N 4811023  Calibration:  Makes:  Make
Development equipment:  Sampling equipment:  Drimmeld 250A  pH 4,01 = 4,00 210.7°C  Conductivity 5 th . 7 1000 mm to 2  Specific conductance meter No.: 5/N 4811023 Calibration:  Machinel 1047 mm to 2  Machinel 1047 mm to 2
Sampling equipment:  Orion mold 250A  Drift meter No. 5/N 8022 49  Calibration: ph 4,0/ = 4,00 D10.7°C  Orion metal 122  Conductivity 5th 9 1000 makes  Specific conductance meter No.: 5/N 4811023  Calibration: measures 1047 makes
Time Pumping FTU pH Temp. S.C. Cum. Vot of H ₂ O Physical Descript Rate  8.°C Removed Water
Gullous Casing Vols.
1527 2.10 - 7.16 5.9 987 1.10 434 1h gray close
1529 7.09 5.7 986 1.30 514 14 gam, 10-
1533 - 7.12 5.6 985 1.50 544 "1 1535 - 702 5.6 985 1.70 644 "1
1535 - 102 5.0 985 1.70 6.14 11 1537 - 763 5.4 985 1.90 6.14 11
1541 - 701 5.7 790 2.10 74

בי וי-ווץ

F.T.U. meter No.: NA per GW Sup 2 of Calibration: NA

## WELL DEVELOPMENT AND SAMPLING FORM

Recorder's Name and Title S. CONDRAW / HYDROGOLOGY T
Well ID Well Point 04 Pumptraver TEST NELL POINT ARRAY (SEE MAR BELOW)
Survey location coordinates: North East
Date this report 12/14/91, 12/14/91 Date well installation 12/3/11 Date well development 12/14/91, 12/14/91
Well designation: #04 SEE MAP BELOW NEXT FACE
Ground elevation: Est: Survey:
Screened interval: 1.0 to 6.0' ( reasured down) Formation: women Creek Valley Fill Allumina
Measuring point (MP): Top of well casing other: Top of well casing Well stick up: 11.0' ( in the
Water level (below MP): Start: 5.28 End: out mestared 12/14/91 3 30 (12/15H1) \$.55 (14/15H1)
Well depth (below MP): 6.96' (12/9/9.) Water elevation (BGS) -2.29 340 (12/16/4)
Method used to measure water level: meter (Solinst Mo(1) 101) Estimated recharge rate: Not estimated
Volume of saturated annulus (assume 30 percent porosity): Not used to calculate well casing volume
Volume Calculation: Well cosing volume = TIr2h = TI (010 TOKS:) = 3.08 = 0.0 580 43x 748 yell = 0.43 get
Quantity of water used during drilling: Neve
Depth of sediment (below MP): Before: 6.96 (12/2/2) After: Not messed 12/2/2/
Development equipment: Tetton bailer 14" O.D. (12/14/91)
Sampling equipment: Not Sampled
pH meter No. SIN 802249 Calibration: PH = 4.00 210 THE PH 7.00 MISULES 7.08 20 11.4.6
Specific conductance meter No.: 3N 18/1023 Calibration: Measures 1047 m. h.s in 9.60 c

Time	Pumping Rate	FΤU	pH	Temp.	S.C. umbos/cm a: °C		or of H ¹ O	Physical Description of Water
	gpa			7.5		Gallons	Casing Vols.	
231		1	7.76	3	968	0	•	Dr. born silly
233	.125	1	7.92	5.9	953	0.25	Υ.	
234	.25	_	245	5.8	950	0.50	. ,	•
1255	.25	_	8.01	5.7	156	0.75	142	4
1237	.125		7.92	5.5	957	1.0	2	*
1238	.25		2.86	5.4	950	1.25	21/2	10
239	.25		7.40	5.4	955	1.40	3	durating till from
1240	. 25.	-	7.34	5.5	954	1.75	372	•
241	.25		7.34	5.4	954	2.0	4	
243	.125	-	1.95	54	157	2.25	442	•
243	• 5		7.31	6.5	960	7.54	<u> </u>	• 01
2.44	.25		7.33	8.4	958	1.98	542	
in in ca	IS:		4.25	54	763	6.0	6	
	<del>1</del>		7.25	5.8	758	3.25	61/2	
<u>1244</u> 1244	-5			4 5.4	941	3.50	3	• :
1248			2.49	5.4	907	3.75	71/2	. (,
244			2.61	5.3	762	4		Pl.baco
247	,125		9.30	6.4	745	4.25	- 24	
50	,25		751	5.4	964	. 4.5	7	•
	) (CWZÁEVZ) (		3.18		144	435	916	, ,

12/14.

Page Zoz Z

ecorder	- 174WC -							
								· · · · · · · · · · · · · · · · · · ·
					East			
								e well development _
	report							
•					Survey:	•		***
round e	acvation: E				020 107.	Formation		
Tecneu	micival	D). Tax	- ofi	l carina lat	her			_ Well stick up:
Casarin	R bomr (w		OL WEL	casing/or	her	End:		
				•	<u></u>		ater elevation	on (BGS)
	h (below l				1		dimeted rec	harge rate:
			-	-				·
					•		•	
•	• •	_						
					:		*	
					L			
pecific o	onductanc	e meter	No.:		Calibra	tion:		
pecific o	onductanc	e meter	No.:			tion:		
pecific o	onductanc	e meter	No.:		Calibra	tion:		
pecific o	onductano eter No.: _  Pumping Rate	e meter	No.:		Calibra alibration:	tion:		
pecific o	onductance eter No.: _ Pumping	e meter	No.:	Ca	Calibra alibration:	Casa, V. Res	ol. of H ₂ O soved	Physical Description of Water
pecific o	onductano eter No.: _  Pumping Rate	e meter	No.:	Ca	Calibra alibration:	Com. V. Res	ol. of H ₂ O soved Caring Vols.	Physical Description of Water
T.U. m	onductance eter No.: _ Pumping Rate gpm	e meter	No.:	Temp. °C  \$.%	Calibra alibration:  S.C. unbox/can E°C  968	Casa, V. Res	ol of H ₂ O moved Casing Vols. 10 10 10 10 10	Physical Description of Water  Broom Silly
Time	Pumping Rate gpm	e meter	PH 7.20 2.19 3.10	Temp. °C \$.4- 5.4- 5.4-	Calibra alibration:  S.C. mbos/cm c°C  968  968	Com. V. Res Galloss 5.2.7	Caring Vols.	Physical Description of Winter  Broom Silly  00
Time 1252. 1254 1255 pp:55	Pumping Rate gpm	e meter	PH 7-20 3-14 3-16 7-24	Temp. *C  \$.**  \$.**  \$.**	Calibra  S.C.  Whos/can  E°C  968  968  968	Com. V. Res  Calloss  F.2.5  F.5  F.45	cl. of H ₂ O soved  Casing Vols. 10  4 10 10  11  11 ¹ / ₈	Physical Description of Water  Breen, Silly  01
Time 1252 1254 1255 1256	Pumping Rate spm	e meter	No.:	Temp. *C  \$.4  \$.4  \$.4  \$.4  \$.5	Calibra alibration:  S.C. washon/can & 'C'  968 968 968 968	Com. V. Res  Callous  F.2.5  F.45	cal of H ₂ O soved  Casing Vols.  10  4 voluble  10  11  11 ¹ / ₈ 12	Physical Description of Winter  Brann Silly  00  01  02
Time  1252. 1254 1255 1257	Pumping Rute gpm	e meter	No.:	Temp. *C  \$.**  \$.**  \$.**  \$.**  \$.**	Calibra  S.C.  S.C	Casa, V. Res Galloss  F-2-5  F-7-5  G-2-5	Casing Vols.  10  10  11  11  11  12  12	Physical Description of Water  Breen, Silly  01
Time  1252 1254 1255 1255 1257	Pumping Rate gran	e meter	No.:	Temp. *C  \$.4  \$.4  \$.4  \$.5  \$.5  \$.5  \$.5	Calibra  S.C.  Whos/can  E 'C'  968  968  968  968  967	Com. V. Res  Galloss  5.2.7  6.5  6.25	cl. of H ₂ O soved  Casing Volk. 10  10  11  11 ¹ / ₈ 12  12 ¹ / ₈	Physical Description of Winter  Brann Silly  00  01  02
Time  1252 1254 1255 1257 1257 1257	Pumping Rute gpm  125 .125 .5 .25 .25 .125	e meter	PH  7.20 7.19 7.24 7.29 7.32 7.32	Temp. *C  \$.%  \$.%  \$.%  \$.%  \$.%  \$.%  \$.%	Calibra  S.C.  S.C	Casa, V. Res Galloss  5.25  5.25  6.25  6.25	Casing Vols.  10  10  11  11  11  12  12  13  13  13  13  13	Physical Description of Water  Bream Siling  00  01  02  04  05  05  06  07  06  07  08  08  08  08  08  08  08  08  08
Time  1252 1254 1255 1255 1257	Pumping Rate gran	e meter	No.:	Temp. *C  \$.4  \$.4  \$.4  \$.5  \$.5  \$.5  \$.5	Calibra  S.C.  Whos/can  E 'C'  968  968  968  968  967	Com. V. Res  Galloss  5.2.7  6.5  6.25	cl. of H ₂ O soved  Casing Volk. 10  10  11  11 ¹ / ₈ 12  12 ¹ / ₈	Physical Description of Water  Screen Silva  10  10  10  10  10  10  10  10  10  1
Time  1252 1254 1255 1257 1257 1257	Pumping Rute gpm  125 .125 .5 .25 .25 .125	e meter	PH  7.20 7.19 7.24 7.29 7.32 7.32	Ca Temp. 'C' \$.4 \$.4 \$.4 \$.5 \$.5 \$.5 \$.5 \$.5	Calibra  SC  Whos/can  E °C  468  968  968  967  967  967	Com. V. Res  Galloss  5.2.7  6.5  6.25  6.5  6.75	Casing Vols.  10  10  11  11  11  12  12  13  13  13  13  13	Physical Description of Water  Screen Silva  10  10  10  10  10  10  10  10  10  1
Twe 1252 (1254 (1255 ) 1257 (1257 ) 1257 (1257 ) 1257 (1250 ) 1301	Proping Rate spm	e meter	PH 7.20 7.19 7.29 7.34 7.14 7.14 7.15	Temp. *C  \$.4  \$.4  \$.4  \$.4  \$.5  \$.5  \$.5  \$.6  \$.7	Calibra  S.C.  S.C	Casa, V. Res Galloss  5.25  5.25  6.25  6.25	Casing Vols.  10  10  11  11  11  12  12  13  13  13  13  13	Physical Description of Water  Screen Silva  10  10  10  10  10  10  10  10  10  1
Time  1252 1254 1255 1257 1257 1257	Proping Rate spm	e meter	PH 7.20 7.19 7.29 7.34 7.14 7.14 7.15	Ca Temp. 'C' \$.4 \$.4 \$.4 \$.5 \$.5 \$.5 \$.5 \$.5	Calibra  SC  Whos/can  E °C  468  968  968  967  967  967	Com. V. Res  Galloss  5.2.7  6.5  6.25  6.5  6.75	Casing Vols.  10  10  11  11  11  12  12  13  13  13  13  13	Physical Description of Water  Screen Silva  10  10  10  10  10  10  10  10  10  1
Twe 1252 (1254 (1255 ) 1257 (1257 ) 1257 (1257 ) 1257 (1250 ) 1301	Proping Rate spm	e meter	PH 7.20 7.19 7.29 7.34 7.14 7.14 7.15	Temp. *C  \$.4  \$.4  \$.4  \$.4  \$.5  \$.5  \$.5  \$.6  \$.7	Calibra  SC  Whos/can  E °C  468  968  968  967  967  967	Com. V. Res  Galloss  5.2.7  6.5  6.25  6.5  6.75	Casing Vols.  10  10  11  11  11  12  12  13  13  13  13  13	Physical Description of Water  Screen Silva  10  10  10  10  10  10  10  10  10  1
Twe 1252 (1254 (1255 ) 1257 (1257 ) 1257 (1257 ) 1257 (1250 ) 1301	Pumping Rate gpm	FTU	No.:	Temp. *C  5.4  5.4  5.3  5.3  5.7  5.6  7.7	Calibra alibration:  SC whos/can  C'C  968  968  968  967  967  967  967  968	Com. V. Res  Gallous  5.25  6.25  6.25  6.25  4.5	Caring Volk  10  5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Physical Description of Winter  Brann Siling  10  10  10  10  10  10  10  10  10  1

12/14

			WELL	DEVELOP	MENI AND E	MMIPLING	1 Ordin		Page lof 1
Recorder	's Name a	nd Title	3.	CONDRAN	I NY DROGEDLO	GIST			
Well ID	Fumf	TRALE	A TES	T WELL	OUNT AREA	y were	POINT # C	S (SE MA	<u> و عور</u> ب)
Survey lo	cation coo	rdinates	: North		East				
Date this	report _	12	19 191	12/14/9/ D	ate well install	ation _12/2	7/91_ Dat	e well developme	ead <u>2/</u> 9/9/ _{12/1}
Well desi	ignation: _	WELL	BINT	#05	SEE MAP BE	20~			
Ground o	levation: l	Est:	<del> 1</del>		Survey:				
Screened	interval:	0.81	+ 5	51' (na	nstallation)	Formation	HOMAN C	L. VALLEY FILL	<u>acurium</u>
Measurin	g point (N	(P): To	p of we	Hearwell casing/of	ber: Top of	Dul cos	<u> </u>	Well stick up	10' ( Deaster )
Water le	vel (below	MP): \$	Start:	2.90'		End:	1st measure	1 3.26 (12/14)	11) 240 3.40'(12/1
Well dep	th (below)	MP): _		6.89	tropic water	W	ater elevation	n (BGS)	981 3.41(ILIN
Method 1	used to me	asure w	rater lev	el: <u>Flea</u>	C (Saliant Mud	1672   (101) E	timated rec	harge rate: Note	stimated
Volume (	of saturate	d annul	us (assu	me 30 per	cent porosity):	10/4	<u>~                                    </u>	201 G. E 3	27.3.
Volume (	Calculation	: Wal	C45: 17	volume =	11 24 = 11 (a	03025)-3	.99'= 0,0	6289 613 7.4	<u>4443 =</u> 0.47 gal
	of water u								gal 20.59
Depth of	sediment	(below	MP): B	efore:	.89 '	(12/9/41)	After	Not measured	<u></u>
					ler 14" U.E	Peis Peis		p 350 cpm	
Sampling	equipmen	ıt: <u>X</u>	of sa	mpled :	-11-2-57			The and well of the Coope of th	<del>कत-</del>
pH mete	r No5/	א מואין	1230A	Calibration	1: OH 10.0	= 4.00 2) 1 = 10.14 1	13.10	2	13.1°C
Specific (	CODGUCIANC	z maia	. No.: _:	N 981104	Canorai	10IL:	meaned	letorules e	£17.4°€
F.T.U. m	eter No.:	NA PL	ه که لیبی م	9 208 C	alibration: _#	A		•	· · · · · · · · · · · · · · · · · · ·
	_								
Time	Pumping Rate	FTU	pH	Temp. °C	S.C. umbos/cm		oL of H ₂ O noved	Physical Description	oe of
	gp-				E.C	Callons	Casing Vots.		
1356	, 125		7.47	6.1	899	0	0	DK. brown silt	

12個年

Time	Pumping Rate	FIU	pH	Temp. °C	S.C. umbos/cm e: °C	Cam. Vol. of H ₂ O Removed		Physical Description of Water
	ge				2 - C	Callons	Casing Vols.	
1356	, 125		7.47	6.1	899	0	0	DK. brown cilty
1558	•125	_	7.48	6.1	918	0.25	1/2	n .
1402	.043	_	7.17	6.1	960	0.5	1_1	11
1404	.125	_	7.48	6.1	950	0.75	14-	fi
1406	-125	_	7.46	4,1	956	1.0	2-	11
14.7	,25	-	7.47	7.1	959	1.25	21/2	1+, brn. less silty
1409	.125		7.53	6.1	964	1.5	3	11
1410	. 25	1-	7.46	6.1	957	1-75	31/2	- 1
1412	.125		7,47	6.1	160	20	4	1(
1416	.043		7.52		9 59	2.25	41/2	41
1417	-25		7.4	6.1	960	2.5	5	1 1th brown

Comments:								
- THAP	7 _	•	2	3	4	5.	4 ~~	
·   HAP	1 =						<del> </del>	
	ø			_		0		
<del></del>						_		

12/14 purped well a 25 minutes until water was clear
Also collected fruit round of parameters after additional development activities:

(1011-10000000) (GOVENEVINORIONI) PH 7.03 Temp 5.5 Cond 964 clear

Page 1 of +

Well ID Pump   TRACE TEST WELPOINT ARRAY WELLPOINT # El (SEE MAP BELOW)  Survey location coordinates: North	
Date this report and 12/14/91 Date well installation 12/7/91 Date well development/2/9/91  Well designation: # E/ SEE MAP BFLOW  Server Way of Car Valley By Augustum	
Well designation: # El SEE MAP BFLOW	
Well designation: # El SEE MAP BFLOW	أوامالا
Ground elevation: Est: Survey: Woman CRE. VALLEY FILL ALLEY	1-77.
Screened interval: 1.0 + 6.0' ( septiments) Formation:	d
Ground elevation: Est:  (from grand subset)  Screened interval:  1.0 + 6.0' ( septiment during ) Formation:  Measuring point (MP): Top of well casing/other:  100 of well casing/other:	يستنج طوبر
Water level (below MP): Start: 2.68' (12/9/91) End: Not messed 12/9/91	
Water level (below MP): Start: 2.63 (12/11) End: Society of 12/11)  Well depth (below MP): 7.03 (12/11) Water elevation (BGS) ~1.58 (12/11)  Electronic under level and such fine to the start of the st	
Values of securated apprilite (sections 3) Descent Bostosity): 2/1 50 F Gu. 2 50	
Volume Calculation: Well Casing volume = Tr2h = Ti (0.07013')2-1.35 = 0.06856 ft3, 24866 = D.	519~
Quantity of water used during drilling: Xork	
Depth of sediment (below MP): Before: 7.03 (12/9/91)  After: 4/4 maximal 12/9/91	
Depth of sediment (below MP): Before: 7.03 (12/1919)  After: 41+ reasond 12/19/19  Development equipment: 7.6 floo bailer 1'4" 0. D (nyales 12/19/19) Peristatic pump (12/15/91), Surge &	bick
Sampling equipment: Not Sample   7H 4.01 = 4.00 2/3.100 PH 7100 material 711    Drien Hold 230 (12/4/11) PH 4.01 = 10.14 20/3.100 PH 7100 material 711  pH meter No. 54 00/752 (Calibration: PH 10.01 = 10.14 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3.100 20/3	
Drien Milestan (12/9/11) PH 4.0/ = 4.00 2 /3.100 PH 700 PH	••
pH meter No. St 001752 (12/9/11)  Calibration: ph 10, u1 = 10.14 \(\text{D}\)   3.1-\(\text{p}\)   13.1-\(\text{C}\)  Orion Males (12/9/11)  Specific conductance meter No.: \(\text{RL Su 96110.23}\) Calibration: \(\text{Cond. \$\frac{1}{2}\$ \text{d. }= 1,000 \text{much. }\text{D 13.1-\(\text{C}\)}\)  Specific conductance meter No.: \(\text{RL Su 96110.23}\) Calibration:	
Specific conductance meter No.: 50 741023 Contribution.	
F.T.U. meter No.: NA per Sep 2.48 Calibration: NA	
Time Pumping FTU pH Temp. S.C. Cam. Vol. of H ₂ O Physical Description of Water	
Rate gpm C C cashor/cm Removed Water Gallons Casing Vols.	
Rate gpm P10 at °C sunhot/cm Removed Water gpm Casing Vols.	
Rate   Property   Pr	
Rate   Place	
Rate gran   °C   makes/cm   Removed   Water	
Rate 200 Callons Casing Volk  1401 -125 — 7:59 6:1 788 0 0 0 Dr. bro, Yy, Silly  1403   7.58 4:1 727 0:25 1/2 11  1405   7.61 4:0 7:68 0.75 1/2 11  1408 -25 — 7:60 7:1 789 1.25 2 1/2 11	
Rate gran  *C maker/cm & Removed Water  Gallons Casing Vols.  1401 .125 — 7:59 6:1 7-88 0 0 0 Dr. bco, Yy, 5; lby  1403   7-25 k:1 7-74 0.25 ½  1405   7-261 6:1 7-68 0.50   4  1407 -25 — 7:60 7:1 7-89   1.D 2 11  1410 .125 — 7:60 7:1 7-57 1.25 2 12 11  1411 .25 — 7:60 7:1 7-57 1.25 3 11	
Rate   Property   Removed   Removed   Water	
Rate   Part	•
Rate gram   C   C   Removed   Water   Water   Gallons   Casing Vols     1401   .135   - 7.59   6.11   788   0   0   Dr. bro., Yy., Silby     1403   - 7.58   v.1   777   0.25   1/2     1405   - 7.61   v.1   768   0.50   1     1407   .25   - 7.60   7.1   789   1.0   2     1410   .126   - 7.60   7.1   757   1.25   2     1411   .25   - 7.60   7.1   720   1.5   3   11     1413   .125   - 7.65   711   825   1.75   3   11	
Rate   Property   Pr	
1401   -125	

12/9/9/

·413 Hell

## U.S. DEPARTMENT OF ENERGY ROCKY FLATS PLANT

Page 2 of 4

## WELL DEVELOPMENT AND SAMPLING FORM

ecorder								
	EI							
								•
Date this	report			Da	ate well instal	lation	Date	well development
round e	levation: E	st:			Survey:			
creened	intervak					Formation:		<del>:</del>
leasurin	e noint (M	P): Tor	of well	casing/of	her:			_ Well stick up:
Vater les	el (below)	MIP): S	itart:			End:		
Vell den	th (below )	MP): _				W	ater elevatio	n (BGS)
Aethod x	sed to me	astre W	ater leve	Ł		Es	timated reci	narge rate:
)CYCLODE	neni equip	menc .						
•								
ampling	equipmen	t:			·			
ampling H meter	equipmen	t:		Calibration	n:			
ampling  H meter  pecific o	equipmen	t: e meter	(	Calibration	n:Calibra	ation:		
ampling  H meter  pecific o	equipmen	t: e meter	(	Calibration	n:	ation:		
ampling  H meter  pecific o	equipmen	t: e meter	(	Calibration	n: Calibra alibration:	com Ve		
ampling  H meter  pecific of	equipmen r No conductance eter No.: _	t:e meter	No.:	Calibration C	n: Calibra alibration:	Com. Vo	ol of H ₂ O noved Casing Vols.	Physical Description of Water
ampling  H meter  pecific of	equipmen  r No conductance seter No.: _  Pumping Rate	t:e meter	No.:	Calibration C	n: Calibra alibration:	Can. Ve	ol of H ₂ O hoved	Physical Description of Water
Ampling H meter specific of	equipmen r No conductance eter No.: _ Pumping Rate gpm	t:e meter	No.:	Temp.	Calibration:  S.C.  S.C.  S.C.  S.C.  951	Cam. Vo. Ren Gelloss 2.5 7.17	ot of H ₂ O soved  Casing Vols.  577.	Physical Description of Water
H meterific of T.U. m	equipmen r No conductance seter No.: _ Pumping Rate gen	t:e meter	PH 7.86 7.74 7.12	Temp. °C 7.1	Calibra  alibration:  S.C.  S.C.  S.C.  S.C.  S.C.  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  1007  10	Cum. Vo. Ren Gallous 2:5 7.25	ol. of H ₂ O soved  Casing Vols.	Physical Description of Water
Time  1429 1448 1622	r No conductance eter No.: Pumping Rate gran .041 4.08	t:e meter	PH 7.84 7.12 7.30	Temp. °C 7.1	Calibration:  s.c	Cam. Vo. Ren Gelloss 2.5 7.17	ot of H ₂ O soved  Casing Vols.  577.	Physical Description of Water  Brown  11  Hr. gray / brown, charly  11
H meterific of T.U. m	equipmen r No conductance seter No.: _ Pumping Rate gen	t:e meter	PH 7.86 7.74 7.12	Temp. °C 7.1	Calibra  alibration:  S.C.  S.	Cum. Vo. Ren Gallous 2:5 7.25	ot of H ₂ O soved  Casing Vols.  577.	Physical Description of Water
Time  1429 1448 1622	r No conductance eter No.: Pumping Rate gran .041 4.08	t:e meter	PH 7.84 7.12 7.30	Temp. °C 7.1	Calibration:  s.c	Cum. Vo. Ren Gallous 2:5 7.25	ot of H ₂ O soved  Casing Vols.  577.	Physical Description of Water  Brown  11  Hr. gray / brown, charly  11
Time  1429 1448 1622	r No conductance eter No.: Pumping Rate gran .041 4.08	t:e meter	PH 7.84 7.12 7.30	Temp. °C 7.1	Calibration:  s.c	Cum. Vo. Ren Gallous 2:5 7.25	ot of H ₂ O soved  Casing Vols.  577.	Physical Description of Water  Brown  11  Hr. gray / brown, charly  11
Time  1429 1448 1622	r No conductance eter No.: Pumping Rate gran .041 4.08	t:e meter	PH 7.84 7.12 7.30	Temp. °C 7.1	Calibration:  s.c	Cum. Vo. Ren Gallous 2:5 7.25	ot of H ₂ O soved  Casing Vols.  577.	Physical Description of Water  Brown  11  Hr. gray / brown, charly  11

12/9/91

	WELL.	DEVEL	OPMENT	AND SAMPI	ING	FORM
--	-------	-------	--------	-----------	-----	------

			7.923 of ±
Recorder's Name and Title			
Well ID			
Survey location coordinates: North			12/1/9/
Date this report	Date well installation _	Date well developmen	12/14/91 /12/15/91
Well designation:	· · · · · · · · · · · · · · · · · · ·		12/16/4/
Ground elevation: Est:			
Screened interval:	Formal	ion:	/
Measuring point (MP): Top of well car	sing/other:	Well stick up:	<u> </u>
Water level (below MP): Start:	14 (12/4) 3.24 (1245) End: _	bt mesered (12/14) 3.26 (12/15)	See Pay
Well depth (below MP):	12/14)	Water elevation (BGS)	for addition
Method used to measure water level:	•	Estimated recharge rate:	
Volume of saturated annulus (assume 3	30 percent porosity):		_ >
Volume Calculation:			(
Quantity of water used during drilling:		·	
Depth of sediment (below MP): Before	= 204 (12/14)	After: Net measured	·
Development equipment:			
Sampling equipment:			
oH meter No Calib	oration:		/ 50
Specific conductance meter No.:	Calibration:		/
F.T.U. meter No.:			

	Time	Presping Rate	יידע	pH	Temp. °C	S.C. umbos/cm e *C		et of H ₂ O moved	Physical Description of Water
<b>#</b>		<b>(Fin</b>				2.0	Callons	Casing Vols.	
12/14	1348	0,125		7.21	64	946	2.45	74	It gray chaly
	TER .	0.115	-	264	5.9	969	4.0		
	1351	0.25	1	7.43	5.8	173	425	. 34	• •
	1852	0.25	1	7.52	5.9	143	4.5	9	•
	1557	0.25		3.50	6-1	113	4.75	91/2	4
12/15 surpay 4 2001/4	0990		1	6.94	8.3	98)	5.5	11	<b>!</b> /
eleber Se e	2:54		)	7:35	7.2	969	5.75	11/2	71
4 2441	9258	Dry		676	5.9	4735. E	60	12	le
T Appendix	10:27			6.76	5.9	973	6.15	121/2	. H
	10:33			6.96	6.3	975	6.5	13	11
	10: 5% Comme			Z-13 7-15	5.9	975	675	131/2	Clear

No development activities 12/10-13 so as not to affect scizivly scizivly scizivly scizivly scizivly

Page 4 of 1

Smraw L					East		•		_
Date thi	e conneti			D	ate well install	ation	Date	e well development 12	]14/
						•			- /
George	elevation: 1	Fet•			Survey:	•			- [
Citoma	Listeral:					Formation:		<u>.                                    </u>	- (
Manusi	na noint (N	(P)· T~	of wel	casing/of	her:	• .		_ Well stick up:	1
Wicton In	and Chalcon	MD). S	tast.	120 (12)	116/21)	End: 44	mercal		_ [
Water &	-th Chalent	MID). C	Mari			W	ter elevation	na (BGS)	_ (
Men del	d to		nter les			Est	imated rec	harge rate:	_
									_
							•		_ \
								·	-
	meni canin	ment: .							-
-		rt•							_
Sampling pH mete Specific	g equipment of the conductance	ti Medel : Meler E meler	No.: _	lib) Calibration rion model Sld 48 li	ря 4, 01 = n:	1.00 D/D.7° = 9.70 D lu Cord ion:	C PH TC WASTES	1.000 mmhes 225 1047 mmhes 29:60	الاناء
Sampling pH mete Specific	g equipment of the conductance	it: n model : iN 0027 e meter	No.: _	lio) Calibration From Modul Sld 96 III	PH 4, 01 = 9H 10, 01 12-2 62-3 Calibrat alibration:	1.00 210.7° = 1.70 2 10 Cord ion:		1.000 mmhof 225 1047 mmhof 29.60 1047 mmhof 29.60 12/16/9) 12/16/9)	- 1.12//
Sampling pH mete Specific	g equipment of the conductance	ti: n model : iN 9022 e meter	No.: _	Calibration Calibration From Proced Slot 96 111  Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration	PH 4, 01 = 9H 10, 01 12-2 62-3 Calibrat alibration:	Com. Vo	ONU NE	12-16-19) D TO AOD W/ 12-19, 12-16 Physical Description of Water	- 1.12//
Sampling pH mete Specific F.T.U. n	equipmen Ov. a r Nos conductant neter No.:	T.	Hq	Temp.	S.C. unhos/cm & *C	Cum. Vo Ress Gallons	ONLY NE	12-16-191 D-m ACO W/ 12-19-12-14 Physical Description of Water	- 1/2/j
Sampling pH mete Specific F.T.U. n	g equipmen Ov. a or Nos conductant neter No.:	T.	pH Tres	Temp. °C	sc mhos/cm e °C	Com. Vo Rem Gallons 1/4	ONLY NE	12-16-19) D TO AOD W/ 12-19, 12-16 Physical Description of Water	- 1.12//
Sampling pH meter Specific F.T.U. 11 Time	equipmen Ov. a r Nos conductant neter No.:	T.	PH 4-11	7 cmp. °C	sc unhou/cm x°C 77-2-	Com. Vo Ress Colloss V4	Casing Vols.	12-16-191 D-m ACO W/ 12-19-12-14 Physical Description of Water	- 1.12//
Sampling pH mete Specific F.T.U. n  Time	g equipmen  Orio  or No	T.	рН Ф.(1 3-22 7-24	Temp. *C	s.c. whos/cm e°C  77-2- 97-9	Com. Vo Rem Gallons 1/4	Casing Vols.	12-116-191 D to AOD W/ 12-19 12-14 Physical Description of Water	- 1.12//
Sampling pH meter Specific F.T.U. n  Time  1513 1514 1514	page gequipment Ovice or No	T.	PH 9-41 3-17	7 cmp	### ##################################	Com. Vo Ress Colloss V4	Casing Vols.	12-116-19) Den ADD W/ 12-19-12-114 Physical Description of Water  14. 90-11-11-11-11-11-11-11-11-11-11-11-11-11	- 1.12//
Sampling pH mete Specific F.T.U. n  Time  1513 1514 1514	pequipmen Orion or No	T.	PH 9-11 3-22 3-24 3-17 7-15	Temp. *C  6.5  4.0  5.9  5.9	S.C. mhos/cm & 'C'  77-7  97-9  97-1  17-7	Com. Vo Reso Gallous V/4 Y	Casing Vols.	12-116-19) D-70-AOD W/ 12-19-12-114  Physical Description of Water  14. 90-9-0-6-0-6-9  17	- 1/2//2
Sampling pH meter Specific F.T.U. n  Time  1513 1514 1534 1534	page gequipment Ovice or No	T.	PH 9-41 3-17	7 cmp	### ##################################	Com. Vo Reso Gallous V/4 Y	Caring Vols.	12-116-191 D-70-AOD W/ 12-19-12-114 Physical Description of Water  44. gcay, classic	- 1/2//2
Sampling pH meter Specific F.T.U. II	equipmen Orion or No	T.	PH 9.01 222 7.24 2-17 7.13 4-07	Temp. *C  6.5  6.0  5.9  5.9  5.8  5.2	### ##################################	Com. Vo Rem Gallons 1/4 1/4 1/4 1/4 1/4 2/14 2/14	Casing Vols.  1 1 2 2 2 4 2 3	12-116-19) D-70-AOD W/ 12-19-12-114  Physical Description of Water  14. gray charles  15. gray charles  15. gray charles  15. gray charles  15. gray charles  16. gray charles  17. gray charles  18. gray charles	- 1/2//2
Sampling pH meter Specific F.T.U. n  Time  1513 1514 1534 1534	equipmen Orion or No	T.	PH 9:11 322 324 3-17 7:17	Temp. *C  6.5  6.0  5.9  5.9  5.8  5.2	s.c.   s.	Com. Vo Reso Callons V4 Y ₂ -5/4 1 1 V ₄ 1 V ₂ 2 1 V ₄	Casing Volk	12-liu- 9) D-TO-AOD W/ 12- 9 12-114  Physical Description of Water  14. gray clarky  15. gray clarky  14. gray clarky  15. gray 25. 21.4484 clar	- 1/2//2
Sampling pH meter Specific F.T.U. II	Pumping Rate  9.863  125	FTU	PH 9.01 3-24 3-17 7-15 9.07 9.07	7 cmp. °C 6.5 6.0 5.9 5.9 5.8 5.2	s.c.   s.	Com. Vo Rem Callons 1/4 1/4 1/4 1/4 1/4 2/14 2/14 2/14 50 (1/4/1)	Casing Volk	12-liu- 9) D-TO-AOD W/ 12- 9 12-114  Physical Description of Water  14. gray clarky  15. gray clarky  14. gray clarky  15. gray 25. 21.4484 clar	- 1/2//2

Page 1 of 3

		Fume							•	BFC
S	Survey lo	cation coor	rdinates /4/4/ ,	North	. — — —	East				
	Date this	report		1491_	D ₁	te well install	ation _12/	<u>+ /9/</u> Date	e well development/2/14	19]   12]
7	Well desig	gnation: _	# EZ					·		12/
(	Ground e	levation: E				Survey:	<del></del>	. ,		
S	creened	interval: _	0.	90 to	5.90'	essued duing installation	Formation		reck Valley Fill Alle	
					i casing/ot	ber top of	well cosin	,	_ Well stick up: <u>~1.0′</u>	المنه (
7	Water lev	rel (below l	MP): S	tart:	2.91'6	14) 4.73(12)(	End: _ua	meured 12/14	5.84(12/15)	
		th (below l			6.924	* ************************************	1	e 124144	m (BGS)	
ì	Method w	sed to me	esure w	ater lev	et <u>mut</u>	y (Solinet Med	I I I I I I I	stimated rec	harpe rate: Noteshim	akd
						ent porosity):	MOT WE		elete well casing sop GW 2 ser 5.2.	
								083)-4	01' = 0.06320.ft 3x 3.	4890
					ing: No					40
					_		·	After	Not measured 1214	
	Debri oi	seament (	(DEIOM 1	ME J. DA	- 1 100 - V	14"0.P.	IMMI) Surg	C Block (12	116/91), enstaltic pump (12/15/9	11 mm
ı	Developi	ednibwer reur edmb	menc ,	· 12-2-10	1 1		<del>''')                                  </del>			','
•			_ ~							•
I S	pH meter Specific c	No	e meter	19 No.: _	Calibration Orion Hodal SN 971102	122- 3 Calibrat	ion:	310. 802	MENUC PH 7.00== = baommi & 25°C d 1017 mmhu &	
5	pH meter Specific c	No	e meter	19 No.: _	Calibration Orion Hodal SN 971102	: <u> </u>	ion:	ond str. measure	Medwe pH 7.00==  = tabrimhi d 25 c  d 1017 minhi d	
5	pH meter Specific c	No	e meter	19 No.: _	Calibration Orion Hodal SN 971102	2 9H 10.0 122 Calibrat dibration: A	ion:	310. 802	MEDWE ON THUE	
5	pH meter Specific of F.T.U. m	r No	d Box2 e meter	19 No.: &w so	Calibration Orion Hodal SN 9P102 PP 2.08 Ca	2 9H 10.0 122 Calibrat dibration: A	ion:	ond. stal.  measure	Measure pH 7.00==  = Lawman 1 al 25° c  d 1017 member al  Physical Description of	
3	pH meter Specific of F.T.U. m	r No	d Box2 e meter	19 No.: &w so	Calibration Orion Hodal SN 9P102 PP 2.08 Ca	s.c.  s.c.  mhos/cm  e ° C	1 = 9.70 Coion:	ond. Stal.  mcasure  et et H ₂ O  moved  Casing Vols.	Measure pH 7.00==  = Lawman 1 al 25° c  d 1017 member al  Physical Description of	
3	pH meter Specific of F.T.U. m	r No	d Box2 e meter	11 250 49 No.: 6W SO	Calibration Orion Hodal SN 9F1102 PP 2.08 Ca Temp. *C	2 PH 10.0 122 Calibrat dibration: A	Com. V. Res	ol of H ₂ O  Casing Vok	Medwe pH 7.00 = 1  = 100 pinh 1 al 25° c  el 1047 pinhus al  Physical Description of Water	
5	pH meter Specific of F.T.U. m	Pumping Rate gpm  125 -25	d Box2 e meter	## PH 7-11 7-11	Calibration Orion Hodal SN 921102 OP 2.08 Ca Temp. °C  5.5 5.7	SC.  \$12.2 Calibrat  libration: A  SC. Calibrat  \$1.2 \$08  \$1.0	= 9.76	ond. stal.  mcasus  mcasus  ol. of H ₂ O  moved  Casing Vols.  O  V ₂ /	Physical Description of Water  Die bown, vy 5.14	
+ S	PH meter Specific of F.T.U. m Time 1432- 1433- 1434-	Pumping Rate gpm	d Box2 e meter	PH 7-11 7-14 7-11 7-162	Calibration Orion Hodal SN 97102 PP 2.08 Ca  Temp. °C  5.5 5.7  6.0	2. Calibration: _A  122	= 9.70	ol of H ₂ O  Casing Vok	Physical Description of Water  Die bown, vy 5.74	
H S H	F.T.U. m  Time  1432- 1433- 1434- 1437- 1055	Pumping Rate gpm  125 -25	d Box2 e meter	PH 7-11 7-11 7-11 7-11 7-11 7-11	Calibration Orion Hodal SN 97102 PP 2.08 Ca  Temp. °C  5.5 5.7  6.0	SC.  \$12.2 Calibrat  libration: A  SC. Calibrat  \$1.2 \$08  \$1.0	= 9.70	ond. stal.  mcasus  mcasus  ol. of H ₂ O  moved  Casing Vols.  O  V ₂ /	Physical Description of Water  Die bown, vy 5.14	
+ S	PH meter Specific of F.T.U. m 1432- 1433- 1434- 1437- 1055- 1058	Pumping Rate gpm	d Box2 e meter	PH 7.11 7.14 7.11 7.12	Calibration Oion Hodal SN 97102 PP 2.08 Ca  Temp. °C  5.5 5.7 6.0 4.0	2. Calibrat  3. Calibrat  3. Calibrat  3. Calibrat  3. Calibrat  3. Calibrat  4. Calibrat  5. Calibrat  5. Calibrat  5. Calibrat  6. Calibrat  6. Calibrat  7. Calibrat  6. Calibrat  7. Calibrat  8. Ca	= 9.70	ond. stal.  mcasus  mcasus  ol. of H ₂ O  moved  Casing Vols.  O  V ₂ /	Physical Description of Water  Die bown, vy s. th	
1	DH meter Specific of F.T.U. m Time 1432- 1433- 1434- 1055- 1058- 1358	Pumping Rate gpm	e meter	PH 7-11 7-11 7-11 7-12 3Tar	Calibration Onion Hodal SN 971102 OP 2.08 Ca  Temp. °C  5.5 5.7  6.0  4.0  4.0  7.5	22 Calibrat  122 Calibrat  13 Calibrat  16 Calibrat  17 Calibrat  17 Calibrat  17 Calibrat  17 Calibrat  18 C	= 9.76	ol of H ₂ O  Casing Vols  /  1/2_	Physical Description of Water  Die bown, vy 5.14	
+	Time  1432 1433 1434 1437 1055 1058 1358 0909	Pumping Rate gpm	e meter	7-11 7-11 7-12 7-14 7-11 7-10 7-10 100	Calibration Orion Hodal SN 971102 OP 2.08 Ca  Temp. °C  5.5 5.7  6.0  † purpin	2. Calibrat  3. Calibrat  3. Calibrat  3. Calibrat  3. Calibrat  3. Calibrat  4. Calibrat  5. Calibrat  5. Calibrat  5. Calibrat  6. Calibrat  7. Calibrat  8. Ca	= 9.76	cal of H ₂ O  cal of H ₂ O  cating Vola  O  1/2  1/2  2-  2-1/2	Physical Description of Water  Die bourn, vy 5:44	
3	1432- 1432- 1433- 1434- 1055- 1058- 1358- 0909-	Pumping Rate gpm	e meter	PH 7.11 7.11 7.12 37 50 6.66 6.49	Calibration Onion Hodal SN 97107 P 2.08 Ca  Temp. °C  5.5 5.7 6.0 4 purpin	200 m 817 812 812 812 812 812 814 817 947 947 947 947	= 9.76	cal of H ₂ O moved  Casing Vols  1/2  2  2/4  3  3/2	Physical Description of Water  The Brown  Clear, slightly close  11. brown, cloudy	i.v·c
1	Time  1432 1433 1434 1437 1055 1058 1358 0909	Pumping Rate gpm	FTU FTU	7-11 7-11 7-12 3-7-17 1-20 6-60 6-60 6-60	Calibration Onion Hodal SN 971102 PP 2.08 Ca  Temp. °C  5.5 5.7  6.0  5.4  5.5	\$12 \$12 Calibration: A  \$12  \$12  \$12  \$12  \$12  \$12  \$14  \$14	= 9.76	cal of H ₂ O moved  Casing Vols  1/2  2  2/4  3  3/2	Physical Description of Water  The Brown  Clear, slightly close  11. brown, cloudy	i.v·c
II 5 I	1432- 1432- 1433- 1434- 1055- 1058- 1358- 0909-	Pumping Rate 970  -125  -125  -083	FTU FTU	PH 7.11 7.11 7.12 37 50 6.66 6.49	Calibration Onion Hodal SN 97107 P 2.08 Ca  Temp. °C  5.5 5.7 6.0 4 purpin	\$12 \$12 Calibration: A  \$12  \$12  \$12  \$12  \$12  \$12  \$14  \$14	= 9.76	cating Vola  Casing Vola  1/2  2  2/2  3/2  7/2  7/2  7/2  7/2  7/2	Physical Description of Water  The boun, vy sith  It. Brown  Clear, slightly clouds  It. brown, clouds	i.v·c
+	1432- 1432- 1433- 1434- 1437- 1055- 1058- 1358- 0909- 0911- 0914-	Pumping Rate 970  -125  -125  -083	FTU FTU Services	7-11 7-11 7-12 3-7-17 1-20 6-60 6-60 6-60	Calibration Onion Hodal SN 971102 SN 971102 SN 971102 SN 971102  Temp. °C  5.5 5.7 6.0 4.0 4.0 5.4 5.5 7 ard(p. n. wellowly mpd 3	\$12 \$12 Calibration: A  \$12  \$12  \$12  \$12  \$12  \$12  \$200 m  \$17  \$17  \$17  \$17  \$17  \$17  \$17  \$1	= 9.76	cal of H ₂ O moved  Casing Vols  1/2  2  2/4  3  3/2	Physical Description of Water  The Brown  Clear, slightly close  11. brown, cloudy	i.v·c

Page	7.	2	_3
	_	•	_

Well ID E2		
Survey location coordinates: North	h East Date well installat	ion Date well development
Well designation:		
Screened interval:	F	Formation:
Measuring point (MP): Top of we	ell casing/other:	Well stick up:
Water level (below MP): Start: _	3.08 (12/14/91) E	End: _ sht measured (12/16/91)
Well depth (below MP):		Water elevation (BGS)
Method used to measure water ke	evel:	Estimated recharge rate:
Volume of saturated annulus (ass	sume 30 percent porosity):	
		After:
Sampling equipment:		
Specific conductance meter No.:	Calibratic	on:

== 12/14

Time	Pumping Rate	FIU	Hq	Temp. °C	S.C. umbos/cm	Com. Vol. of H ₂ O Removed		Physical Description of Wester
	gpes				€ °C	Gallons	Casing Vols.	
0915	.25	_	6,72	5.5	925	2	4	Brown, clarky
			DRY					
6942		_	7.25	6.3	945	2.25	41/2	11
		-	war	BAILED	DEVAGAIN	MU LET	PAHARE	س ا
1014		-	7.18	7.9	945	2.5	5	11
1036	٠٠٥١ ٠	-	7.40	7.8	94 8	2.75	51/2	11
1054		_	7.08		951	3	4	His Brandady
1113			7.29	4.4	941	3.25	612	
1200		1	7.58	7.4	931	3.5	7	Ham luky
1233	1/		8.02	7.7	952	3.75	712	, , ,

Comments: 12/14 pumped well ~ 25 minutes until water was char

Page 3 of 3

	location co	ordinate	s: Norti	b	East _			•
Date th	is report			ı	Date well insta	llation	Da	te well development
Well de	signation:			•				
Ground	elevation:	Est: _			Survey	<u> </u>		
Screene	d interval:		· · · · ·		,	Formatio	œ	
Measur	ing point ()	MP): To	op of we	ll casing/o	ther:			Well stick up:
Water I	evel (below	MP):	Start: _			_ End:		
Well de	pth (below	MP): _				v	Vater elevati	ion (BGS)
Method	used to m	easure v	vater le	rel:		E	stimated re	charge rate:
Volume	of saturate	ed annul	ius (assu	me 30 pe	rcent porosity)	:		
Volume	Calculatio	n:						<u> </u>
Quantit	y of water i	sed du	ring drill	ling:				
Develop	ment equip	ment:						
	g equipme	at:						
Samplin					n:			
Samplin pH met	er No			Calibratio	n:			
Samplin pH meta Specific	conductant	æ meter	No.: _	Calibratio	n: Calibra	tion:		
Samplin pH meta Specific	conductant	æ meter	No.: _	Calibratio	n: Calibra	tion:		
Samplin pH mete Specific F.T.U. 1	conductand	æ meter	No.:	Calibratio	n: Calibra	tion:		
Samplin pH meta Specific	conductand meter No.:	æ meter	No.: _	Calibratio	n: Calibra alibration:	tion:		
Samplin pH meta Specific F.T.U. 1	conductant neter No.:	æ meter	No.: _	Calibration C	n: Calibra alibration:	tion:	fol. of H ₂ O moved	Physical Description of Water
Samplin pH mete Specific F.T.U. 1 Time	conductand neter No.:	æ meter	No.: _	Calibratio	n: Calibra alibration:	Can V	Casing Vols.	Physical Description of Water
Samplin pH meta Specific F.T.U. 1 Time	Pumping Rate gpm	æ meter	PH 7.55	Calibratio	Calibra  Calibra  alibration:  S.C.  mhos/cm  x °C  74 g  9 4 p	Com. V Res Gallons 4.0 4.25	Casing Vols.	Physical Description of Water
Samplin pH mete Specific F.T.U. r  Time 1235 1237 1239	conductand neter No.:	æ meter	No.:	Calibratio	Calibra  Calibra  alibration:  S.C.  S.C.  Short/cm  E °C  748  940  941	Case V Res Gallons 4.0 4.25	Casing Vols.	Physical Description of Water
Samplin pH met Specific F.T.U. 1 Time 1235 1237 1239	Pumping Rate gpm	æ meter	PH 7.55 7.55 7.55 7.55	Temp. *C  7.7  \$1.0  \$1.1	Calibra  Calibra  alibration:  S.C.  Abox/ca  a °C  748  940  944	Com. V Res Gallons 4.0 4.25	Casing Vols.	Physical Description of Water
Samplin pH mete Specific F.T.U. z  Time  1235 1237 1237 1511	conductand neter No.:	æ meter	PH  7.55  7.55  7.55  7.21  7.24	Calibratio  Calibratio  Calibratio	Calibra  Calibra  alibration:  S.C.  Abox/ca  E°C  748  940  944  947  959	Com. V. Rei Gallons 4.0 4.25 4.75	Casing Vols.  P  GIV.  10	Physical Description of Water  Lit 4 Cang, Clauda
Samplin pH mete Specific F.T.U. 1  Time  1235 1237 1239 1511 1519 1524	conductand neter No.:	æ meter	PH 7.55 7.55 7.55 7.21 7.14 7.17	Temp. *C  7.7  8.0  8.1  0.4  5.8  5.7	Calibra  Calibra  alibration:  SC  whos/ca  a °C  948  940  944  948  959	Com. V Res Gallons 4.0 4.25 4.75 5.25	Casing Vols.	Physical Description of Water  Lity 4 Carry of Loundry  11
Samplin pH mete Specific F.T.U. r  Time  1235 1237 1237 1511 1517 1524	conductand neter No.:	æ meter	PH  7.55  7.52  7.55  7.21  7.14  7.14  7.14	7.7 *C 7.7 \$.0 \$.1 \(\bu\),4 \(5.8\) \(5.7\)	Calibra  Calibra  alibration:  S.C.  Abox/ca  E°C  748  940  944  947  959	Com. V. Rei Gallons 4.0 4.25 4.75	Casing Vols.  P  GIV.  10	Physical Description of Water  Lib 4 can, cloudy  11
Samplin pH mete Specific F.T.U. 1  Time  1235 1237 1239 1511 1519 1524	conductand neter No.:	æ meter	PH  7.55 7.55 7.52 7.55 7.21 7.14 7.14 7.14 7.10	Temp. *C  7.7  8.0  8.1  0.4  5.8  5.7	Calibra  Calibra  alibration:  \$.C.  About/cas  2°C  748  940  944  947  959  959  960  960	Com. V Res Gallons 4.0 4.25 4.75 5.25	Casing Vols.  P  9  9  10  10  10  10  10	Physical Description of Water  Lity 4 Carry of Loundry  11
Samplin pH mete Specific F.T.U. r  Time  1235 1237 1237 1511 1517 1524 1527	conductand neter No.:	æ meter	PH  7.55  7.52  7.55  7.21  7.14  7.14  7.14	7.7 8.0 8.1 5.8 5.7 5.0 5.0	n: Calibra alibration:  s.c	Com. V Res Gallons 4.0 4.25 4.75 5.25 5.5	Casing Vols.  P  GIV.  10  10  11	Physical Description of Water  Lit gray, cloudy  11  11  11  11  11  11  11  11  11
Samplin pH met Specific F.T.U. 1  Time  1235 1237 1239 1511 1519 1524 1530	conductand neter No.:	æ meter	PH  7.55 7.55 7.52 7.55 7.21 7.14 7.14 7.14 7.10	Calibratio  Calibratio  Calibratio  Calibratio  Calibratio	Calibra  Calibra  alibration:  \$.C.  About/cas  2°C  748  940  944  947  959  959  960  960	Com. V Rev Gallons 4.0 4.25 4.75 5.25 5.25 5.35	Casing Volk  F  GUL of H-O moved  Casing Volk  F  GUL  10  11  11  11  11  11  11  11  11  1	Physical Description of Water  Let gray, cloudy  11  11  11  11  11  11  11  11  11

# Page 10f1

# WELL DEVELOPMENT AND SAMPLING FORM

		l. Nama a		<b>~</b> .	Consend	HYDROGEDLE	SOUT			_
R	ecoraer	k = =	D		ER TEST	WELLPOINT	ALCOY	(SEE D	AP SELOW)	
W		-tion coo	dinates	North		East		•	e isplied .	_
20	rvey so		12/14/4	11 . 12 /1	ulai Dei	e well installs	tion 12/7	11 Date	well development 12	ומו מולבו לאו
		•		· .	<u> </u>					-
		gnation:				Survey:	•			_
_	(#	levation: E	atu)		. / Hcasu	red during)	En-metion:	Woman Cr.	ix Valley Fill Allerin	 
Sa	reened	interval: _	<u></u>	47 61	(olasmu	danis develop	F 12/4)		Well stick up: 4/0'	(measurd or (measurd or (measurd or develope)
M	easuring	g point (M	P): Top	of well	casing/ou	er:	F-A VA	1 7 1 7 1 7 1 7 1	SEL (MIC) SUD	3.23 (14G)
W	ater lev	el (below	MP): S	tert:	3.10 (12)	14)	Enc: _**	a com	# (BGS) ~ 2.19	3.25(12/16)
•••	F		,		Pleade	Lie worker lei	vel meter		nr (BGS) ~2.19	- 
M	ethod u	sed to me	store w	HET BEN	T	MIN MODEL 181	10+ M44	d to calcul	ate well carion with	
V	olume o	of saturated	d annulu	15 ( <b>25</b> 5W	me 30 perc	ent porosity):		3.87	1 Sec. 5.6.6.6	- 1 - 0 40sel
							T (0,0708	1 41284	O DINGS, 7484	13 20.954
Qı	nantity (	of water u	sed duri	ng drill	ing Nor	6.96	(12.114/41)			-
De	epth of	sediment (	(below I	MP): Be	:lore:	1219/11) 56 11	(12/9/91) 2/19/1	Aner:	Not mereral to	#
D	evelop <del>u</del>	ent equip	ment: _	Tet	on baikr	14"0.D_ +	Peristal	tic pump	(12/10/41)	
Sa	mpling	equipmen	t: <u>}</u>	of sa.	rpled	PH4.01= 4	Car 2 10:30 C		too messeres 7 of 201	T. 4-4)
ρŀ	i meter	No <u>\$/N</u>	10022	49 (	Calibration	10.01	= 9.70 210	.7 e		בי אווצו (
Sp	ecilic o	onductano	e meter	No.: _	SN 4811	Calibrat	ion:	-JUCI 104	7 - 110 - 6	THAP
F.	T.U. m	eter No.: _	NA o	c GW	50 p 2.04 Ca	libration:	N/A		· .	
					•		•		· .	
f	- I	Develop	FTU	эн	Temp.	2.2	Casa. Vo	r et H ² O	Physical Description of	1234
ł	Tiere	Pumping Rate som	'''	"	•ट	embos/cm	Res	oved	Winter	
L							Gallons	Casing Vols.		
1	1320	•		7.43	6.1	848	•	1/2	DK bon wasiby	
1	1321	1.25		2.45	4.3	\$20	0.25	•	••	1
	1722		-	74	6.5	832 808	0.50	Me.	ij	7
_	1923		1	254	64	Pos	1.0	9-	••	1
			-	7.57	44	P24	1.25	242	•	]
	1327		=	2.41	6.6	622	1.50	3	<b>30</b> °	]
	7330 141<		=	2.67	44	9 40	1:35	3 4,	Sw. bm, elouchy	
	1414			3.00	. ho	947	2_	4	se reledie	_
	1919		_	7.7	1101 5.9	1 946	2.25	442	8m dondy	
- 1	1920			7.42	T	148 .	2.5	•		
	Commer	ks:		<b></b>	<b></b>		+	1 -1/	<del>\                                    </del>	-
	1923		<u></u>	3.15	6.0	764	7.25	5.1/2	•	<b>-</b>   :
1	1424		<u> </u>	235		944	3	6		
٦	1925		T	7.31	1	964	3.25	6 1/2		_
-	1424	11	1	7.31		1945	2.75	7 942	•	
. !	1415	4	ms.1601)	7.37			4	7	•	

Primped well a 25 minutes until water was eteore conjugated additional rund of monte atter additional develop. trub sie cono 456 it gray

PH 7.0

17/12

Co ma

WELL DEVELOPMENT AND SAMPLING FORM	Page 1 of 2
	· · ·
Recorder's Name and Title S. CONDRAW   HYDROGOUGIST	<del></del>
Well ID # E4 PUMP I TRACER TEST WELLPAINT ARRAY SEE MAP FORDS	<del></del>
Survey location coordinates: North East	12/15/11
Date this report 12/14/91 12/16/41 Date well installation 12/7/91 Date well developmen	
110000	
Well designation: # E4 SEE MAP BETON NEXT PANS	
Ground elevation: Est:  Survey:  From transf surface)  A survey desired during the surface of th	
Sound interest: 1 0 1 ( C' ( First bulleton ) Formation: Women City, Valley bill Billion	<u>ius</u>
MICESTERIC POUR (2002) 1 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	alio' (Mesure d 0.96')
Water level (below MP): Start: 3.28 (12/18/11) End: Met analysis (12/18/11) 3.83 (12/18/11)	St. (ILINSHI)
The Charles (BCC) 1221	. Sc . Month!
Electronic w stay level maker 62 141841	
Not used to calculate well volume	-
Volume of saturated annulus (assume 30 percent porosity):	
Volume Calculation: Well caring volume = 17/2h - 17 (0.07.0831) = 3.74' = 0.05845"	7.48 gal = 0.44 gal.
Quantity of water used during drilling: None	— ft ar 0.5 gad which is easily
Doub of codiment (helow MP): Refore: 7.02 (1) 14/617 After: Not measured	
Development equipment: Tettor biler 14"0.0. A Peristaltic pump (12/14/91), Surge b	lock (12116/51)
Cur	13/10/91
Drian model 250A PH 4.01= 7.00 -10-7°C PH 7:00 motions 7:01 -	1.4.c)" +
DUDY HATTEL 137	7.1 -
Specific conductance meter No.: SN 9311023 Calibration: munici 1047 miles 3 9.6°C	
F.T.U. meter No.: NA per SOP 6w 1.08 Calibration: NA	— ₹ <del>2</del>
	\ <u>\</u>

03	Time	Pumping Rate	PΙU	pH	Temp.	S.C.	Com. Vo Res	L of H ₂ O	Physical Description of Vister
107 - 125 - 7.35 6.2 988 0.55 10 6.  104 .25 - 252 6.4 792 0.50 1  107 .25 - 740 6.6 749 1.0 2 1.2  108 .25 - 740 6.6 749 1.0 2 1.0  10 2.05 - 751 6.8 745 1.55 2.4  11 - 3.54 7.2 248 1.5 8 1.  11 - 3.54 7.2 248 1.5 8 1.  11 - 487 55 913 2.0 9 14 brown, elocated and the second						€.C	Gallons	Casing Vols.	
105 -125 - 7.35 6.2 988 0.25 1/2 0.25 252 6.4 792 0.50 1 0.1  107 .25 - 7.40 6.6 749 1.0 2  108 .25 - 7.51 6.8 286 1.25 2.42  110 2.05 - 7.51 6.8 286 1.25 2.42  110 2.05 - 7.51 6.8 286 1.25 2.42  111 - 3.54 7.2 2.48 1.5 2.42  111 - 3.54 7.2 2.48 1.5 2.42  112 - 6.87 55 913 2.0 9 14.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60, 18.60,	1303			7.02	6. 6	843	•	•	DK. Sm. vy. sily
14 .25 — 252 6.4 392 6.56 1 6.  107 .25 — 240 6.2 350 6.85 1.12 4  108 .25 — 240 6.6 349 1.0 2 6.  114 2.05 — 351 6.8 285 1.25 2.46 6.  12	1305	.129	_	7.35	6.2	738	0.25	1/2	
107 -25 — 740 6.2 750 0.85 1.12 4  108 -25 — 740 6.6 749 1.0 2  114 2.05 — 7-51 6.8 286 1.25 2.42  42 1 — 2.54 7-2 248 1.5 8  10 — 2.18 7-1 767 3.42  114 1.25 — 6.92 5.6 913 2.25 4.12  115 — 6.92 5.6 913 2.25 4.12  116 1.25 — 6.92 5.6 913 2.25 4.12  117 — 6.94 5.8 911 2.5 5  118 1.25 — 6.94 5.8 911 2.5 5  119 2.37 5.4  110 3.14 - 7.52 7.4 760 3 6 14 brown points  119 3.34 — 7.57 7.67 5.25 6.12 41	304			712	6.4	792	0.50		••
108 25 — 740 6.6 749 1.0 2  14 2.05 — 751 6.8 745 1.25 242  42 1 — 3.54 7.2 348 1.5 8  50 + — 7,8 7.1 767 1.95 342  117 — 6.87 5.8 913 2.0 9 14.6.6	1507		-	740	4.2	750	24.0	11/2	<u> </u>
14 2.05 — 7.51 6.8 2.95 1.25 2.42  42   — 3.54 7.2 3.48 1.5 8 10  50 + — 2.18 7.1 367 1.95 2.42  117 — 6.82 5.5 913 2.0 9 14, brown, elordy  120 .125 — 6.92 5.6 913 2.25 1.42  118 — 1.25 — 6.92 5.6 913 2.25 1.42  119 — 1.25 — 6.94 5.8 911  2.05 — 7.52 7.4 960 3 4 14 brown, elordy  150 — 7.52 7.4 960 3 4 14 brown, elord  151 — 7.52 7.4 960 3 4 14 brown, elord  151 — 7.52 7.4 960 3 4 14 brown, elord  151 — 7.59 5.8 967 967 9.25 642	308		-	7-40	6.6	349	1.0	2	
42   - 3.54 3.2 3.48   1.5 8 %  50   - 3.8 7.1 367   1.95 342 %  117   - 6.82 55 913 2.0 4   14.60	9 14		_			755	1.25	24	
70	342	1	_		7.2	248	1.5	. 4	1,
18	450	1		$\tau - \tau$			145	342	•,
120 .125 — 6.92 5.6 913 2.25 4%  12 .125 — 6.94 5.8 9.1 2.55 5%  131 Earste or Vogation orthorn british day on lot archaya.  131 — 7.92 74 960 3 4 14 brown scloud  131 — 7.99 5.8 767 5.26 6%	212		=	7 1	55		2.0	4	14 boungelordy
10 125 — 4.97 5.4 9.8 2.5 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1125		1	5.6	9/3	2.25	42	en ·
miners: 2 — 6.24 5.8 911  2 - 6.24 5.8 911  2 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	24			+		9.4	2.5	5	••
507 - 7.52 74 960 3 4 14 brown sclouds  14 .034 - 7.99 5.8 767 8.26 642	118	1 . 2	1-	1 *	-		2.25		<u> </u>
14 .034 — 7.99 5.8 767 5.26 CM	(3.7		~	שוש	- or the >-	builted day	al late	y change	· .
14 .034 - 7.99 5.8 767 5.26 62 4	1507	1	1_	2.82	74	740	3	4	It boun scloud
- 9.28 62 901 3.5 2 11	514		1_			767	3.25	682	. *
	512	.083	<del> </del>			145	3.5	*	et
	22	10 (CANDEAT)	10.00	743	5.1 \$Y	762	1.0	7/2	

- 12/14/41

#### WELL DEVELOPMENT AND SAMPLING FORM

Page 2 of 2	Page	2	of	2
-------------	------	---	----	---

Recorder	's Name a	nd Title			· · · · · · · · · · · · · · · · · · ·			
							······	•
Survey lo	cation coo	rdinates	: North		East			- 9 1 1 1
							Date	: well development/2 <u>/14</u> / 12/14/
	-	-						
Ground e	levation: E	ist:			Survey:			
Screened	interval: _			· · · · · ·		Formation	:	<u> </u>
Measurin	g point (M	IP): Top	of wel	casing/o	ther:	<del></del>		_ Well stick up:
Water lev	rel (below	MP): S	itert:		<del> </del>	End:		- (RGS)
Well dept	TP (perom )	MLP): _					ater esevade	u (DOS)
Method t	sed to me	asure w	ater lev	el:	<u>.                                    </u>	E.	stimated rec	harge rate:
Volume o	of saturates	d annult	25 ( <b>25</b> 5U	me 30 per	cent porosity):		·	
Volume (	Calculation	:						•
Depth of	sediment (	(below 1	MP): B	riote:	,		After:	
Developu	nent equip	ment: _						
Sampling	equipmen	t:					· ·	
pH meter	No	······	(	Calibration	Ľ	<del></del>		
Specific o	onductano	e meter	No.:		Calibrat	ion:		
					alibration:			
	eter No.: _			С	alibration:	Casa. V	et et H ^o O	Physical Description of
F.T.U. m	eter No.: _			C	alibration:	Com, V.	of Hito	Physical Description of Wister
F.T.U. m	Pamping Rate gpm		pit	Temp.	S.C. unbos/cm e °C	Cuss. V. Res	ol, of H ₂ O noved Casing Vols.	Water
F.T.U. m	Pumping Rate gpm		pH 75-12-	Temp. °C	SC SC CC C	Cum. V Res Galloss 4:15	ol of H ₂ O noved Casing Vols.	Water
F.T.U. m  Time  1524 1534	Pamping Rate gran	FTU	pH 3:12-	Temp. °C	S.C. unbos/cm e °C	Com. V. Res	ol, of H ₂ O noved Casing Vols.	Water
F.T.U. m  The 1524 1514 1532	Pumping Rate gpm	FTU	pH 3:12- 4:07 7:04	Temp. °C	SC.  SC.  SC.  SC.  SC.  SC.  SC.  SC.	Cum. V Res Gallous 4:15	Casing Vols.	et. borr, chady
F.T.U. m  Time  1524 1534	Pamping Rate gran	FTU	pH 3:12-	Temp. °C  \$16  \$16  \$17  \$17	S.C.  S.C.  S.C.  S.C.  S.C.  S.C.  S.C.  P. 2.  P. 2.  P. 5  757	Cues. V. Res Galloss 4:15 4:5	Casing Vols.  91/2	Here
7me 1524 1534 1534 1536	Pamping Rate gran	FTU	pH R:/2_ 4:07 7:04 3:4~	Temp. *C  \$1,6  \$1,7  \$1,7  \$1,6  \$1,6	s.c. mbos/cm c.°C  71.2  91.6  959  750	Cum. W. Res Gallous 4.15 4.5 4.35	Casing Vols.  81/2  9  91/2	ut. borr, chady
F.T.U. m    1524   1544   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542	Pamping Rate gram083083083	FTU	7:12- 4:07 7:04 7:02	Temp. *C  \$1,6  \$7.5  \$7.6  \$5.6	SC whos/cm a °C 962 965 959 958	Com. V. Res  Galloss  4:15  4:5  5:25	Casing Vota.  9'12  9'12  10	Henry Chady
F.T.U. m    1524   1544   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542	Pamping Rate gran	FTU	7:12- 4:07 7:04 7:02	Temp. *C  \$1,6  \$7.5  \$7.6  \$5.6	SC whos/cm a °C 962 965 959 958	Com. V. Res  Galloss  4:15  4:5  5:25	Casing Vota.  9'12  9'12  10	Henry Chady
F.T.U. m    1524   1544   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542	Pamping Rate gran	FTU	7:12- 4:07 7:04 7:02	Temp. *C  \$1,6  \$7.5  \$7.6  \$5.6	SC whos/cm a °C 962 965 959 958	Com. V. Res  Galloss  4:15  4:5  5:25	Casing Vota.  9'12  9'12  10	Henry Chady
F.T.U. m    1524   1544   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542   1542	Pumping Rate 2003 .083 .083 .083 .125	FTU	7.12- 4.67 7.04 7.02 7.03	Temp. *C  \$! \$! \$:2* \$:5* \$:5*	alibration:  a.c.  mbos/cm  c.°C  712  716  757  750  758	Cum. W. Res Gallous 4:25 4:35 5:25 5:25	Casing Vota.  81/2  9  10  101/-  11	et. born, chady
F.T.U. m  Time  1524 1924 1924 1542 1542	Pamping Rule 970	PIU Pim/	7.12 4.07 7.04 7.02 7.05	Temp. "C"  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$1,6  \$	SC whos/cm a °C 962 965 959 958	Com. V. Res  Galloss  4:15  4:35  5:25  5:5	Casing Vols.  9'2  10  10'-  11	et. born, chady
F.T.U. m  Time  1524 1924 1924 1542 1542	Pumping Rate 2003 .083 .083 .083 .125	Pum/	7.12- 4.07 7.04 7.02 7.05	Temp. "C  \$1,6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6	SC whos/cm a °C 962 965 959 958 956	Com. V. Res  Galloss  4:15  4:35  5:25  5:5	Casing Vols.  9'2  10  10'-  11	et. born, chady
F.T.U. m  Time  1524 1924 1924 1542 1542	Pamping Rule 970	PIU Pim/	7.12- 4.07 7.04 7.02 7.05	Temp. *C  \$1,  \$1,  \$1,  \$1,  \$1,  \$1,  \$1,  \$1	SC whos/cm a °C 962 965 959 958 956	Com. V. Res  Galloss  4:15  4:35  5:25  5:5	10   0   0   0   0   0   0   0   0   0	et. born, chady
F.T.U. m  Time  1524 1924 1924 1542 1542	Pamping Rule 970	Pum/	7.12- 4.07 7.04 7.02 7.05	Temp. "C  \$1,6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6  \$-5.6	SC whos/cm a °C 962 965 959 958 956	Com. V. Res  Galloss  4:15  4:35  5:25  5:5	10   0   0   0   0   0   0   0   0   0	Let. borry chady

Page 1 of 2

	-da Maria								
					W / Hydrogeole			<b>t</b> /	
						eray we	LIPLINT	E 5 (SEE MAP BE	(ow)
Survey	location co	ordinate	s: North	-	Fast _		<u> </u>		hlai lula
Date th	is report /	<u>2/7/9/</u> /2/:	<u>, 12 (14/</u> IV /91	1/I	Date well install	lation 12	/3/19  Da	te well development /2  21/5H1	[] 7  ,  2   4  7   2  6  9
Ground	elevation:	Fet:			Survey.	<u> </u>			_
Screebe	d interval:		10 to	5.90° (	ed down development	ンFormation ニナルギリリ	II Namad C	Well sick mr ~1.0	Men and 0.36'
MES	mg hours (r	41 <i>j</i> . 10	p or we	u casmg/t	Aug		17	1100 and op	Lawing develop.
Water l	evel (below	MP): 3	Start: _	3.69	(12/9/9/) (6.85(12/14/	End:/	t measured C	14/51)	-
Well de	pth (below	MP): _	5. (	etyly Elec	(12/9/4,) , 6.25(12/14) (12/9/4)  tranic water ter (Solinst	evel	Vater elevati	en (BGS) <u>~2.831</u>	-
Method	used to me	asure v	rater lev	eti <u>ne</u>	ter (Solinst	Not P	stimated red	harge rate: Not estimate well carin	ted 1
Volume	of saturate	d annul	nz (szen	me 30 per	reent porosity)		I ame per	Large Fall: Not estimated to the carin SOP 6W. 2 Sec. 5 25.20' = 0.05044 ft?	2.1.1
Volume	Calculation	i <u>wel</u>	CASIF	<u> ۱۹ مه د</u>	= 11/2h	= 11(	0.07u24)	23.20' = 0.05049 H	27.4850 = 038
Quantity	y of water t	sed dur	ing dril	ling: _ <u>N</u>	ur.		<del></del>	<del></del>	- 1 473 - 1
-		•	,		96 16 / 96 . I				<del></del>
Develop	aneni eguir	ment:	7,16	n bailer	14"0.17.4	· Peristal	ic 50000 (12/	14/41) . Swale block (15	યાબેલ)
Samplin	g equipmen	er rod	lot sa	-pled	(12/1	191,121144	1   124151913	110171)	T18.1 0C)
pH met	er No. SN	0017	57	Calibratio	11: pH (ho)	= 10·14 m	13.100	HOO WELLE D 250	12/9
Specific	conductano	æ meter	No.:	IN 98/1	023 Calibra	tion:	mentared	LAGU Amhis W H	ق•د ک
F.T.U. :	neter No.:	Ne pe	· w	Sop 2.04C	alibration:	V4		•	-
								·	
Time	Pumping Rate	FIU	pH	Temp.	S.C.		oL of H _y O moved	Physical Description of Water	
<u> </u>	gp-s				# *C	Callons	Casing Vote.		
1422			8.38	6.1	807	0	0	H. bown silty	
1425	₹.25		7.84	7.1	755	0.25	1	Pk. brave c. 1hy	
1427	<del>                                     </del>		7.74	7.1	675	0.5		,, (	
1428	4.25		7.75	7.1	673	6.75	142	11	
1431	<del>                                     </del>		7.86	7.1	با9ما	1.0	2	٠,	
1433			7.57	<b>ネリ</b>	275	1. 65	21	,. ·	i
	<del> </del>					}	<del> </del>		
<del>                                     </del>	<del> </del>					<del></del>			
	<del> </del>				<del> </del>		<del> </del>		
<u> </u>					<u></u>				1
Сотте	nts:				•				_
+ is so	ing dry .v.	.slow to	IF	IAP) I	1 2	3 4	5		-
92	• - ; - 1		T	0			7.	-~	-
			1	E			6		-
									-

(4011-00-0022) (GW2REV.1)(69-10-91)

124

**:**-

Page 2 of 2

S	Survey loc	ation coor	dinates:	North		Eest				- 12b4h
r	Date this	report			Da	te well installs	tion	Date	well development to	<u> </u>
	Wall desig	mation:								<del></del>
_	Tarand of	emtion F	et•			Survey:			· · · · · · · · · · · · · · · · · · ·	<b>-</b> .
•	emed	interval:					Formation:		<u> </u>	_
						·			Well stick up:	_
_			- A	· «	car lolus	2 22 1 12 14 14	Fad:	Meswed 12	114) 6.78(1216) 6.24	(INEKI)
7	Well dent	h (below )	<b>AP):</b>	6.85	(12/19/91). 1 L12/15/91	)	Wa	ter elevation	n (BGS)	
,	Method 12	sed to me	sure W	iter levi	el:		Est	imated rech	uarge rate:	_
1	Volume o	f saturated	l annulu	s (assu	me 30 pero	ent porosity):		· ·		-
									·	
						25 CV244)				_
,	Death of	sediment (	helow l	MP): Be	fore: 6	25 (12/14) . Tf (12/15)		After:	alt measured 12/19	
										<u>.</u>
	Developm	iem edarbi	MUDI						•	
_										<u> </u>
S	Sampling	equipmen	model	CDA	Calibration	PH 4.01 = 4	10 0 10.700	PH 710	0 = 7.08 P11.9°C	امالما
1	oH meter	No 51	00224	9(	Calibration	2 9 H. 10.01=	9.70 20 10.7	True chi		امالعا ( ت
Ş	pH meter Specific o	NoSin	meter	No.: _	Calibration www.model Series	19 H 10.01= 172 Calibrat	9.70 20 10.7 Cord ion:	True chi	21000 amboli 2250 1042 D 9.6°C.	는 )때
Ş	pH meter Specific o	NoSin	meter	No.: _	Calibration www.model Series	2 9 H. 10.01=	9.70 20 10.7 Cord ion:	True chi		는 )때
Ş	pH meter Specific o	NoSin	meter	No.: _	Calibration www.model Series	19 H 10.01= 172 Calibrat	9.70 20 10.7 Cord ion:	methody stal	21000 amboli 2 250 1042 D 9.6°C.	=)
Ş	pH meter Specific o	NoSinonductano eter No.: _	meter	No.: _	Calibration  > No Modul  SI P 92 110  Ca	19 H 10.01= 172 Calibrat	9.70 as 10.7 ion:	methody stal		=)
Ş	pH meter Specific of F.T.U. m	NoSinonductano	meter	No.: _	Calibration	122 Calibrat alibration:	9.70 as 10.7 ion:	Read S	21000 semboli 2250 1042 D 9, b " C .	- ()
Ş	pH meter Specific of F.T.U. me	NoSinonductano eter No.: _ Pumping Rate	meter	No.: _	Calibration  > No Modul  SI P 92 110  Ca	Calibration:	on: Cond	Read S  A of HyD  soved	21000 marks f at 2.50 1042 D 9. 6 ° C .  Physical Description of Water	E Compand s
; S	pH meter Specific of F.T.U. m	NoSinonductano eter No.: _ Pumping Rate	meter	No.: _	Calibration  > No Modul  > I resp.  *C	SC.  sc.  sc.  sc.  sc.  sc.  sc.  sc.  s	Come Ver Resident 1.5	L of H ₂ O coved  Casing Vols.	Physical Description of Water  d.B. broom, p. bry	E Compand s
; S	pH meter Specific of F.T.U. ma Time	NoSinonductano eter No.: _ Pumping Rate	meter	No.: _	Calibration  Also Model  Siri 94 Hs  Ca  Temp.  *C	SC S	Come Ver Resident 1.5	L of HyD world  Casing Vols.  3	Physical Description of Water	The section of the se
11	PH meter Specific of F.T.U. ma  Time  1354  9425	NoSinonductano eter No.: _ Pumping Rate	meter	No.:	Temp.	SC mhos/cm c °C	9.70 20 10.7 Condition:  Cons. Ver. Res. 1.55 1.75 2.2.55	L of H ₂ O coved  Coming Volu  3 4 4 4 4 4	Physical Description of Water  d. B. brown, a bly  at the state of the	Ed is producing
11	PH meter Specific of F.T.U. ma Time	No. Sinonductano eter No.:	meter	No.: _	Calibration  Alan Model  Siri 94 Hs  Ca  Temp.  *C  7.3  7.5  7.4  5.4  5.7	SC	Come Von Resident 1.5 1.75 2-2.15 2-5	t of H ₂ O oved  Coming Vola.  3  4  4 Va.	Physical Description of Water  18. brown, silly  19. brown, silly	Ed is producing
11	Time  1364  1369  1369  1369	NoSINOnductano eter No.: _ Pumping Rate gpm	FTU	PH 7.52 9.55 7.44 2012 7.24	Temp. *C  7.3  7.5  7.5  7.5  7.6  7.7	SC mhos/cm c°C  673  679  679  679  679  717  717	9.70 20 10.7 Condition:  Cons. Ver. Res. 1.55 1.75 2.2.55	L of H ₂ O coved  Coming Volu  3 4 4 4 4 4	Physical Description of Water  d. B. brown, a bly  at the state of the	worked well is producing
11	Time  1364  1369  1369  1369	No. Sinonductano eter No.:	FTU	PH 4.52 9.55 7.09 2.14 2.12 7.24 7.24	Temp. *C	SC	9.70 20 10.75   Conditions   Co	d of HyD oved  Coming Vola.  3  4  4  5  5  5  5  5  5  5  5  6  6  6  6  6	Physical Description of Water  18. brown, 2 by  19. 19. 19. 19. 19. 19. 19. 19. 19. 19.	El 's product of Man
11	Time  1359  0725  0725	NoSINOnductano eter No.: _ Pumping Rate gpm	FTU	No.:	Temp.  Te	SC mhos/cm c°C  673 679 679 679 679 679 679 679 679 679 679	9.70 20 10.7 Condition:  Come Verence Callous  1.55  1.75  2.25  2.55	L of H ₂ O coved  Coming Volu  3  3  4  4  4  5  5  5  6	Physical Description of Water  d. B. broom, p. bry  or  lt. gray clashy  1t. gray clashy	worked well is producing
11	P.T.U. market per la serie con la serie constitución la serie con la serie constante con la serie con la seri	NoSINOnductano eter No.: _ Pumping Rate gpm	FTU	PH 7.52 9.65 7.04 2012 7.20 7.20 7.15	Temp. °C  1.3  5.6  7.5  7.5  7.7  7.7  7.9	SC Calibration:	9.70 20 10.75  Cond  Con	L of HyD coved  Casing Vols.  3  4  4  5  5  5  5  6  6  7  6  7  6  7  6  7  6  7  6  7  7	Physical Description of Water  18. brown, 2 by  19. 19. 19. 19. 19. 19. 19. 19. 19. 19.	worked well is producing
11	Time  1359  0725  0725	NoSINOnductano eter No.: _ Proping Rate gpm	FTU	No.:	Temp. °C  1.3  5.6  7.5  7.5  7.7  7.7  7.9	SC mhos/cm c°C  673  430  717  717  717  717  914	9.70 20 10.7 Condition:  Come Verence Callous  1.55  1.75  2.25  2.55	L of H ₂ O coved  Coming Volu  3  3  4  4  4  5  5  5  6	Physical Description of Water  18. brown, wildy  19.  10.  11.  11.  11.	19¢ block on ES The producing B

No development activities 12/10-13/91 so as not to affect single well tracer tests

12/15 and of day well point 420 not elevely up needs, additional work

12/15 and of day well point tid not received well from 12/14 development activities - brilled dry 12/15

13/15 and of day well point did not received well from 12/14 development activities - brilled dry 12/15

13/15 Added decented development HeO to E5 then brilled out needs additional work

### **GROUNDWATER LEVELS** MEASUREMENTS/CALCULATIONS

ROCKY FLATS PROJECT	Revision 1.2
Project No. DNI BBI HILLSIDE	
Date 12/1/1/	
Personnel 1. S.CONDEAN	
2 C. RIENIHLUS	

**EQUIPMENT:** 

Manufacturer Social Model 101 Serial No. 10373 Date Due 3/3/92 Date Passed 12/3/9/ Date __ Name

CALIBRATION: QC REVIEW:



Well No.	-TOUC	TOWC	
£I	WDb (44)	MTD ^e (s+)	Comments
Measurement 1	2.84	7.09 6.35	
Measurement 2	2.84	7.05 6.75	
Measurement 3	2.84	7.65 6.75	
		36 124/6/ 2405 6.75	+ 0-30 - 7.05 SEC
*	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by
Well No.			
#EU 110.	WD ^b	WID	Comments
Measurement 1	2.94	6.63	
Measurement 2	2.94	6.63	·
Measurement 3	2.94	6.63	
	2.94	6.63	+ <u>.3</u> = <u>6.93</u> sec
	Average WD	Average MTD	Probe End ^d TD ^e Chk'd by
Well No.			
13	WD ^b	MTD ^c	Comments
Measurement 1	3.05	6.78	
Measurement 2	3.05	6.78	
Measurement 3	3.05	6.78	•
	3.05	85.3	+ .3 = 7.08 SEC
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by

- sore:

  TOWC ~ top of well casing

  WD ~ depth to water from MP

  MTD ~ measured total depth from MP

  Probe End ~ length beyond measuring point on probe

  TD ~ total depth of well from MP

- tex:
  All measurements are relative to Mark Point (MP) = north side of TOWC
  OC review by supervisor is a check of reasonableness,
  Measurements 1 and 2 must be within .01 ft of a 3rd measurement must be taken

### **GROUNDWATER LEVELS** MEASUREMENTS/CALCULATIONS

		ROCKY FLATS PROJECT Project No	Revision 1.2
		Date /2/9/91	
		Personnel 1. S. Compran	
		2 C. BIENIULUS	
EQUIPMENT:	Manufacturer SOUNST	Model 10 / Serial No	13
CALIBRATION:	Date Passed 12/3/9	Date Due	
QC REVIEW:	Name	Date	



Well No.	TOUC	Torc	
I+	WDb(ft)	MTD* A	Comments
Measurement 1	3.09	6.85	
Measurement 2	3.09	6.85	
Measurement 3	3.09	6.85	
	3.01	6.85	+ 0.3 = 7.15 SEC
	Average WD	Average MID	Probe End ^d TD ^e Chk'd by
Well No.			
15	WD ⁶	MTD ^e	Comments
Measurement 1	3.15	6.92	
Measurement 2	3.15	4.52	
Measurement 3	3.15	6.92	
	2.15	6.42	+ 0.3 = 7.22 SEC
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by
W-W Ma			
Well No.	WD ⁶	MTD ^c	Comments
Measurement 1	2.74	6.67	
Measurement 2	2.74	6.67	
Measurement 3	2.74	6.67	•
		1 / 2	
	2.74	6.67	+ 6.3 = 6.97 SEC
	Average WD	Average MTD	Probe End ^d TD ^e Chk'd by

Footsotes:

A = TOWC = top of well casing

b = WD = depth to water from MP

c = MTD = measured total depth from MP

d = Probe End = length beyond measuring p

c = TD = total depth of well from MP

All measurements are relative to Mark Point (MP) = north side of TOWC OC review by supervisor is a check of reasonableness.

Measurements 1 and 2 must be within .01 ft of a 3rd measurement must be taken

### **GROUNDWATER LEVELS** MEASUREMENTS/CALCULATIONS

Page 3 7 5

				ATS PROJECT	Revision 1.2
			Date		
			Personnel 1	5, CONDRAN	
			. 2	C. BIENILLUS	
EQUIPMENT:	Manufacturer _	SOLIN ST	Model	Serial No	
CALIBRATION:	Date Passed	12/3/11	Date Due	213/12	
OC REVIEW:	Name		Date		



Well No.	TOUC	<b>₽</b> wc	·
02	WD*(A)	MTDeGL	- Comments
Measurement 1	2.40	6.59	
Measurement 2	2.40	6.59	
Measurement 3	2.40	6.59	
	2.40	6.59	+ 0.3 - 6.89 Sec
	Average WD	Average MTD	Probe End ^d TD ^e Chk'd by
Well No.			
03	₩Db	MTD ^c	Comments
Measurement 1	2.88	6,47	
Measurement 2	2.88	6.47	
Measurement 3	2.88	10.47	
	2.88	647	+ 0.3 = 6.77 SEC
	Average WD	Average MTD	Probe End ^d 'TD' Chk'd by
Well No.			
04	WD ^b	MTD ^c	Comments
Measurement 1	2.89	6.64	
Measurement 2	2.89 -	6.66	
Measurement 3	2.55	6.66	•
	2.85	6.66	+ 0.3 = 6.96 560
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by

- tex.

  All measurements are relative to Mark Point (MP) north side of TOWC

  OC review by supervisor is a check of reasonableness.

  Measurements 1 and 2 must be within .01 ft of a 3rd measurement must be taken

Name_

### **GROUNDWATER LEVELS** MEASUREMENTS/CALCULATIONS

	ATS PROJECT	Revision 1.2
	ON 1 EBI HILLSIDE	
Date		
Personnel 1,	3. CONDERN	
- 2,	C. BIENIULLS	
		•
101	Serial No. 10373	

**EQUIPMENT:** CALIBRATION:

QC REVIEW:

Manufacturer ______ Model __ Date Duc ___3/3/4 2 Date ___



			•
Well No.	40MC	100°C	·
05	WD ^b (A)	. MTD*(A)	Comments
Measurement 1	2.90	. 4.59	
Measurement 2	2.90	6.59	
Measurement 3	2.50	6.59	
	2.50	659	+ 0.3 - 6.89 50
	Average WD	Average MTD	Probe End ^d TD ^e Chk'd by
Well No.			
EI_	WD ^b	MTDe	Comments
Measurement I	2.68	6.73	
Measurement 2	2.68	4.73	
Measurement 3	2.68	6.37	
	2.68	6.73	+ 03 = 7.03 560
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by
Well No.			
E2-	WD ⁶	MTD ^e	Comments
Measurement 1	2.5%	6.62 6.92	
Measurement 2	2.58	6.62 6.9/2	
Measurement 3	2.58	6.626.62	
	2.58	5c 1817/17	+ 0.3 = 8.92 52
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by

Footables:

A = TOWC = top of well casing
b = WD = depth to water from MP
c = MTD = measured total depth from MP
d = Probe End = length beyond measuring point on probe
e = TD = total depth of well from MP

tex.
All measurements are relative to Mark Point (MP) = north side of TOWC
QC review by supervisor is a check of reasonableness.
Measurements 1 and 2 must be within .01 R of a 3rd measurement must be taken

### **GROUNDWATER LEVELS** MEASUREMENTS/CALCULATIONS

Page 535

ROCKY FL	ATS PROJECT	Revision 1.2
Project No.	OUI BE HILLSIDE	
Date		
	5. CONDEAN	
2	C. BIENIULLS	
	•	•
10)	Serial No10543	
Date Due	3/3/92	

**EQUIPMENT:** CALIBRATION: Manufacturer 5.LINST Model Date Passed _____ 14-13|41

QC REVIEW:

Name __

		10	MC (MP	י
	1	+		
Î		Ш		
MD		Stocker was the state of the st	▼	•

Well No.	100 C	TOUC	
E3	WD ⁶ (Pt)	MTD*(H)	Comments
Measurement 1	3 75	. 6.67	
Measurement 2	3.75	4.67	•
Measurement 3	3.75	6.67	
	3.75	6.67	+ 0.3 = 6.17 50
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by
Well No.			
e+	WD ^b	MIDe	Comments
Measurement 1	3.96	6.32	
Measurement 2	3.96	6.72	
Measurement 3	3.96	6.72	
	3.96	6.42	+ 0.3 = 7.02 56
	Average WD	Average MTD	Probe End TD Chk'd by
Well No.			
65	WD⁵	MTD ^e	Comments
Measurement 1	3.69	6.32	
Measurement 2	3.69	6.32	•
Measurement 3	3.69	6.32	
	3.69	6.32	+ 0.3 = 6:62 560
	Average WD	Average MTD	Probe End TD Chk'd by

WD = depth to water from MP
MTD = measured total depth from MP
Probe End = length beyond measuring point on probe
TD = total depth of well from MP

### **GROUNDWATER LEVELS** MEASUREMENTS/CALCULATIONS

			ATS PROJECT	Revision 1.2
			OK 1 BB1 HILLSIDE 12/14/91	
			T. SINDELAR	
· .	,		T. GEIST Form filled and by S. Cond.	/h^
EQUIPMENT:	Manufacturer Sounist	Model (0)	Serial No. 10373	
CALIBRATION:	Date Passed 12/5/91		3/3/12	
QC REVIEW:	Name	Date		



Well No.	TOWC	TOWC .		
エ	WD ⁶ (#)	MTD*(#)	Comments	
Measurement 1	3.19	Not measurel		
Measurement 2	3.19			
Measurement 3	3.19			
	3.19		+ =	<u>Sec</u>
	Average WD	Average MTD	Probe End [®] TD [®]	Chk'd by
Well No.				
π2	WD6	MTD ^e	Comments	
Measurement 1	3.30	Not measured		
Measurement 2	330			
Measurement 3	3.30			ند وابد کم پرورنوان
	2 4 4			650
	3.30		†	SEC
	Average WD	Average MTD	Probe End® TD®	Chk'd by
Well No.				·
<b>1</b> 3	WD ^b	MID ^e	Comments	
Measurement 1	3.41	not measured		
Measurement 2	3.41			
Measurement 3	3.41		المراكبية المسارات والمسارات والمسار	
	3.41		<b>+</b>	_52
	Average WD	Average MTD	Probe End ^d TD ^e	Chk'd by

Footnotes:

A = TOWC = top of well easing

b = WD = depth to water from MP

c = MTD = measured total depth from MP

d = Probe End = length beyond measuring point on probe

e = TD = total depth of well from MP

All measurements are relative to Mark Point (MP) = north side of TOWC QC review by supervisor is a check of reasonableness.

Measurements 1 and 2 must be within .81 R of a 3rd measurement must be taken

Name _

## GROUNDWATER LEVELS MEASUREMENTS/CALCULATIONS

	•	Project No. ON 1 BB1 HILLSIPE
		Date
		Personnel 1. T. SINOEAR
	•	Form filed and by S. Condran
26 - 6 - 4	SOUNST	Model 101 Serial No. 10373
Manufacturer Date Passed _	12/3/91	Date Due 3/3/1 2
		Date

EQUIPMENT:

CALIBRATION: QC REVIEW:

•			
Well No.	TOWC	TOUC.	
<b>14</b>	WDb(f+)	MTD*(#+)	Comments
Measurement 1	3,44	abt measured	
Measurement 2	3.46		
Measurement 3	3.46		
	3.44	·	+
	Average WD	Average MTD	Probe End ⁴ TD ⁶ Chk'd by
Well No.	·		44
#EU 110.	WD ⁶	MTD ^c	Comments
Measurement 1	3.50	Not megune!	
Measurement 2	3.50		·
Measurement 3	3 50		
	350		+ •
	Average WD	Average MTD	Probe End ^d TD ^e Chk'd by
			·
Well No.	WD ^b	MTD ^c	Comments
01	3.10	not measured	
Measurement 1			
Measurement 2	3.10		
Measurement 3			
12 No. 20	3.10	<b></b>	+ 58
	Average WD	Average MTD	Probe End ^d TD ^e Chk'd by

notes:

TOWC = top of well casing

WD = depth to water from MP

MTD = measured total depth from MP

Probe End = kegith beyond measuring point on probe

TD = total depth of well from MP

### GROUNDWATER LEVELS MEASUREMENTS/CALCULATIONS

		RUCKI FLAIS FRONZEI
	•	Project No. ON I BEI HILLSIDE
		Date 12/14/91
		Personnel 1. T. SINOFLAR
		2 7 6EIST
•		Form filled and by S. Condram
EQUIPMENT:	Manufacturer SOLINST	Model 10 ) Serial No. 103 73
-	Date Passed 12/3/91	Date Due
CALIBRATION:	Date Passed	
OC REVIEW:	Name	Date



		·	·
Well No.	TOWC	TOWC .	
02	WD ⁶ (f+)	MTD*(#)	Comments
Measurement 1	DRY	Not mesued	
Measurement 2			
Measurement 3			
		·	+ = 55
	Average WD	Average MTD	Probe End ^d TD° Chk'd by
Well No.	·		· · ·
03	WDb	MTD ^c	Comments
Measurement 1	DLY	Mt measured	
Measurement 2		i	
Measurement 3			
			, sea .
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by
Well No.			
04	WD ⁶	MTD ^e	Comments
Measurement 1	328	post me a sweet	
Measurement 2	3.28		
Measurement 3	7,28		
	3.28		+ <u>scc</u>
	Average WD	Average MTD	Probe End ^d TD ^e Chk'd by

notes:
TOWC = top of well easing
WD = depth to water from MP
MTD = measured total depth from MP
Probe End = length beyond measuring point on probe
TD = total depth of well from MP

ents are relative to Mark Point (MP) = north side of TOWC appearance is a check of reasonableness

Manufacturer SOLINST

Date Passed _

Name_

## GROUNDWATER LEVELS MEASUREMENTS/CALCULATIONS

ROCKY I	LATS PROJECT	Revision 1.2
Project No	D. OKI BBI HILLSIDE	
Date	12/14/91	
Personnel	1 T. SINDELAR	
	0 - 1 - 107	
•	Form filled and of s. Com	W
Model 101	Serial No 10373	
Date Due	3/3/12	
	<del></del>	



**EQUIPMENT:** 

QC REVIEW:

CALIBRATION:

Well No.	TOWC	TOUC.	
05	WDb (ft)	MTD*(#)	Comments
Measurement 1	3.20	not measured	
Measurement 2	3.26		-
Measurement 3	3.26		
	3.24		+
	Average WD	Average MTD	Probe End ⁴ TD ⁶ Chk'd by
Well No.	·		
El	WD ⁶	MTD ^e	Comments
Measurement 1	5.14	7.04	
Measurement 2	3.14	2.04	·
Measurement 3	3.14	7.04	
		7.04	550
	Average WD	Average MTD	Probe End ^d TD ^e Chk'd by
Well No.		,	
EZ	WD6	MTD ^e	Comments
Measurement 1	2.91	6.92	
Measurement 2	2.91	6.92	
Measurement 3	2.91	4.92	
••	291	6.92	+ 950
	Average WD	Average MTD	Probe End ⁴ TD° Chk'd by

notes:

TOWC = top of well casing

WD = depth to water from MP

MTD = measured total depth from MP

Probe End = length beyond measuring point on probe

TD = total depth of well from MP

## GROUNDWATER LEVELS MEASUREMENTS/CALCULATIONS

POCKY FL	ATS PROJECT	Revision 1.2
Project No.	ON I BBI HILLSIPE	
Date	2/14/91	
Personnel 1.	T. SINDELAR	
2		
	FORM FIXED and by S. Con	dram
101	Serial No. 10373	
	3/3/12	

EQUIPMENT:

Manufacturer SOLINST Model_ 12/3/91 Date Passed ___

CALIBRATION: QC REVIEW:

Name

Date

74 72	Towc aur	)
TD	,	
-	相	
	MENANTA NA	

Well No.	TOWC WDb(ff)	TOWC . MTD*(f+)	Comments
	3.10	156	
Measurement 1	3.10	4.96	
Measurement 2	3.10	6.96	
Measurement 3	\$.10		
	3.10	6.96	+
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by
Company of the second	·		::
Well No.		MTD ^e	Comments
<u> </u>	MD _p		•
Measurement 1	3.28	690	
Measurement 2	3.28	6.70	•
Measurement 3	3.28	6.70	
	3.28	ر بری	- <u>sec</u>
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by
			•
Well No.	WD ⁶	MTD ^c	Comments
E5		6.83	
Measurement 1	5.96		
Measurement 2	SALO.	<i>U.</i> 83	
Measurement 3	4.96	6.83	
	5.94	6.83	+ = 58
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by

tex:
All measurements are relative to Mark Point (MP) = north side of TOWC
QC review by supervisor is a check of reasonableness
Measurements 1 and 2 must be within .01 R of a 3rd measurement must be

TOWC = top of well casing
WD = depth to water from MP
MTD = measured total depth from MP
Probe End = length beyond measuring point on probe
TD = total depth of well from MP

Y FLATS	CREEK	E5	DATA SET:  ESPT.IN  03/18/92  AQUIFER TYPE: Unconfined SOLUTION METHOD: Cooper-Jacob TEST DATE: 12/18/91 TEST WELL: 03  OBS. WELL: E5  T = 0.1292 ft²/min S = 0.345  TEST DATA: 0 = 0.2019 ft³/min r = 5.51 ft b = 3.27 ft	
Client: EG&G ROCKY F	Project No.: OPERABLE UNIT 1 Location: WOMAN CREE	881 HILLSIDE AQUIFER TEST - WELL E	Corrected Drawdown (ft)  Corrected Drawdown (f	

Т

Payel of 5

		Project No. Out (25) HILLS (105)
		Date 12/15/41
		Personnel 1. T. SINDRAR
		2 T. SAVKO / C.BIENILLUS
. • •		(form filled out by F. London)
EQUIPMENT:	Manufacturer Sounst Model	101 Serial No. 10373
CALIBRATION:	Date Passed 12/5/41	Date Duc
QC REVIEW:	Name	Date



Well No.	TOWC BEL IEND WDb(ft)	MTD ^e	Comments
Measurement 1	3.30 / 3.33	Not measured	
Measurement 2	3.30   3.33		
Measurement 3	3.30 / 3.33		
	3.30 (3.33		+
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by
Well No.			
T2	WD ^b	MTD ^e	Comments
Measurement 1	3.41 /3.44	Not measured	
Measurement 2	3.41 13.44		
Measurement 3	3.41/3.44		
	3.41/3.44		+
	Average WD	Average MTD	Probe End ^d TD° Chk'd by
Well No.			
<b>13</b>	WD ^b	MTD ^e	Comments
Measurement 1	3.52 /3.59	Not me assured	
Measurement 2	3.521 3.59	·	
Measurement 3	35213.59		
	3.521 3.59		+
	Average WD	Average MTD	Probe End ^d TD° Chk'd by

Footsotes:

A = TOWC = top of well casing
b = WD = depth to water from MP
c = MTD = measured total depth from MP
d = Probe End = length beyond measuring point on probe
c = TD = total depth of well from MP

All measurements are relative to Mark Point (MP) = north side of TOWC OC review by supervisor is a check of reasonableness. Measurements 1 and 2 must be within .01 R of a 3rd measurement must be taken

Revision 1.2

Name_

### GROUNDWATER LEVELS MEASUREMENTS/CALCULATIONS

	•		ROCKY FL	ATS PROJECT	Revision 1.2
			Date	12/15/91	
		•	Personnel 1,	T. SINDRAR	
			2	T. CAJKO / C.BIENILLU	<u> </u>
		•		form filled out by S.Condon	٠ (٠
Manufacturer _	SOUNST	Model_	101	Serial No. <u>10373</u>	
	12/3/9/		, Date Duc_	3/3/92	
Date Passed _	12/5/7]		'		
Nome			Date		



EQUIPMENT:

OC REVIEW:

CALIBRATION:

Well No.	Towc Bef IEND WD ^b (ft)	MTD ^c	Comments
Measurement 1	3.50   359	164 Heasure	
Measurement 2	3.56 / 3.59		
Measurement 3	3.56 3.59		
	356/259		+
	Average WD	Average MTD	Probe End ^d TD ^e Chk'd by
Well No.			
15	WD ^b	MTD ^e	Comments
Measurement 1	3.61 1 3.64	Not measured	·
Measurement 2	3.61/3.64		
Measurement 3	3.6113.64		
	3.61/3.64		+
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by
Well No.			•
DI	WD ^b	MTD ^c	Comments
Measurement 1	3,20 /3.24	Not measured	
Measurement 2	3.20   3.24		
Measurement 3	3 20/ 3 24		
	3 20/3.24		+
	Average WD	Average MTD	Probe End ^d TD ^e Chk'd by

Footnotes:

A = TOWC = top of well easing
b = WD = depth to water from MP
c = MTD = measured total depth from MP
d = Probe End = length beyond measuring point on probe
TD = total depth of well from MP

oter.

All measurements are relative to Mark Point (MP) = north aide of TOWC

QC review by supervisor is a check of reasonableness.

Measurements 1 and 2 must be within .01 R of a 3rd measurement must be taken

	•		ROCKY FL	ATS PROJECT On 1 EEI HILLS IDE	Revision 1.2
			Date	12/15/41	
		•	Personnel 1.	T. SINDRAR	
			2	T. SAVKO / C. BIENILL	US
• •		1		(form filled out by E. London	~}
EQUIPMENT:	Manufacturer SOLINST	_ Model	101	Serial No10373	
CALIBRATION:	Date Passed 19/9		Date Due _	9/3/92	
QC REVIEW:	Name		Date	·	



			·
Well No.	TOWC BELLEND WDb(ft)	MID [¢]	Comments
Measurement 1	5.33 /3.22	not measured	
Measurement 2	5.33/3.22		
Measurement 3	5.33/ 3.22		
	5.33/3.22		+
77 - 75 A	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by
Well No.			
03	WD ^b	MIDe	Comments
Measurement 1	6.42/644	Not measured	
Measurement 2	0.42/6.64		
Measurement 3	6.42/4.64		
	6.42/6.64		+
	Average WD	Average MTD	Probe End ^d TD° Chk'd by
Well No.			-
04	WD _p	MTD ^c	Comments
Measurement 1	3.36/3.38	Not measured	
Measurement 2	3.36/3.38.		
Measurement 3	3.36/3.38		
	234/3.38		+
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by

Footbolet:

A = TOWC = top of well easing

b = WD = depth to water from MP

c = MTD = measured total depth from MP

d = Probe End = length beyond measuring point on probe

c = TD = total depth of well from MP

All measurements are relative to Mark Point (MP) = north side of TOWC OC review by supervisor is a check of reasonableness. Measurements 1 and 2 must be within .01 R of a 3rd measurement must be laken

Name_

#### **GROUNDWATER LEVELS** MEASUREMENTS/CALCULATIONS

•		ROCKY FL	ATS PROJECT	Revision 1.2
		Project No.	on 1 201 HILLS IDE	
		Date	12/15/91	
		Personnel 1.	T. SINDRAR	
		2	T. SAVKO / C.BIENILL	LUS
	•		there filled out by E. Londa	<b>~</b> )
Manufacturer SOUNST	_ Model _		Serial No. <u>10373</u>	
Date Passed 12/5/4	·	Date Due	3/3/92	
Name		Date		·



**EQUIPMENT:** 

QC REVIEW:

CALIBRATION:

<del>-</del>		•	
Well No.	TOWC BELLEND WDb(ft)	MTD [¢]	Comments
05			
Measurement 1	3.38/3.40	Not me aswed	
Measurement 2	3.38/3.40		
Measurement 3	338   3.40		
	3.3813.40		+
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by
Well No.			
EI	WD ^b	MTD ^e	Comments
Measurement 1	3.24 1326	Not measured	
Measurement 2	3 24 13.26		
Measurement 3	3.24/ 3.26		
	3.24/5.26		+ *
	Average WD	Average MTD	Probe End ^d TD° Chk'd by
Well No.			
E2	WD ^b	MTD ^c	Comments
Measurement 1	4.73   5.84	Mot measure el	
Measurement 2	4.73 1 5.84		
Measurement 3	4.731 589		
	473 / 5.84		+
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by

Probe End = length beyond measuring point on probe TD = total depth of well from MP

All measurements are relative to Mark Point (MP) a north side of TOWC QC review by supervisor is a check of reasonableous.
Measurements 1 and 2 must be within .01 R of a 3rd measurement must be taken

Name_

#### **GROUNDWATER LEVELS** MEASUREMENTS/CALCULATIONS

•		ROCKY FL	ATS PROJECT	Revision 1.2
		Project No.	ON I SEN HILLSIDE	
•		Date	12/15/91	
		Personnel 1.	T. SINDRAR	
		2	T. SAVKO / C.BIENILLI	/5
	• .		form filled out by 5. London	<del>\</del>
Manufacturer Sounst	Model_		Serial No. 10373	
Date Passed 12/5/41		Date Due_	9/5/92	
Name		Date		



EQUIPMENT:

CALIBRATION:

OC REVIEW:

Well No.	TOWC BEL IEND		
E3	WDb(fr)	MTD [¢]	Comments
Measurement 1	322/323	plyt measured	
Measurement 2	3.22/3.23		
Measurement 3	3.22/3.23		
		. ,	_
	4.22/3.23	Average MTD	Probe End ^d TD ^o Chk'd by
	Average WD	Average M1D	Probe End 1D Clard by
Well No.			
E4	WD _p	MIDe	Comments
Measurement 1	3.83/4.56	NOT me weed	
Measurement 2	3.8316.56		
Measurement 3	383/6.56		
	383/4.56		+
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by
Well No.			
E5	WD ^b	MTD ^e	Comments
Measurement 1	6.7816.24	not measured	
Measurement 2	6.781 6.24		
Measurement 3	6.78/ 6.24		
	678/4.24		+
	Average WD	Average MTD	Probe End ^d TD ^e Chk'd by

notes:
TOWC = top of well casing
WD = depth to water from MP
MTD = measured total depth from MP
Probe End = length beyond measuring point on probe
TD = total depth of well from MP

Tex:
All measurements are relative to Mark Point (MP) = north side of TOWC
QC review by supervisor is a check of reasonableness;
Measurements 1 and 2 must be within .01 ft of a 3rd measurement must be taken

Name_

	·	Project Noour_ber Hillsipf	Keaplon 17
		Date 12/10/91	
	•	Personnel 1. S. Chroadel	
•	•	2 T. SINDEWAL	
Manufacturer_	SOLINIT	Model 10 / Serial No. 10373	
Date Passed	12/3/11	Date Duc	
~~~		Deta	



**EQUIPMENT:** 

CALIBRATION: QC REVIEW:

Well No.	TOWC		
II	WD ^b (Ft)	MTD ^e	Comments
Measurement 1	3.34	Not measured	
Measurement 2	3.34		·
Measurement 3	3.34		
	3.3\$4		+
	Average WD	Average MTD	Probe End ^d TD ^e Chk'd by
Well No.			:
<b>T2</b>	WD _p	MTD ^e	Comments
Measurement 1	3.45	Not measured	
Measurement 2	3.45		
Measurement 3	3.45		
	345		+
	Average WD	Average MTD	Probe End ^d TD° Chk'd by
Well No.		:	
£3	WD _p	MTD ^c	Comments
Measurement 1	3.56	Not mensured	
Measurement 2	3.56		
Measurement 3	3.56		• .
	356		+
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by

Footnotes:

A = TOWC = top of well casing

b = WD = depth to water from MP

c = MTD = measured total depth from MP

d = Probe End = length beyond measuring point on probe

c = TD = total depth of well from MP

ter:
All measurements are relative to Mark Point (MP) = north side of TOWC
OC review by supervisor is a check of reasonableness
Measurements 1 and 2 must be within .01 & of a 3rd measurement must be taken

	•	Project No PROJECT :	Revision 1.2
	•	Personnel 1. S. Company  2. T. SINDEPAR	
EQUIPMENT: CALIBRATION: OC REVIEW:	Manufacturer Solinis Mod Date Passed 12/5/11 Name	Date Due _ 5/3/52   Date	
	Well No. TOWC	T	<del></del>



Well No.	TOWC		
I4	WD ^b (ft)	MTD ^e	Comments
Measurement 1	3.60	Not measured	
Measurement 2	3.60		
Measurement 3	3.60		
	3.60	·	
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by
Well No.	·		
15	WD ^b	MTD ^e	Comments
Measurement 1	3.45	not measured	·
Measurement 2	3.65		
Measurement 3	3.65		
	3 65		+
	Average WD	Average MTD	Probe End ^d TD ^e Chk'd by
Well No.			
01	WD ^b	MTD ^e	Comments
Measurement 1	3.24	not measured	
Measurement 2	3.24	·	
Measurement 3	3.24		
	3.24		+
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by

Footnotes:

A = TOWC = top of well easing
b = WD = depth to water from MP
c = MTD = measured total depth from MP
d = Probe End = length beyond measuring point on probe
c = TD = total depth of well from MP

All measurements are relative to Mark Point (MP) = north side of TOWC OC review by supervisor is a check of reasonablemen. Measurements 1 and 2 must be within .01 ft of a 3rd measurement must be taken

ROCKY FLATS PROJECT	Revision 12
The No. Of the Marie	
12/10/4	
Personnel 1 S Corroads  2 T. SINDEWAL	
<u> </u>	•

EQUIPMENT: CALIBRATION: QC REVIEW:

Serial No. _ Manufacturer South 17 Model 101 Date Due _ 5/3/52 12/3/41 Date Passed Date_ Name



He I amon —		. Dan		
me		·		
	TOWC			
Well No.		MTDe		Comments
02	WDb (41)	Notmeasure		
Measurement 1	3.23	NB1	<u> </u>	
Measurement 2	3.23			
Measurement 3	3.23		T	
**************************************	3.23		4+	Purks Ends TDe Chk'd by
	Average WD	Average MTD	_	Probe End TD CIRCO.
	VACIAR		T	:
Well No.			1	Comments
03	WD*	MTDe	ナ	-
	6.22	not measure	+	
Measurement 1	6.22	<b></b>	+	
Measurement 2	6.22		十	
Measurement 3				+ Chk'd by
	6.22	Average MT		Probe Ende TDe Chk'd by
	Average WD	Average int	-	
				·
Well No.	┥	MTD		Comments
04	WDb	NOT MES	rel	
Measurement	1 3.40			
Measurement	2 3 40	-		and the second s
Measurement			11.0	·
	3.40			+ TDe Chi'd by
	Average W	D Average 1	MID	Probe End TD CLEAN
	VACIABLE !!			
				_

notes:

TOWC = top of well casing

MD = depth to water from MP

MTD = measured total depth from MP

Probe End = length beyond measuring point on probe

TD = total depth of well from MP

Manufacturer Solinist

Date Passed_

Name_

12/3/91

## **GROUNDWATER LEVELS** MEASUREMENTS/CALCULATIONS

Model

ROCKY FL	ATS PROJECT	Revision 1.2
Project No.	ONI BOI HILLSIDE	<u> </u>
Date /2	110191	<del></del>
Personnel 1	S. Comordi	
. 2	T. SINDEWAL	•
10 1	Serial No	•
Date Duc	3/3/92	
Dete	•	

**EQUIPMENT:** 

- CALIBRATION:

QC REVIEW:

		•	
TOWC			. 1
WD ^b (ft)	. MTD ^e	Comments	
3.41	NOT MEASURE!		
3.41		· .	
3.41			
3.41		+	
Average WD	Average MTD	Probe End ^d TD ^e	Chk'd by
WD₽	MTD ^c	Comments	
3.28	not measure a		•
5.28			
3.28			
2.1			
Average WD	Average MTD	Probe End ⁶ TD ⁶	Chk'd by
	·	·	-
wn _p	MID ^e :	Comments	•
i		•	<u> </u>
			• .
3.08 Average WD	Average MTD	Probe End ^d TD ^o	Chk'd by
	WDb (ft)  3.41  3.41  3.41  3.41  Average WD  WDb  3.28  5.25  3.25  Average WD  WDb  3.08  3.08  3.08  3.08	### WDb (ft)	## WDb (ft) MTDc Comments  3.41  3.41  3.41  3.41  Average WD Average MTD Probe End TDc  ### Comments  3.28  **Athreajure ### Comments  3.28  **Athreajure ### TDc  ### Average WD Average MTD Probe End TDc  ### TDc  ### Comments  3.08  3.08  3.08  3.08  3.08  3.08  3.08

notex
TOWC = top of well casing
WD = depth to water from MP
MTD = measured total depth from MP
Probe End = length beyond measuring point on probe
TD = total depth of well from MP

nts are relative to Mark Point (NIP) - north side of TOWC

ROCKY FLATS PROJECT	Revision 1.2
Project No. OHI BUI HILLSIDE	·
Date /2/10/9/	
Personnel 1. S. Comonan	
2 T. SINDEWAL	

**EQUIPMENT:** 

Manufacturer SOLINIT Model 101 12/3/91 Date Passed ___

CALIBRATION: QC REVIEW:

Name_

Date_

	TONC [®] (M	")
7		
TD		

Well No.	TOWC		
E3	WD ⁶ (ft)	. MTD ^c	Comments
Measurement 1	3.25	Not measured	
Measurement 2	3.25		•
Measurement 3	. 3.25		
	3.25		· ·
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by
Well No.			
E4	WD ^b	MTD ^e	Comments
Measurement 1	3.50	Not measured	•
Measurement 2	3.50	·	
Measurement 3	3.50		
	3.50		+
	Average WD	Average MTD	Probe End ^d TD° Chk'd by
Well No.			
ES	WD ⁶	MTDe	Comments
Measurement 1	3.52	Not measured	
Measurement 2	3.32 .	<u> </u>	
Measurement 3	3.32		
	3.32		] +
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by

Footnotes:
A = TOWC = top of well casing
b = WD = depth to water from MP
c = M(TD = measured total depth from MP
d = Probe End = length beyond measuring point on probe
c = TD = total depth of well from MP

ster:

All measurements are relative to Mark Point (MP) = north side of TOWC

OC review by supervisor is a check of reasonablemen.

Measurements 1 and 2 must be within .01 R of a 3rd measurement must be taken

Table 1. Step-Drawdown Test December 3, 1991

	_	Elapsed	Step	Drawdown	•
Step	Time	Time(min)	Time(min)	<u>(ft)</u>	(gpm)
4	4.4:50	0.0000	0.000	-0.009	
1	14:59		0.0000	0.009	
		0.0083	0.0083 0.0166	0.019	
		0.0166	0.0166	0.000	
		0.0250 0.0333	0.0230	0.000	
		0.0333	0.0335	0.019	
		0.0410	0.0500	0.003	
		0.0583	0.0583	-0.006	
		0.0566	0.0666	0.019	
		0.0750	0.0750	0.025	
		0.0833	0.0833	0.003	•
		0.1000	0.1000	0.019	
		0.1166	0.1166	0.009	
		0.1333	0.1333	0.000	
		0.1500	0.1500	0.012	
		0.1666	0.1666	0.015	
		0.1833	0.1833	0.015	
-		0.2000	0.2000	0.000	
		0.2166	0.2166	0.022	
		0.2333	<b>0.2333</b>	0.031	
		0.2500	0.2500	0.006	
		0.2666	0.2666	0.022	
		0.2833	0.2833	0.022	
		0.3000	0.3000	0.000	
		0.3166	0.3166	0.019	
		0.3333	0.3333	0.003	
		0.4166	0.4166	0.019	
		0.5000	0.5000	0.000	
		0.5833	0.5833	0.019	
		0.6666	0.6666	0.025	
		0.7500	0.7500	0.009	
		0.8333	0.8333	0.028	
		0.9166	0.9166	0.028	
		1.0000	1.0000	0.019	
		1.0833	1.0833	0.028	

File: 1203STP1.WQ1

Table 1. Step-Drawdown Test December 3, 1991

Step	Time	Elapsed Time(min)	Step Time(min)	Drawdown (ft)	Discharge (gpm)
		1 1666	4.4600	0.000	
		1.1666	1.1666	0.028	
		1.2500	1.2500	0.019	
		1.3333	1.3333	0.025	
		1.4166	1.4166	0.041	
		1.5000	1.5000	0.009	
		1.5833	1.5833	0.015	
		1.6666	1.6666	0.044	
		1.7500	1.7500	0.028	
·		1.8333	1.8333	0.047	
		1.9166	1.9166	0.047	
		2.0	2.0	0.053	0.063
٠		2.5	2.5	0.047	
•		3.0	3.0	0.057	
		3.5	3.5	0.057	
		4.0	4.0	0.066	
		4.5	4.5	0.069	
		5.0 5.5	5.0	0.063	0.065
		5.5	5.5	0.082	
		6.0	6.0	0.076	
		6.5	6.5	0.079	
		7.0	<b>7.0</b>	0.117	
		7.5	7.5	0.164	
		8.0	8.0	0.224	
		8.5	8.5	0.291	
		9.0	9.0	0.348	•
		9.5	9.5	0.380	
		10.0	10.0	0.421	
		11.0	11.0	0.484	
		12.0	12.0	0.570	
		13.0	13.0	0.611	0.069
		14.0	14.0	0.687	
		15.0	15.0	0.750	
		16.0	16.0	0.813	
		17.0	17.0	0.870	
		18.0	18.0	0.921	

File: 1203STP1.WQ1

Table 1. Step-Drawdown Test December 3, 1991

Step	Time	Elapsed Time(min)	Step Time(min)	Drawdown (ft)	Discharge (gpm)
		19.0	19.0	0.965	
		20.0	20.0	0.997	
		21.0	21.0	1.057	0.000
		22.0	22.0	1.079	0.066
		23.0	23.0	1.130	
		24.0	24.0	1.155	
		25.0	25.0	1.197	
		26.0	26.0	1.212	
		27.0	27.0	1.231	
		28.0	28.0	1.273	
-		29.0	29.0	1.304	0.067
		30.0	30.0	1.333	
	•	31.0	31.0	1.380	
		32.0	32.0	1.415	0.069
		33.0	33.0	1.431	
		34.0	34.0	1.491	
		35.0	35.0	1.535	
		36.0	36.0	1.583	
		37.0 _	37.0	1.618	0.07
		38.0	<b>38.0</b>	1.672	
		39.0	39.0	1.725	
		40.0	40.0	1.773	
		41.0	41.0	1.811	
		42.0	42.0	1.865	
		43.0	43.0	1.915	
		44.0	44.0	1.966	
		45.0	45.0	2.014	0.067
		46.0	46.0	2.067	
		47.0	47.0	2.112	
		48.0	48.0	2.162	
		49.0	49.0	2.207	
		50.0	50.0	2.251	0.066
•		51.0	51.0	2.292	
		52.0	52.0	2.340	
		53.0	53.0	2.368	

File: 1203STP13401

Table 1. Step-Drawdown Test December 3, 1991

Step Time	Elapsed Time(min)	Step Time(min)	Drawdown (ft)	Discharge (gpm)
	54.0	54.0	2.403	
		55.0	2.435	0.062
	<b>55.0</b>	56.0	2.476	<b></b>
	56.0 57.0	57.0	2.504	
	57.0 50.0		2.530	
	58.0	58.0 50.0	2.561	
	59.0	59.0		0.09
2 15:59	60.0	60.0	2.580	0.08
·	61.0	61.0	2.742	
	62.0	62.0	2.897	
	63.0	63.0	3.052	•
	64.0	64.0	3.103	
	65.0	<b>6</b> 5.0	3.103	pumping
	66.0	<b>6</b> 6.0	3.106	air
	67.0	67.0	3.106	
	68.0	68.0	3.103	
	69.0	69.0	3.100	
	70.0	70.0	3.100	
	71.0	71.0	3.100	
	72.0	72.0	3.106	
	73.0	73.0	3.103	
	74.0	74.0	3.106	

File: 1203STP1.WQ1

		Elapsed	Step		
		Time	Time	Drawdown	Discharge
Step	Time	(min)	(min)	(ft)	(gpm)
1	10:20 AM	0	. 0	-0.007	. 0
		0.0083	0.0083	-0.009	
		0.0166	0.0166	-0.009	
		0.025	0.025	-0.009	
		0.0333	0.0333	-0.009	
		0.0416	0.0416	-0.009	
		0.05	0.05	-0.003	
		0.0583	0.0583	-0.011	
		0.0666	0.0666	-0.011	
		0.075	0.075	-0.009	
		0.0833	0.0833	-0.007	
		0.1	0.1	-0.006	
		0.1166	0.1166	-0.009	
		0.1333	0.1333	-0.011	•
		0.15	0.15	-0.011	
		0.1666	0.1666	-0.011	
		0.1833	0.1833	-0.007	
		0.2	0.2	-0.009	
		0.2166	0.2166	-0.011	
	•	0.2333	0.2333	-0.014	
		0.25	0.25	-0.007	•
	•	0.2666	0.2666	-0.012	
		0.2833	0.2833	-0.009	
		0.3	0.3	-0.009	
		0.3166	0.3166	-0.009	
		0.3333	0.3333	-0.004	
		0.4166	0.4166	-0.004	
		0.5	0.5	0.001	
		0.5833	0.5833	-0.001	
		0.6666	0.6666	-0.004	
		0.75	0.75	-0.015	
		0.8333	0.8333	-0.02	
		0.9166	0.9166	-0.015	
		1	1	-0.003	
		1.0833	1.0833	0.003	
		1.1666	1.1666	0.006	
		1.25	1.25		
		1.3333	1.3333	0.006	

Table 2. Step-Drawdown Test December 6, 1991

		Elapsed	Step	Drawdown	Dischame
<b>0</b>	T	Time	Time		(gpm)_
Step	Time	(min)	(min)	(ft)	(gpiii)
		1.4166	1.4166	-0.006	
		1.4100	1.4100	-0.012	
		1.5833	1.5833	0.012	
		1.6666	1.6666	0.007	
		1.0000	1.75	0.012	
		1.8333	1.8333	0.009	
			1.9166	0.003	
		1.9166 2	1.5100	0.004	0.033
				-0.001	0.000
		2.5 3	2.5 3	0.012	
				0.012	0.032
		3.5	3.5 4	0.015	0.052
		4		0.013	
		4.5	4.5 5	0.009	0.032
		5			0.032
		5.5	5.5 6	0.007	
		6 6.5	6.5	0.007	
		6.5 7	6.3 7	0.012	
		7.5	7.5	0.023	
		7.5 8	7.5 8	0.031	
		8.5	8.5	0.023	
		6.5 9	6.5 9	0.038	
		9.5	9.5		
	10:30 AM		9.5 10		0.032
	1030 AIV	and the same	11	0.039	0.032
		· · · 11	12		
		12 13	13		
		. 14			
			15		0.033
		15			
		16			
		17			
		18			
	40.40 414	19			
	10:40 AM				
		21			
		22			
		23			
		24	24	0.058	

Table 2. Step-Drawdown Test December 6, 1991

	_	Elapsed Time	Step Time	Drawdown	
Step	Time	(min)	(min)	(ft)	(gpm)
		25	25	0.055	0.033
		25	26	0.06	
		26 27	27	0.057	•
	•	28	28	0.039	
		29	29	0.049	
	10:50 AM	30	30	0.045	0.034
	102074	31	31	0.03	
		32	32	0.053	
		33	33	0.061	
		34	34	0.06	
		35	35	0.038	0.034
		36	<b>3</b> 6	0.061	
		37	37	0.053	
		38	38	0.05	•
		39	39	0.055	
	11:00 AM	40	40	0.057	
		41	41	0.036	
		42			
		43			
		44			
		45			
		46			
		47			
		48			<b>,</b>
		<b>49</b>			0.036
• •	11:10 AN				
		51			
		52			
		53			
		54			
		55			
		56 57			
		58 58			
		59			
	11:20 AN				
	11.20 /41	/ 61			
		62			
,		•			

Table 2. Step-Drawdown Test December 6, 1991

		Elapsed Time	Step Time	Drawdown	Discharge
Step	Time	(min)	(min)	(ft)	(gpm)
		(******)			
		63	63	0.068	
		64	64	0.05	-
		65	65	0.06	0.035
		<b>6</b> 6	<b>6</b> 6	0.045	
		67	67	0.036	
		68	68	0.038	
		69	69	0.058	
	11:30 AM	70	70	0.058	0.036
		71	71	0.055	
		72	72	0.049	
		73	73	0.074	
		74	74	0.058	
		75	75	0.057	0.036
		76	76	0.064	•
		<i>7</i> 7	77	0.045	
		78	78	0.064	
		79	79	0.072	
		80	80	0.063	
2	2 11:40 AM	80	0	0.045	0.044
		80.0083	0.0083	0.041	
		80.0166	0.0166	0.063	
		80.025	0.025	0.066	
		80.0333	0.0333	0.053	
•		80.0416	0.0416	0.057	
		80.05	0.05	0.055	
		80.0583	0.0583	0.042	
		80.0666	0.0666	0.044	
		80.075	0.075	0.064	
		80.0833	0.0833	0.064	
		80.1	0.1	0.058	
		80.1166	0.1166	0.041	
		80.1333	0.1333	0.069	
		80.15	0.15	0.053	
		80.1666	0.1666	0.053	
		80.1833	0.1833	0.047	
		80.2	0.2	0.066	
		80.2166	0.2166	0.06	
•		80.2333	0.2333	0.044	

			Elapsed Time	Step Time	Drawdown	_
	Step	Time	(min)	(min)	(ft)	(gpm)
				0.05	0.000	
			80.25	0.25	0.068	
			80.2666	0.2666	0.06	-
			80.2833	0.2833	0.044	
			80.3	0.3	0.071	
			80.3166	0.3166	0.057	
			80.3333	0.3333	0.045	
			80.4166	0.4166	0.061	
			80.5	0.5	0.049	
			80.5833	0.5833	0.05	
			80.6666	0.6666	0.063	
			80.75	0.75	0.055	
			80.8333	0.8333	0.069	
			80.9166	0.9166	0.042	
			81	1	0.06	
			81.0833	1.0833	0.066	
			81.1666	1.1666	0.045	
			81.25	1.25	0.057	
			81.3333	1.3333	0.069	
			81.4166	1.4166	0.06	
			81.5	1.5	0.057	
			81.5833	1.5833	0.066	
			81.6666	1.6666	0.055	
			81.75	1.75		
			8 <del>1,8</del> 333	1.8333		
			81,9166	1.9166		
			82	2		
			82.5	2.5		
			83	3		
			83.5	3.5		
			84	4		
			84.5			
			<b>8</b> 5			
			85.5			
			86			
			86.5			
			87			
			87.5			
•			88	8	0.079	1

Table 2. Step-Drawdown Test December 6, 1991

		Elapsed Time	Step Time	Drawdown	
Step	Time	(min)	(min)	<b>(ft)</b>	(gpm)
	11:50 AM	88.5 89 89.5 90 91 92 93	8.5 9 9.5 10 11 12	0.069 0.074 0.069 0.053 0.082 0.088 0.064	0.044
		94 95 96 97 98	14 15 16 17	0.077 0.066 0.083 0.074 0.083	0.044
	12:00 PM	99   100 101 102	19 20 21 22	0.063 0.082 0.058 0.069	
		103 104 105 106 107	24 25 26	0.076 0.08 0.071	0.046
	12:10 PM	108 109 1110 	28 29 30 31 32 33	0.087 0.082 0.083 0.058 0.085	0.045
		114 115 116 117 118 119	35 36 37 37 38	0.077 0.079 0.082 0.082	7 0.046 9 2
	12:20 PN		) 40   41   42   43	0.091 0.08 0.096 0.076	0.046 3 5

		Elapsed Time	Step Time	Drawdown	Discharge
Step	Time	(min)	(min)	<b>(ft)</b>	(gpm)
		125	45	0.082	0.047
		126	46	0.083	
		127	47	0.079	
		128	48	0.077	•
		129	49	0.076	
	12:30 PM	130	50	0.079	0.047
		131	51	0.08	
		132	52	0.069	
		133	53	0.082	
		134	54	0.066	
		135	55	0.08	0.047
		136	<b>5</b> 6	0.069	
		137	57	0.083	
		138	58	0.074	
		139	59	0.076	
	12:40 PM	140		0.077	and the second s
		141	61	0.05	
		142			
		143			
		144			
		145			
		146			
		147			
		<del></del>			
		- 149			
	12:50 PM				
		151			
		152			
		153			
		154			
		155			
		156			
		157			
		158			
		159			
		160			
,	3 01:00 PM				
		160.008	3 0.0083	3 0.087	7

	Step	Time	Elapsed Time (min)	Step Time (min)	Drawdown (ft)	Discharge (gpm)_
-	Oteb	111110	((1411)	(11111)	(4)	<u> </u>
			160.0166	0.0166	0.098	
			160.025	0.025	0.074	
			160.0333	0.0333	0.08	
			160.0416	0.0416	0.098	•
			160.05	0.05	0.069	
	•		160.0583	0.0583	0.083	
			160.0666	0.0666	0.096	
			160.075	0.075	0.069	
			160.0833	0.0833	0.085	
			160.1	0.1	0.069	
			160.1166	0.1166	0.096	
			160.1333	0.1333	0.072	
			160.15	0.15	0.095	
			160.1666	0.1666	0.077	•
			160.1833	0.1833	0.088	
			160.2	0.2	0.082	
			160.2166	0.2166	0.071	
			160.2333	0.2333	0.093	
			160.25	0.25	0.077	
			160.2666	0.2666	0.072	
			160.2833	0.2833	0.091	
			160.3	0.3	0.072	
			160.3166	0.3166	0.091	
			160.3333	0.3333	0.077	
			160,4166	0.4166	0.093	
			160.5	0.5	0.083	
			160.5833	0.5833	0.09	
			160.6666	0.6666	0.076	
			160.75	0.75	0.063	
			160.8333	0.8333	0.087	
			160.9166	0.9166	0.063	
			161 161.0833	1 0223	0.079 0.088	
			161.1666		0.088	
			161.25	1.1000	0.091	
			161.3333		0.076	
			161.4166		0.077	
			161.5			
,			101.3	1.0	0.030	

Step	Time	Elapsed Time (min)	Step Time (min)	Drawdown (ft)	Discharge (gpm)
		161.5833	1.5833	0.083	
		161.6666	1.6666	0.077	
		161.75	1.75	0.09	
	•	161.8333	1.8333	0.072	
		161.9166	1.9166	0.074	
		162	2	0.102	
		162.5	2.5	0.095	
		163	3	0.083	
		163.5	3.5	0.095	
		164	4	0.063	
		164.5	4.5	0.087	
		165	5	0.064	0.057
		165.5	5.5	0.087	
		166	6	0.077	*
		166.5	6.5	0.095	
		167	7	0.107	
		167.5	7.5	0.102	
		168	8	0.09	
		168.5	8.5	0.095	
		169	9	0.106	
		169.5	9.5	0.09	
	01:10 PM	170	10	0.112	0.057
		171	11	0.082	
		7772	12	0.077	
		173	13	0.079	
		174	14	0.104	
		175	15	0.106	
		176	16	0.096	
		177	17	0.091	0.057
		178	18	0.102	
		179	19		
	01:20 PM		20		
		181	21	0.088	0.057
		182	22		0.057
		183	23		
		184	24		
		185	25		
•		186	26	0.087	

Table 2. Step-Drawdown Test December 6, 1991

		Elapsed	Step	_	
_	_	Time	Time	Drawdown	_
Step	Time	(min)	(min)	(ft)	(gpm)
		405		0.005	
		187	27	0.085	
		188	28	0.102	
		189	29	0.099	
		190	30	0.117	0.004
•	4 01:30 PM		0	0.122	0.064
		190.0083	0.0083	0.126	
		190.0166	0.0166	0.118	
		190.025	0.025	0.106	
		190.0333	0.0333	0.095	
		190.0416	0.0416	0.088	
		190.05	0.05	0.099	
		190.0583	0.0583	0.12	
		190.0666	0.0666	0.128	,
		190.075	0.075	0.122	
		190.0833	0.0833	0.106	
		190.1	0.1	0.106	
		190.1166	0.1166	0.122	
		190.1333	0.1333	0.088	-
		190.15	0.15	0.128	
		190.1666	0.1666	0.115	
		190.1833	0.1833	0.091	
		190.2	0.2	0.122	
		190.2166	0.2166	0.125	
		190.2333	0.2333	0.102	
		190.25	0.25	0.091	
		190.2666	0.2666	0.118	
		190.2833	0.2833	0.129	
		190.3	0.3	0.104	
		190.3166	0.3166	0.095	
		190.3333	0.3333	0.123	
		190.4166	0.4166	0.131	
		190.5		0.115	
		190.5833		0.123	
		190.6666		0.106	
		190.75	0.75	0.125	
		190.8333		0.129	
		190.9166		0.126	
		191	1	0.093	

Step	Time	Elapsed Time (min)	Step Time (min)	Drawdown (ft)	Discharge (gpm)
\ <u></u>		404 0022	1.0833	0.104	
		191.0833	1.1666	0.125	
		191.1666 191.25	1.1000	0.12	
		191.3333	1.3333	0.115	
		191.4166	1.4166	0.104	
		191.5	1.5	0.125	
		191.5833	1.5833	0.112	
		191.6666	1.6666	0.125	
		191.75	1.75	0.095	
		191.8333	1.8333	0.11	
		191.9166	1.9166	0.131	
		192	2	0.098	
		192.5	2.5	0.112	
		193	3	0.144	•
		193.5	3.5		
		194	4		
		194.5	4.5		
		195	5		0.065
		195.5			
		196			
		196.5			
		197			
		197.5			
		<del></del>			
		<del>~ /1</del> 98.5			
		199			
	04.40 DM	199.5	_		_
	01:40 PM				
		201 202	` _ : _		
		202			
		204			
		205			
		206	_		=
		207		-	
		208			
		209	=		
,	01:50 PM		-		

Step	Time	Elapsed Time (min)	Step Time (min)	Drawdown (ft)	Discharge (gpm)
		211	21	0.172	
		212	22	0.16	
		213	23	0.18	
		214	24	0.145	
		215	25	0.171	0.065
		216	26	0.148	
		217	27	0.179	
		218	28	0.142	
		219	29	0.183	
	02:00 PM	220	30	0.148	0.065
		221	31	0.16	
		222	32	0.171	
		223	33	0.164	
		224	34	0.174	
		225	35	0.166	0.066
		226	36	0.161	
		227	37	0.183	
		228	38	0.158	
		229	39	0.16	
_		230	40	0.148	0.000
5	02:10 PM	230	0 0000	0.139	0.083
		230.0083	0.0083	0.136	
		230.0166	0.0166	0.174	
		230.025	0.025	0.201	
		230.0333 230.0416	0.0333 0.0416	0.191 0.148	
		230.0416	0.0416	0.148	
		230.0583	0.0583	0.169	
		230.0666	0.0666	0.202	
		230.075	0.000		
		230.0833			
		230.1	0.1	0.166	
		230.1166		_	
		230.1333			
		230.15	0.15		
		230.1666			
		230.1833		0.158	
r -		230.2	0.2	0.193	

		Elapsed Time	Step Time	Drawdown	
Step	Time	(min)	(min)	(ft)	(gpm)
		230.2166	0.2166	0.202	
		230.2333	0.2333	0.155	
		230.25	0.25	0.218	
		230.2666	0.2666	0.177	
		230.2833	0.2833	0.198	
		230.3	0.3	0.215	
		230.3166	0.3166	0.166	
		230.3333	0.3333	0.229	
		230.4166	0.4166	0.234	
		230.5	0.5	0.209	
		230.5833	0.5833	0.185	
		230.6666	0.6666	0.234	
		230.75	0.75	0.258	
		230.8333	0.8333	0.258	
		230.9166	0.9166	0.251	
		231	1	0.258	
		231.0833	1.0833	0.272	
		231.1666	1.1666	0.277	
	•	231.25	1.25	0.283	
		231.3333	1.3333	0.289	•
		231.4166	1.4166	0.267	
		231.5	1.5	0.27	
		231.5833		0.272	
		231,6666		0.27	
		<b> 231.75</b>	1.75		
		231.8333			
		231.9166	_		
		232		0.263	
		232.5			
		233			
		233.5			
		234			
		234.5			
		235			
		235.5			
		236			
		236.5			
		237	7	0.38	

Table 2. Step-Drawdown Test December 6, 1991

Step	Time	Elapsed Time (min)	Step Time (min)	Drawdown (ft)	Discharge (gpm)
			7 5	0.4	
		237.5	7.5 8	0.386	
		238 238.5	8.5	0.394	
		239	9	0.369	,
		239.5	9.5	0.375	
•	02:20 PM		10	0.41	0.082
	<b>OLDO 1</b> 111	241	11	0.407	
		242	12	0.389	
		243	13	0.404	
		244	14	0.396	0.000
		245	15	0.415	0.082
		246	16		
		247		<b>_</b>	
		248			
	22.22.51	249			
	02:30 PM	1 250 251	21	0.364	_
		251 252		-	
		253			
		254			
		255			0.083
		256			;
		257			
		258	28	0.41	
		~ <b>25</b> 9			
	02:40 PN				
		<b>26</b> 1			
		· 262			
		263	_		
		264			
		265			
		266			
		267 268			
		269	_		
	02:50 PM				
	02.20 FT	vi 27.	~	-	
		27	=	-	

		Elapsed Time	Step Time	Drawdown	
Step	Time	(min)	(min)	<u>(ft)</u>	(gpm)
<u> </u>			40	0.004	
		273	43	0.361	
		274	44	0.378 0.364	0.083
		275 276	45 46	0.392	0.005
		277	47	0.383	
		278	48	0.388	
- 6	03:00 PM	280	Õ	0.351	0.097
. 0	COUNT FINI	280.0083	0.0083	0.351	0.00
		280.0166	0.0166	0.354	
		280.025	0.025	0.356	
		280.0333	0.0333	0.364	
		280.0416	0.0416	0.362	
		280.05	0.05	0.362	
		280.0583	0.0583	0.359	•
		280.0666	0.0666	0.361	
		280.075	0.075	0.367	
		280.0833	0.0833	0.377	
		280.1	0.1	0.385	
		280.1166	0.1166	0.397	
		280.1333	0.1333	0.405	
		280.15	0.15	0.415	
		280.1666	0.1666	0.423	
		280.1833	0.1833	0.432	
		<del>2</del> 80.2	0.2	0.44	
		280.2166	0.2166	0.446	
		280.2333	0.2333	0.448	
		280.25	0.25		
		280.2666	0.2666	0.45	
		280.2833	0.2833	0.451	
		280.3	0.3	0.453	
		280.3166			
		280.3333			
		280.4166			
		280.5 280.5833			
		280.6666			
		280.75	_	-	l
		280.8333	_		
•		200.0000	0.0000	. U. TOE	•

Step	Time	Elapsed Time (min)	Step Time (min)	Drawdown (ft)	Discharge (gpm)
		280.9166	0.9166	0.41	
		281	0.5100	0.45	
		281.0833	1.0833	0.491	
		281.1666	1.1666	0.44	
		281.25	1.25	0.47	
		281.3333	1.3333	0.5	
		281.4166	1.4166	0.461	
		281.5	1.5	0.454	
		281.5833	1.5833	0.451	
		281.6666	1.6666	0.518	
		281.75	1.75	0.518	
		281.8333	1.8333	0.492	
		281.9166	1.9166	0.459	
		282	2	0.469	
		282.5	2.5	0.532	
		283	3	0.518	
		283.5	3.5	0.527	
		284	4	0.564	
		284.5	4.5	0.529	
		285	5	0.568	0.096
		285.5	5.5	0.541	
		286	6	0.61	
		286.5	6.5	0.551	
		287	7	0.599	
		<b>~ 287.5</b>	7.5		
		288	8		
		288.5			
		289	9	0.565	
		289.5			0.004
	03:10 PM				0.094
		291	11		
		292			
		293			
		294			0.007
		295			
		296			
		297			
,		298	18	0.633	1

Table 2. Step-Drawdown Test December 6, 1991

Step_	Time	Elapsed Time (min)	Step Time (min)	Drawdown (ft)	Discharge (gpm)
			40	0.64	
	00:00 BM	299 300	19 20	0.579	0.094
	0320 PM	301	21	0.643	
		302	22	0.63	
		303	23	0.61	
		304	24	0.613	
		305	25	0.633	0.097
		306	26	0.616	
		307	27	0.619	
		308	28	0.632	
		309	29	0.624	
		310	30	0.635	
7	03:30 PM	310	0	0.611	0.1
		310.0083	0.0083	0.622	
		310.0166	0.0166	0.564	
		310.025	0.025		
		310.0333	0.0333		
		310.0416	0.0416		
		310.05	0.05		
		310.0583			
		310.0666	0.0666 0.075		
		310.075 310.0833			
		<del>310.0033</del>	0.0033		
		310.1166			
		310.11333	_		
		310.15		·	
		310.1666			and the second s
		310.1833			3
		310.2		0.638	3
		310.2166	_	0.643	3
		310.2333	_		4
		310.25			4
		310.2666	0.2666		
		310.2833			=
		310.3			
		310.316			
		310.333	3 0.333	3 0.60	5

Table 2. Step-Drawdown Test December 6, 1991

		Elapsed	Step		D'achanna
		Time	Time	Drawdown	Discusine
Step	Time	(min)	(min)	<b>(ft)</b>	(gpm)
		040 4400	0.4466	0.635	
		310.4166	0.4166	0.603	
		310.5	0.5	0.632	
		310.5833	0.5833 0.6666	0.654	
		310.6666	0.000	0.683	
		310.75	0.8333	0.611	• .
		310.8333	0.8333	0.67	
		310.9166	0.5100	0.622	
		311	1.0833	0.613	
		311.0833	1.1666	0.632	
		311.1666 311.25	1.1000		
		311.23	1.3333		
		311.4166	1.4166		
		311.4100	1.4100		
* *		311.5833			
		311.6666			
		311.75	1.75		
		311.8333			2
		311.9166			3
		312	_		
		312.5			3
		313			
		313.5		0.74	4
		314		0.684	4
	•	~314.5		0.686	3
		315	_	0.689	9 0.1
		315.5	5.5		
		316	S (	<b>0.78</b>	1
		316.5	6.5	5 0.71	4
		317	_	7 0.71	4
		317.5	5 7.	5 · 0.7	9
		318	3	B 0.78	
		318.			
		319	_	9 0.73	
		319.			
	03:40 PI	M 320	-	0 0.77	
		32		1 0.74	
•		32	2 1	2 0.73	33

			<b>~</b>		
		Elapsed	Step Time	Drawdown	Discharge
	T	Time	(min)	(ft)	(gpm)_
Step	Time	(min)	(11111)	(11)	(9)/
		323	13	0.765	
		323 324	14	0.787	
		325	15	0.808	0.1
		325 326	16	0.811	•••
		327	17	0.76	
		328	18	0.735	
		329	19	0.749	
	03:50 PM	330	20	0.782	0.11
	US 20 FIVI	331	21	0.746	
		332	22	0.793	
		333	23	0.806	
•		334	24	0.792	
		335	25	0.801	0.1
		336	26	0.803	•
		337	27	0.754	
		338	28	0.757	
		339	29	0.787	•
		340	30	0.768	
8	04:00 PM	340	0	0.751	0.11
_	•	340.0083	0.0083	0.803	
		340.0166	0.0166		
	•	340.025	0.025		
		340.0333			
		340,0416			
		340.05			
		340.0583			
		340.0666			
		340.075	_		
		340.0833			
		340.1			
		340.1166			
		340.133			=
		340.15			
		340.166			
		340.183			
		340.2			
		340.216			
		340.233	3 0.233	3 0.80	<b>5</b>

		Elapsed	Step		
		Time	Time	Drawdown	Discharge
Step	Time	(min)	(min)	(ft)	(gpm)
Steb	TRIFE	(17411)	(*****)		(01
		340.25	0.25	0.735	
		340.2666	0.2666	0.805	
		340.2833	0.2833	0.733	
		340.3	0.3	0.808	
		340.3166	0.3166	0.73	
		340.3333	0.3333	0.809	
		340.4166	0.4166	0.803	
		340.5	0.5	0.805	
		340.5833	0.5833	0.741	
		340.6666	0.6666	0.806	
		340.75	0.75	0.733	
		340.8333	0.8333	0.801	
		340.9166	0.9166	0.784	
		341	1	0.733	
		341.0833	1.0833	0.787	
		341.1666	1.1666	0.805	
		341.25	1.25		
		341.3333	1.3333		
		341.4166	1.4166	0.803	
		341.5	1.5		
		341.5833			
		341.6666			
		341.75	1.75		
		341,8333			
		341,9166			
		342			
		342.5			
		343			
		343.5		·	
		344			
		344.5			
		345 345.5			
		345.5 346			
		346.5			
		346.5 347			
		347.5			
		347.5			
		340	, (	<i></i> 0.703	•

		Elapsed	Step	D	Discharge
		Time	Time	Drawdown	-
Step_	Time	(min)	(min)	(ft)	(gpm)
		- 40 5	0.5	0.000	
		348.5	8.5	0.828	
		349	9	0.809	
	04 40 DV4	349.5	9.5	0.77 0.76	0.1
	04:10 PM	350	10	0.78	
		351	11	_	
		352	12	0.771	
		353	13	0.827	
		354	14	0.797	•
Recovery	04:15 PM	355	0	0.786	0
-		355.0083	0.0083	0.782	
		355.0166	0.0166	0.779	
		355.025	0.025	0.773	
		355.0333	0.0333	0.768	
		355.0416	0.0416	0.762	
		355.05	0.05	0.757	
		355.0583	0.0583	0.751	
		355.0666	0.0666	0.747	
		355.075	0.075	0.743	
		355.0833	0.0833	0.736	
		355.1	0.1	0.725	
		355.1166	0.1166	0.716	
		355.1333	0.1333	0.705	
		355.15	0.15	0.695	!
		355,1666	0.1666	0.684	
		355.1833	0.1833	0.673	<b>,</b>
		355.2		0.663	}
		355.2166		0.654	•
		355,2333	_	0.643	}
		355.25	0.25	0.633	}
		355.2666			<b>,</b>
		355.2833			
		355.3			
		355.3166			
		355.3333			
		355.4166			
		355.5			
		355.5833			
		355.6666		·	
		333.000C	0.000	, U.4U	1

Table 2. Step-Drawdown Test December 6, 1991

		Elapsed Time	Step Time	Drawdown	
Step_	Time	(min)	(min)	(ft)	(gpm)
			0.75	0.267	
		355.75	0.75	0.367 0.328	
		355.8333	0.8333	0.328	
		355.9166	0.9166	0.256	
		356	1.0833	0.221	
		356.0833	1.1666	0.232	
		356.1666	1.1000	0.232	
		356.25	1.3333	0.167	
		356.3333	1.4166	0.139	
		356.4166 356.5	1.4100	0.104	
		356.5833	1.5833	0.095	
		356.6666	1.6666	0.088	
		356.75	1.75	0.087	
		356.8333	1.8333	0.083	
		356.9166	1.9166	0.082	
		357	2	0.08	
		357.5	2.5	0.071	
		358	3	0.061	
		358.5	3.5	0.055	
		359	4	0.05	
		359.5	4.5	0.045	
	04:20 PM	360	5	0.041	
		360.5	5.5	0.034	•
		~~ <b>3</b> 61	6	0.03	
		361.5	6.5	0.025	i
		362			
		362.5			
		363			
		363.5			
		364			
		364.5			
		365			
	•	366			
		367			
		368			
		369			
	04:30 PM				
		<b>37</b> 1	16	-0.012	2

Table 2. Step-Drawdown Test December 6, 1991

Step	Time	Elapsed Time (min)	Step Time (min)	Drawdown (ft)	Discharge (gpm)
		372	17	-0.012	
		373	18	-0.015	
		374	19	-0.015	
	04:40 PM	375	20	-0.012	

## Attachment B2-4 Single-Well Time-Drawdown Measurements

Phase III RFI/RI Report

Water column height, static	Distilled Water Test 3.84 ft *	Bromide Test 3.67 ft **
Injection volume	30 gal	30 gal
Injection time, total	412 min.	417 min.
Down time	0 min.	10 min.
Injection time, net	412 min.	407 min.
Injection rate (volume/net time)	0.073 gpm	0.074 gpm
Water column height, final	3.97 ft	3.80 ft -
a water level (final relative to static)	+ 3.4%	+ 3.5%
Switchover time	10 min.	7 min.
Extraction volume	38 gal	41 gal
Extraction time, total	608 min.	740 min.
Down time	25 min.	45 min.
Extraction time, net	583 min.	695 min.
Extraction rate (volume/net time)	0.065 gpm	0.059 gpm
Water column height, final	3.47 ft	3.29 ft
Δ water level (final relative to static)	- 9.6%	- 10.4%

### Notes:

^{*} at 10:12 on 12/11/91. ** at 08:55 on 12/13/91.

Table 2 Single-Well Tracer Evaluation Tests - Distilled-Water Tracer Results

Time (min)	Flow SC (µmhos/cm)	Temperature (°C)	Corr. SC (µmhos/cm)	C/C _t	Discharge SC** (µmhos/cm)	C/C _f **
0	10.9	7.8*	17	0.018		
4	19.8	7.8	31	0.032	28	0.030
6	30.8	7.7	48	0.050	53	0.056
8	46.9	7.7	74	0.077	60	0.063
11	108	7.5	171	0.178	146	0.154
13	129	7.3	205	0.214		
15	161	7.2	257	0.268	246	0.259
18	189	7.2	302	0.314	290	0.305
19	202	7.1	324	0.337	306	0.322
21	219	7.1	351	0.366	335	0.353
23	240	7.0	386	0.402	364	0.383
25	261	7.0	420	0.437	403	0.424
27	274	6.9	442	0.460	426	0.448
28	279	6.9*	450	0.469		
30	293	6.9	473	0.492		
33	311	6.8	503	0.524	492	0.518
36	328	6.8*	531	0.553		
38	337	6.8	545	0.568	534	0.562
43	361	6.7	586	0.611	576	0.606
48	373	6.8	604	0.629	599	0.631
53	392	6.6	639	0.665	630	0.663
58	402	6.5	657	0.685	647	0.681
68	417	6.4	684	0.713	680	0.716
78	433	6.4	711	0.740	<b>7</b> 07	0.744
89	448	6.3	738	0.768	739	0.778
98	455	6.3	749	0.780	745	0.784
108	465	6.2	768	0.800	769	0.809

Table 2 Single-Well Tracer Evaluation Tests - Distilled-Water Tracer Results

Time (min)	Flow SC (µmhos/cm)	Temperature (°C)	Corr. SC (µmhos/cm)	C/C _t	Discharge SC** (µmhos/cm)	C/C,**
118	471	6.2	778	0.811	782	0.823
128	478	6.1	793	0.826	796	0.838
138	485	6.1	804	0.838	805	0.847
158	495	5.9	827	0.861	826	0.869
168	509	5.9	850	0.885	835	0.879
178	512	5.8	858	0.894	841	0.885
188	517	5.8	866	0.902		
193	520	5.8	871	0.908	857	0.902
203	520	5.7	874	0.911	860	0.905
213	522	5.8	875	0.911	869	0.915
223	525	5.6	886	0.923	871	0.917
233	527	5.6	889	0.926	875	0.921
243	530	5.6	894	0.932	880	0.926
253	533	5.6	899	0.937	885	0.932
263	534	5.6	901	0.939	888	0.935
273	535	5.5	906	0.944	892	0.939
283	538	5.5	911	0.949	896	0.943
293	539	5.5	913	0.951	899	0.946
303	540	5.5	914	0.953	902	0.949
313	542	5.4	921	0.960	906	0.954
323	542	5.4	921	0.960	908	0.956
333	542	5.4	921	0.960	912	0.960
343	544	5.4	925	0.963	919	0.967
363	543	5.4	923	0.961	920	0.968
378	544	5.5	921	0.960	922	0.971
393	542	5.5	918	0.956	928	0.977
408	549	5.5	930	0.968	929	0.978

Table 2 Single-Well Tracer Evaluation Tests - Distilled-Water Tracer Results

Time (min)	Flow SC (µmhos/cm)	Temperature (°C)	Corr. SC (µmhos/cm)	C/C,	Discharge SC** (µmhos/cm)	C/C _f **
423	547	5.4	930	0.968	930	0.979
438	546	5.9	912	0.950	934	0.983
453	549	5.6	926	0.965	936	0.985
468	552	5.6	931	0.970	939	0.988
488	559	5.5	947	0.986	942	0.992
503	562	5.5	952	0.991	942	0.992
518	561	5.5	950	0.990	943	0.993
533	562	5.5	952	0.991	949	0.999
548	565	5.5	957	0.997	947	0.997
563	566	5.6	955	0.995	949	0.999
578	568	5.6	958	0.998	947	0.997
583	568	5.6	958	0.998	950	1.000

### Notes:

Time - elapsed time in minutes (excluding down time).

Flow SC - specific conductivity measured with flow-through cell in µmhos/cm.

Temperature - temperature in °C measured at the discharge line (asterisk indicates an estimated value).

Corr. SC - specific conductivity measured with flow-through cell corrected to 25°C using a temperature coefficient of 2.1%/°C (see text).

 $C/C_f$  - corrected SC (above) normalized to the corrected specific conductivity measured from the formation water with the flow-through cell (960  $\mu$ mhos/cm).

Discharge SC - specific conductivity measured with a temperature-compensating probe-type electrode at the discharge line.

 $C/C_f$  - discharge SC (above) normalized to the specific conductivity measured from the formation water with the probe-type electrode (950 µmhos/cm).

** Included for verification purposes only.

Table 3 Single-Well Tracer Evaluation Tests - Bromide Tracer Results

Time (min)	Bromide (mV)	Bromide (mg/l)	C/C.
1	-36	486	0.972
2	-36	486	0.972
<b>4</b> .	-36	486	0.972
6	-36	486	0.972
8	-35	467	0.934
10	-34	448	0.896
12	-33	430	0.861
14	-34	448	0.896
17	-31	397	0.793
20	-30	381	0.762
22	-29.5	373	0.746
24	-29	366	0.731
26	-29	366	0.731
28	-28	351	0.702
33	-30	381	0.762
38	-24	298	0.597
43	-24	298	0.597
48	-22	275	0.550
53	-21	264	0.528
58	-20.5	259	0.517
63	<b>-2</b> 0	253	0.507
73	-17	224	0.449
78	-16.5	220	0.440
83	-16	215	0.431
88	-15	207	0.414
92	-14	199	0.397
97	-13	191	0.381
107	-12	183	0.366

Table 3 Single-Well Tracer Evaluation Tests - Bromide Tracer Results

Time (min)	Bromide (mV)	Bromide (mg/l)	C/C。
117	-10	169	0.337
127	-8.5	159	0.317
137	-6	143	0.287
147	-5	138	0.275
157	-5	138	0.275
167	-3	127	0.254
177	-1	117	0.234
187	0	112	0.225
197	1	108	0.216
207	1	108	0.216
217	0	112	0.225
227	3	99	0.199
237	3	99	0.199
247	6	88	0.176
257	7	84	0.169
267	7	84	0.169
277	8	81	0.162
287	9	78	0.156
291	10	75	0.149
306	12	69	0.138
321	13	66	0.132
332	15	61	0.122
342	18	54	0.108
362	20	50	0.099
382	20	50	0.099
402	22	46	0.092
422	23	44	0.088
442	24	42	0.085

Time (min)	Bromide (mV)	Bromide (mg/l)	C/C。
462	25	41	0.081
482	25	41	0.081
502	26	39	0.078
522	28	36	0.072
542	31	32	0.064
562	32	31	0.061
582	33	29	0.059
598	33	29	0.059
618	32	31	0.061
633	34	28	0.056
653	35	27	0.054
673	36	<b>2</b> 6	0.052
693	37	25	0.050

### Notes:

Time - elapsed time in minutes (excluding down time).

Bromide (mV) - concentration of bromide measured with bromide ion selective electrode in millivolts.

Bromide (mg/l) - concentration in mV converted to mg/l using calibration curve made at 7.7°C (01/27/92; 13:13).

C/C_o - bromide (mg/l) normalized to the concentration in the tracer fluid (500 mg/l).

## Attachment B2-5 Multiple-Well Test Data Sheets

Phase III RFI/RI Report

Table 1. Multiple-Well Pumping Test Time-Drawdown Data

Uncorrected	Corrected	*	i X	¥.	Wei	Z X	¥	Ne.	Ne.	Well	Well	*	*	76	7	*
1me	erit	=	22	£	<b>3</b>	£	ŏ	8	8	8	8	Ð	2	ស	ī	8
(minutes)	(minutes)	£	ε	£	Ξ	Ę	ξ	ε	ε	ε	E	ξ	Ε	ε	E	E
6	-2.00067	٥	9000	•	-0.003	9.00	•	•	0.00	900	٥	•	0.00	•	9000	989
0.0063	-2.65637	000	-0.003	•	•	-0.00	0	•	•	0	9000	0.00	0	•	0.00	90.00
0.0106	-2.65007	0	9000	0	•	0.00	0.00	0	•	•	-0.003	•	•	•	0.003	900
0.025	-2.64167	•	0	٥	0	0.00	•	9000	•	•	9000	0.003	0	•	•	9
0.0333	-2.63337	•	-0.003	•	•	-0.00	0.003	9000	0	•	9000	•	0.00	•	•	6.00
0.0416	-2.62507	0	0	٥	•	0	0.00	•	•	•	9000	0	0	•	•	9000
90.0	-2.61667	0.001	0	0	-0.003	-0.00	0.00	•	9000	•	9000	0.003	•	0	•	9.00
0.0583	-2.60637	0	-0.003	0	•	0	9000	-0.003	•	0	9000	0.003	•	•	0	6.001
0.0006	-2.60007	0.001	0	•	•	0	0.00	9000	-0.00g	0	9.000	0.003	0.003	•	0,000	0.00
0.075	-2.50167	0.00	0	0	-0.003	-0.00	9000	0	•	•	9009	•	0	•	•	-0.00
0.0833	-2.68337	0	-0.003	•	•	-0.00	0.000	0	•	0	<b>9</b> 000	0.003	•	0	9	0.001
0.4	-2.50007	0.00	0	•	•	-0.001	0.003	0	•	•	9000	0.00	0.003	•	•	0.003
0.1186	-2.55007	•	-0.003	•	•	9.00	0.003	0	0.00	•	90.00	0.003	•	•	•	9.000
0.1333	-2.60007	•	9000	0	•	0.00	0.003	0	0.012	•	9000	0.000	9,000	•	•	6.00
0.15	-2.51067	0.00	-0.003	•	•	0	0.003	0	9000	•	9000	0.003	0	•	•	9.00
0.1886	-2.60007	•	-0.003	0	•	0.00	0.003	•	0.003	•	•	0.003	•	0.003	0.003	<b>6</b> .00
0.1833	-2,48337	0	0	0	•	0.00	0.000	0	0	0	9000	0.003	•	0	0.003	9
0.2	-2.40067	9.00	0	0	0	0.003	0,000	0	•	9000	<b>6.018</b>	0	900	•	•	<b>8</b>
0.2166	-2.45007	•	0	0	0	0.00	0.00	•	9000	0	9009	0.000	0.000	•	•	9.00
0.2333	-2.43337	•	0	•	0	0.00	0.003	•	90.0	•	9000	0.000	9.000	•	0.000	9.0
0.26	-2.41067	•	0	•	•	9.00	0.00	0	9000	•	900	0	900	•	•	8.9
0.2000	-2.40007	0.00	0	•	•	-0.00	0.000	•	9000	•	-0.003	0.003	9000	•	9000	900
0.2633	-8.36307	0.00	0	•	•	-0.00	0.003	•	900	900	9000	0.00	0	•	•	9.00
0.3	-2.30067	0.003	•	•	0	900	0.00	•	90.0	90.0	90.0	0.000	900	0	•	9
0.3166	-2.35007	0.00	0	•	0	9.00	0.003	•	900	<b>9</b> 000	9000	•	•	•	•	9.6
0.3333	-2.33337	0.001	0	0	0	0.00	0.003	0	900	•	9000	0.00	0.003	0	0	9.00
0.4100	-2.25007	0.00	9000	•	•	0.001	0	•	900	900	0.012	900	•	-0.003	•	9000
0.5	-2.16667	-0.023	0	0	•	0.00	•	9000	900	0	6.018	•	•	0	•	<del>0</del> .003
0.5633	-2.08337	0.027	0	•	•	0	0	9000	9000	0	9.07	900	0.000	-0.003	•	9.00
0.000	-2.00007	0.00	•	•	•	0.007	0.003	0	900	•	900	9000	0.003	0	0	900
<b>6.0</b>	-1.01007	-0.00	0	0	0	9.00	0	•	9000	0	<b>0.022</b>	0.003	•	•	•	989
0.6333	1.83337	0.01	•	0	•	•	0	0	9009	9000	- PSG	0.00	900	0	9000	900
0.9166	-1.75007	0.003	0	0	•	0.00	0.00	•	900	0	9000	0.003	0.003	•	•	900
•	-1.60967	0	-0.003	•	•	9.00	0	-0.003	9000	9000	9000	0	0.00	•	•	6.00
1.0833	1.58337	•	-0.003	•	-0.003	-0.001	0.003	9	0	9000	0.000	0.003	0.000	0	•	<del>6</del> .000
1,1666	1.50007	•	0	•	•	-0.00	0.003	•	0	0	9000	0	0.00	•	0.00	900
£.	-1,41967	0	9000	•	•	-0.001	-0.003	0	9000	900	9000	0.00	0.003	0	•	90.0
1,3333	-1,33307	•	9000	•	0	0.00	0.00	0	•	•	•	0	0.000	0	980	9,000
1.4166	-1.25007	-0.00	-0.003	•	•	9.00	0.00	•	6,003	•	9009	0.00	9000	•	0.000	6.00
£.5	-1.10007	0	0	0	0	Ö	0.003	•	9000	•	•	0.016	0.003	•	0.003	<del>6</del> .89
1.5833	1.08337	0	9000	0	0	-0.00	0,003	•	9.000	•	-0.003	•	0.003	•	0.000	6.00

Table 1. Multiple-Well Pumping Test Time-Drawdown Data

Uncorrected	Corrected	¥.	<b>*</b>	₩ ¥	×	Wei	W	*	Wef	¥.	X ed	**	*	*	N.	*
TH-	-mt	=	22	2	3	10	ō	8	8	3	8	Ē	2	ß	7	25
(minutes)	(minutes)	ε	ε	ε	Ξ	3	£	ε	ε	ξ	E	E	E	ε	ξ	ε
1.000	-1,00007	0	0	0	•	0.00	•	0	0.00	•	-0.00	0.00	0.000	•	•	-0.004
£.7	-0.01007	•	-0.003	•	0	00.0	•	•	-0.003	0	900.0	0.003	0.003	0	9,000	9.000
1,8333	-0.63337	0	-0.003	•	0	9.00	•	•	9000	0.003	9000	0	0.00	•	0.003	9000
1.9166	-0.75007	-0.001	-0.003	•	•	9.00	•	•	0.003	0	-0.00 <b>6</b>	0	900	0	•	0.01
•	-0.00007	0	-0.003	•	•	0.00	•	0	-0.00	0	-0.012	0.00	0.012	•	•	9000
29.5	-0.10007	0	-0.003	0	•	-0.003	•	0.00	-0.00	-0.000	-0.015	•	9000	•	0	9.00
•	0.33333	0.007	9000	0.022	0.015	0.022	0.012	0.021	0.327	0.022	0.012	0.01	0.029	0.00	9.04	0.012
9.6	0.83333	0.014	0.015	0.036	0.028	0.001	0.010	0.025	0.336	0.001	•	0.022	0.041	9.04	9.8	0.022
•	1,33333	0.016	0.015	0.036	0.034	0.036	0.022	0.00	0.343	0.022	0.048	970.0	0.046	98	0.007	0.027
4.6	1,83339	8	0.019	0.041	0.025	0.041	0.025	0.004	0.336	9.04	0.041	0.028	0.048	90.0	0.04	0.000
•	2.33333	0.0	0.022	0.044	0.041	140.0	0.80	0.00	0.336	0.047	0.00	9.83	0.064	0.067	9.04	0.005
6.5	2.83333	0.022	0.025	0.047	0.044	0.047	0.026	0.037	0.54	0.047	0.026	0.001	0.061	0.067	90.00	0.00
•	3,33333	0.025	0.028	90.0	0.047	90.0	0.001	0.043	0.34	90:0	0.022	0.034	0.061	90.0	9.09	30
9.6	3,83333	0.027	100.0	0.036	0.038	0.052	0.035	3	0.343	0.083	9.00	7000	0.064	0.0	0.083	0.042
~	4,33333	0.028	0.001	0.053	0.053	0.056	0.006	0.043	0.330	0.063	920.0	0.03	0.067	0.088	0.063	0.048
7.6	4,83333	0.03	100.0	0.063	0.053	0.055	0.036	0.043	0.356	0.056	0.016	0.0 7	0.067	0.000	9.00	50
•	6.33333	0.031	0.004	0.063	0.057	0.068	0.026	0.048	0.952	9.06	9200	0.0 #	0.07	0.000	90.0	90.0
9.6	8.83333	0.031	0.034	0.057	0.047	0.058	0.041	0.0	0.946	8	0.016	0.0 1	0.074	0.00	90.0	8
•	0.53333	0.033	9000	0.067	90:0	0.001	0.04	900	0.356	900	0.018	9.04	800	0.0	90.0	99.
9.6	6.63333	0.036	0.026	<b>9</b> .0	0.0	0.061	0.044	90.0	0.34	900	0.00	9.04	0.0	0.0 22	0.083	0.063
•	7.53330	0.036	0.04	0.086	0.063	0.063	0.044	0.063	0.362	0.0	0.028	0.047	0.063	C.0.	9.0	790.0
12	9.93333	140.0	0.04	0.000	0.060	0,000	<b>9</b> 00	90.0	0.30	0.07	0.04	0.063	9000	0.062	0.0 240:0	90.0
7	11,33333	0.048	0.063	0.076	0.076	0.074	0.057	950:0	90.0	0.082	90	0.067	9. 20	0.086	<b>9</b> .04	900
2	19,33333	0.051	0.057	0.070	0.062	0.079	8	0.005	0.377	90.0	0.063	0.000	0.118	0.002	<b>0</b> .07	0.0
•	16,33333	0.054	0.063	0.085	0.065	0.082	0.063	9000	0.986	<b>7</b> 00	0.044	0.063	0.122	0.086	9000	0.074
2	17,33333	0.057	0.063	0.066	0.068	0.063	0.086	0.078	0.374	0.000	0.047	0.00	0.136	9.19 19	90.0	0.078
22	19,33333	0.058	0.096	0.068	990'0	0.096	0.01	0.075	0,363	0. 101	0.047	0.0 L	0.14	<u>0.10</u>	90.0	0.0
24	21,53333	0.082	0.000	0.066	0.001	0.001	0.073	0.078	98.0	9.0 10	0.067	C0.0	0.148	9.0	<b>9</b> 0.0	0.082
2	23,33333	0.051	0.072	0.005	9000	0.003	0.070	0.061	0.30	0.107	0.00	<b>6</b> .07	0.156	0.107	90.0	0.065
2	25,33333	0.068	0.076	0.006	0.088	0.096	0.070	0.084	0.3	E	0.0	0.0	 2	0.107	900	0.087
8	27,33333	0.008	0.072	0.096	0.008	0.080	0.070	0.064	0.300	0.1	9	0.062	0.17	0.11	9000	0.087
32	29,33333	0.071	0.070	0.101	0.101	0.102	0.082	0.067	0.408	0.1	0.04	0.085	0.174	0.114	9.0	0.002
3	31,33333	0.074	0.082	0.104	0.10 20	0.105	0.066	0.083	0.405	0.1	<b>9</b> 0.0	0.06	0.177	0.117	0.107	0.083
8	30,33333	0.078	0.065	0.107	0.107	0.100	0.00	0.003	0.400	0.110	0.0 40.0	0.086	0.183	0.12	9.2	980.0
8	35,33333	0.061	0.065	0.111	0.117	0.11	0.082	0.00	0.396	0.118	0.044	0.002	0.10	0.123	9.1	-
9	37,33333	0.061	0.085	0.111	0.117	0.11	0.062	0.006	0.30	0.15	0.006	0.088	0.183	0.123	0.113	<b>0</b> .10
42	39,33333	0.062	0.001	0.114	0.120	0.115	0.005		0.418	0.116	0.00	0.00	8	0.128	0.117	<b>6</b> . 104
2	41,33333	0.000	0.001	0.117	0.123	0.115	0.00	0.103	9.40	0.113	0.0	0.00	o. 18	0. 13	0.113	0.18
4	43,33333	0.067	0.00	0.117	0. 20.	0.117	0.098	0.103	0.421	0.11	0.067	0.101	0.19	0.13	0.12	6.108
\$	45,33333	0.060	0.0	0.12	0.120	0.12	0.000	0.103	0.431		0.005	0. 10	0.196	0.13	0.12	0.108
8	47,33333	0.00	0.00	0.123	0.120	0.121	0.101	0.106	0.40	0.107	0.079	0. 10	0.19	0.13	0.126	0.10

Table 1. Multiple-Well Pumping Test Time-Drawdown Data

Uncorrected	Corrected	<b>*</b>	*	*	<b>16</b> ×	¥ei	<b>**</b>	Well	Well	Wei	*	*	Well	Well	*	¥
E.	<b>F</b>	=	2	2	3	₽	ŏ	8	8	8	8	ē	2	8	2	5
(minutes)	(minutes)	Ξ	ε	£	ξ	£	ε	ξ	٤	Ę	Ę	E	ε	ε	E	٤
8	49,33333	90.0	0.00	6.123	0.130	0.124	0.106	0.10	0.434	0.107	9000	<b>9</b> .10	9.0	0.136	0.138	0.11
3	61,33333	0.00	0.10	0.13	0.133	0.126	901.0	0.112	0.431	0.107	90.0	0.107	0.183	0.142	0.126	0.113
\$	69,33333	1000	0.101	0.13	0.120	0.120	901.0	0.118	0.434	0.107	0.002	0.111	0.193	0.142	6.12	0.514
2	65,33333	0.008	9.10	0.43	0.133	0.131	0.11	0.115	0.443	0.107	0.073	0.114	0.188	0.146	0.132	0.117
8	67,33333	0.102	0.107	0.133	0.136	0.132	0.11	0.118	0.434	9.10 20	0.101	0.114	0.183	0.148	0.136	0.118
6	60,33333	81.0	0.111	0.136	0.130	0.136	0.124	0.121	0.437	0.107	0.10	0.117	0.183	0.1	0.130	0.124
2	61,33333	0.18	0.11	0.130	0.130	0.130	0.117	0.121	0.453	0.113	0.00	0.1 <b>2</b>	0.198	9.1	0.142	0.126
8	60,33333	0.108	0.11	0.130	0.142	0.130	0.117	0.125	0.453	0.113	0.085	0.12	0. 00.	0.162	0.142	0.127
8	66,33333	0.108	0.114	0.142	0.142	0.14	0.12	0.128	0.446	0.116	<b>6</b> .0	0.12	0. 60 60	0.1	0.145	0.127
R	67,33333	0.11	0.114	0.142	0.142	0.142	0.12	0.125	0.443	0.118	<b>0</b> .0	27.0	0. 0.	0.162	0.142	0.127
2	60.33333	0.113	0.117	0.142	0.145	0.143	0.124	0.128	0.453	0.110	0. 104	0. 22	0.100	9.166	0.142	0.13
7.	71.33333	0.113	0.117	0.145	0.148	0.147	0.127	0.131	0.408	0.116	0.114	0.126	0.100	 8	0.146	0.132
2	73,33333	0.120	0.117	0.140	0.152	0.148	0.13	0.131	0.406	0.116	0.11	0.13	0.18 8	9.18	0.148	0.1X
2	75.33333	0.116	0.111	0.152	0.152	0.18	0.133	0.134	0.450	0.116	0.107	0. 13.	0.10	0.1 <b>58</b>	0.151	0.138
8	77.33333	0.117	0.123	0.152	0.156	0.151	0.13 33	0.137	0.450	0.116	0.107	0.13	8.0	0. 8	0.188	0.137
82	79.33333	0.121	0.123	0.156	0.156	0.156	0.13	0.137	0.478	0. t	9.088	0.130	0.190	0.161	0.1 <b>8</b> 6	0.138
2	81.33333	0.121	0.120	0.152	0.158	0.156	0.136	0.137	0.462	0.12	0.12 8	0.133	0.150	0.191	0.188	0.12
8	63,33333	0.124	0.126	0.156	0.15	0.156	0.136	0.1	0.472	0.123	9.1	0. 80.	0.18	0. 8	0.161	0.1
2	85.33333	0.125	0.13	0.158	0.161	0.150	0.1	0.143	0.484	0.128	9.	0.136	9.18	0.17 7.	9	0.148
8	87.30333	0.127	0.133	0.158	9.10	0.161	0.143	0.1	9.468	o.126	0. 13	0.13 <b>8</b>	0.200	0. Y	9 2	0.147
8	80.33333	0.129	0.130	0.101	0.164	0.162	0.143	0. \$	<b>27</b>	0.1 <b>20</b>	0.117	0.142	0.20	0.174	0.167	0.148
3	91.33333	0.13	0.136	0.164	9. 2	0.100	0.1	0.14	<b>217.0</b>	0.132	0. 5.	0.142	0.203	0.174	0.167	0.15
8	90,30333	0.132	0.136	0.164	0.167	0.167	0.1	0.15	0.481	0.136	2	0.142	0.202	0.174	0.167	0.151
8	95.33333	0.133	0.130	0.108	0.17	0. 180	0.140	0.15	0.484	0.130	61.6	0.146	0.20	0.10	0.17	9.158
<b>\$</b>	97.33333	0.135	0.130	0.100	0.171	0.17	0.140	0.183	0.48	9:13	0.126	0.146	0.208	0.17	0.174	0.156
10	107.33333	0.141	0.145	0.174	0.177	0.1 26	0.156	0.156	0.40	<u>.</u>	0.142	0.156	0.222	0.1 1	0.18 8.18	0.1 8
\$	117,30333	0.149	0.152	0.18	0.186	0.183	0.166	0.196	<b>9</b> .0	0.101	0.130	0.101	0.236	9.0	0.188	0.17
130	127.33333	0.150	0.156	0.10	0.18	0.180	0.171	0.17	0.60	0.167	0.130 80	0.17	0.241	0. 20.	0.196	0.17
140	137,33333	0.162	0.168	0.183	0. <b>8</b>	0. 100	0.178 87	2 2 2	0.603	0.17	0.158	0.174	0.25	0.20	0.202	0.1
150	147,33330	0.169	0.174	0.203	90.0	0.202	2	0.184	0.512	0.17	0,162	9. 20.	0.251	0.216	0.208	0.0
06	157,33333	0.12 ET.0	0.18	0.20	0.216	0.21	0.1 1	0.1 0.1	0.525	0.1 7	0.17	0.187	0.248	0.210	0.212	0.202
5	167.33333	0.10	0.187	0.216	0.224	0.216	0.197	0.1 0	0.622	0.17	0.188	0. 28	0.236	0.22	0.218	0.20
<b>18</b>	177.33333	0.186	0. 6	0.218	0.228	0.210	0.20	0.203	0.54	0. E	5	0.18	0.222	0.23	0.22	0.211
<b>1</b> 00	187,33333	0.191	0.186	0.228	0.234	0.226	9.20	0.20	0.544	9.18	9.18	0.206	0.200	0.23	0. 13.	0.218
<b>902</b>	197,33333	0.196	0.18	0.23	0.237	0.232	0.213	0.212	0.567	0.196	0.200	0.20	0.10	0.244	0.237	0.221
.210	207.33333	0.2	0.200	0.234	0.24	0.237	0.216	0.216	0.563	0.180	0.200	0.218	0.163	0.244	0.243	0.227
22	217.33333	0.205	0.20	0.237	0.25	0.241	0.219	0.221	0.56	0.10 0.10	0.183	0.222	0.174	0.253	0.240	0.27
<b>82</b>	227.33333	0.212	0.215	0.247	0.253	0.246	0.226	0.228	0.570	0. 190	9.28	0.225	0.17	0.28	0.253	0.230
240	237,33333	0.218	0.222	0.253	0.256	0.251	0.232	23.	0.570	0.202	0.1 8	0.23	0.161	0.263	0.750	0.242
\$2	247.33333	0.221	0.225	0.256	0.263	0.257	0.235	0.237	0.578	0.208	0.107	72.0	0.151	0.200	0.262	0.247
2	257.33333	0.226	0.228	<b>8</b> .0	0.208	0.262	0.241	0.24	0.565	0.221	0.228	0.236	<u>.</u>	0.272	<b>5</b>	0.253

Table 1. Multiple-Well Pumping Test Time-Drawdown Data

¥ 8 E	0.258	0.783	0.200	0.271	0.274	0.277	0.28	0.280	0.20	0.288	0	0.303	0.307	0.30	0.313	0.318	0.316	0.324	0.324	0.326	0.354	0.336
} 1 E	0.272	0.278	0.261	0.284	0.201	0.294	80	0.303	0.308	0.313	0.316	0.310	0.326	0.326	0.332	0.336	0.356	0.344	750	0.361	0.367	0.364
} a e	0.278	0.282	0.288	0.296	0.296	0.304	0.301	0.304	0.311	0.32	0.32	0.323	0.30	0.33	0.336	0.342	0.338	0.348	0.0	0.356	0.358	0.361
# # E	0.148	0.146	0.145	0.136	0.132	0.10	0.090	0.0	0.067	0.051	0.0 1	0.036	0.026	0.00	900.0	<b>6</b> .010	<b>4</b> 0.022	<b>6.016</b>	0.01	-0.022	<b>-0.022</b>	-0.010
Well (7)	0.244	0.247	0.263	0.257	0.28	0.283	0.200	0.272	0.270	0.282	0.265	0.20	0.202	0.206	0.296	0.301	0.904	0.307	0.311	0.314	0.917	0.32
¥ 8 E	0.23	0.236	0.247	72. 0	0.247	0.247	0.236	0.286	0.2 20.0	0.276	0.200	0.208	0.200	0.178	0.292	0.282	0.206	0.286	0.200	0.200	0.307	0.304
364	0.224	0.0	20.0	0.23	0.233	0.224	0.230	0.243	0.24	0.248	0.240	0.282	0.266	0.275	0.275	0.275	0.261	0.207	0.20	0.297	0.306	0.313
₩ 8 £	0.670	0.607	0.913	0.007	0.626	0.616	0.623	0.623	0.648	0.626	0.642	0.661	0.642	0.948	0.67	0.679	0.062	0.00	9000	0.682	0.000	0.601
60 (f)	0.248	0.263	0.256	0.250	0.262	0.266	0.275	0.275	0.281	0.284	0.287	0.220	0.283	0.303	6.0	0.308	0.30	0.318	0.316	0.318	0.321	0.326
¥ 5 €	0.246	0.261	0.254	0.261	0.257	0.267	. 0.27	0.273	0.276	0.28	0.286	0.260	0.202	0.200	0.296	0.302	90:0	0.312	0.912	0.318	0.321	0.321
} & &	0.266	0.27	0.275	0.278	0.263	0.287	0.292	0.295	0.296	9000	0.308	0.311	0.316	0.310	0.321	0.325	0.326	0.333	0.336	0.34	0.343	0.344
ž z E	0.20	0.275	0.278	0.285	0.285	0.20	0,204	0.207	0.304	0.307	0.31	0.316	0.316	0.320	0.332	0.330	0.342	0.345	0.345	0.348	0.354	0.354
ž v 8	92.0	0.20	0.272	0.270	0.270	0.268	0.20	0.295	0.301	0.301	0.307	0.35	0.314	0.317	0.32	0.323	0.326	0.320	0.333	0.336	0.336	0.342
} 2 E	20	0.237	0.241	0.244	0.247	0.253	0.256	0.28	0.263	0.20	0.272	0.278	0.279	0.262	0.282	0.266	92.0	0.20	0.298	0.30	0.304	0.307
ž = 8	Š	928	0 230	0.243	0.247	0.25	0.256	0.250	0.263	0.267	0.272	0.275	0.270	0.262	0.265	0.266	0.20	0.296	0.20	0.30	0.304	0.307
Corrected Time (minutes)	947 57475	277.33939	287.33333	207,33333	307,33333	317.33333	327.33333	397,33333	347,33333	357,33333	367,33333	377,33333	367,33333	307,33333	407,33333	417,33333	427,33333	457,30330	447,33333	457,33333	467.33333	477.33330
Uncorrected 1 Time (minutes)	٤		98	8		•••	•				_	-		-	_	27	8	4	97	_	2	\$

Table 2. Multiple-Well Pumping Test Recovery Data

53				0.357 0.338				_	_		0.354																													
7				0.356 0	_	_	_	_	_	_	•	_	_	_	_	_	_	_	_	_				_	_				B25.0				_						_	
A	ស	E			_	_	_	_				_	_					_							,				, 60.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.0							-0.064				
*	2	٤		970.0	•		620.0- 1	_	_	-0.032	_									_				_	4 -0.048									•						•
×	ā	ε		0.914	0.914	0.91	0.31	0.31	0.91	0.911	0.311	0.91	0.311	0.91	0.30	0.307	0.30	0.307	0.307	0.30	9.304	0.30	9.90										0.295			0.50	0.20			0.268
¥	8	£		0.350	0.330	0.342	0.330	0.338	0.338	0.330	0.330	0.33	0.330	0.336	0.330	0.336	0.333	0.350	0.333	0.33	0.33	0.8	0.3	8.0	0.326	0.326	0.326	0.320		0.317	0.317	. 0.314	0.31	0.315	0.307	0.307	9.9	5	-	0.30
Well	8	ε		0.313	0.318	0.313	0.913	0.513	0.913	0.308	0.913	0.30	0.30	0.30	0.30	0.300	0.308	0.30	0.308	0.308	0.908	9.303	0.303	0.303	0.300	0.297	0.3	6.0	0.287	0.30	0.20	0.264	0.264	0.281	0.281	0.276	0.278	9.4.5		0.275
×	8	£	0.004	0.336	0.338	0.333	0.336	0.333	0.336	0.353	0.33	8.0	0.333	0.333	0,33	0.30	0.327	0.327	0.327	0.324	0.324	0.327	0.327	0.327	0,321	0.324	0.92	0.32	0.324	0.314	0.917	0.327	0.311	0.30	0.311	0.311	0.308	8		0.308
<b>**</b>	8	£	0.928	0.30	0.300	0.300	0.300	0.306	0.308	0.306	0.308	0.306	0.308	0.306	0.300	0.303	0.30	0.303	0.303	<b>8</b> .0	<b>0</b>	<b>6</b>	6.9	<b>8</b> .0	6.0	0	8.0	000		0.283	0.263	0.283	0.20	9.3	0.20	0.28	0.267	0.20		0.267
Ne.	5	ε	0.321	0.318	0.315	0.316	0.315	0.316	0.315	0.316	0.316	0.316	0.316	0.312	0.312	0.312	0.312	0.312	0.308	0.308	0.308	0.308	0.308	0.308	0.308	0.306	0.308	908		0.302	0.302	0.200	0.200	0.200	0.280	0.200	0.200	2		0.200
Well	ıΩ	æ	0.344	0.336	0.336	0.336	0.336	0.336	0.338	0.336	0.338	0.336	0.333	0.333	0.333	0.332	0.332	0.33	0.30	926.0	0.328	0.326	0.327	0.327	0.328	0.325	0.324	0.324	0.324	0.317	0.310	0.313	0.313	0.31	0.308	0.300	900	8		0.303
_	z		0.354	0.354	0.354	0.354	0.354	0.354	0.354	0.354	0.351	0.361	0.354	0.354	0.361	0.351	0.351	0.351	0.351	0.351	0.351	0.351	0.361	0.351	0.351	0.351	0.348	0.348	0.351	0.348	0.345	0.342	0.342	0.342	0.330	0.335	0.332	255		0.330
		3	0.342			0.339	0.333	0.333	0.329	0.329		0.328	0.320	0.326	0.326	_	0.326	0.323	0.323	0.323	0.323	0.32	0.32	0.32	0.32	0.32			0.317	0.31	0.31	0.307	0.307	0.304	0.307	0.304	0.301	Ŗ		0.301
Well	23	(£)		_				_		_			_								_		_	_	_	_	_					Ī			_					_
Waj	ũ	£	0:30	0.30	0.304	0.304	0.301	0.30	0.301	0.30	0.301	0.30	0.30	0.30	0.30	0.301	0.30	0.30	0.296	0.301	0.20	0.296	0.296	0.20	0.25	0.296	0.20	0.20	<b>8</b> 2.0	0.20	0.20	0.20	0.288	0.286	0.26	0.265	0.285	9		0.269
¥ S	=	£	0.307	0.302	0.302	0.302	0.302	0.302	0.302	0.301	0.301	0.301	0.301	0.301	0.301	0.200	0.200	0.200	0.290	0.200	0.200	0.206	0.286	0.288	0.296	0.20	0.296	0.290	0.20	0.20	0.283	0.291	0.30	0.3	0.29	0.288	0.288	0.286		0.267
_			١ _	•	2		ĸ	8	0.0016		D. 1063	0.5186	0.125	0.1353	0.16	0.1886	0.1633	0.2	0.2100	0.2333	0.25	0.2006	0.2633	0.3	0.3166	0.3333	98.0	0.3000	0.3633	980	0.6333	0.7196	0.8	0.8833	0.000	8	133	3		1.2166
Corrected	Tme	(minutes)		9	0.0583	0.000	0.075	0.0833	0		9	Ö	Ū	0		_	Ū																							

Table 2. Multiple-Well Pumping Test Recovery Data

*	20	ε	0.20	0.297	0.287	0.207	0.284	0.294	0.200	0.260	0.280	0.262	0.261	0.277	0.276	0.274	0.271	0.28	0.288	0.286	0.265	0.783	0.283	9.30	0.752	0.256	0.252	8	0.247	0.242	0.23	0.236	0.232	0.220	0.227	0.224	0.223	0.221	0.210	0.218	0.214	0.213
<b>1</b>	2	E	0.916	0.316	0.913	0.513	0.913	0.31	0.31	0.303	0.303	0.3	0.897	Z.	0.0	0.20	0.207	0.287	0.264	0.26	0.261	0.281	0.28	0.278	0.27	0.275	0.200	0.286	0.202	0.22	0.250	0.283	0.240	0.240	0.243	0.245	0.24	0.237	72.0	0.254	6.23	0.23
<b>5</b>	8	٤	1080	0.206	0.296	0.296	0.206	0.296	0.295	0.292	0.200	0.266	0.262	0.270	0.278	0.276	0.278	0.272	0.272	0.266	0.200	0.200	0.200	0.263	0.265	0.28	0.253	0.250	0.247	0.247	0.244	0.236	0.238	0.234	2.0	0.226	0.23	0.226	0.225	0.222	0.219	0.210
<b>*</b>	23	Ε	-0.087	-0.087	-0.067	-0.07	-0.01	40.04	-0.01	-0.074	-0.074	-0.077	<b>9</b>	<b>6.083</b>	0.083	-0.087	90.09	9.09	900	8.9	9	90.0	-0.00G	9000	9000	9000	8	9.0	<b>6</b> .108	90.70	-0.106	-0.100	-0.112	-0.112	0.110	0.122	6.128	0.128	<b>6.128</b>	521.0	-0.125	-0.122
*	ē	E	0.286	0.266	0.288	0.265	0.276	0.265	0.286	0.282	0.279	0.278	0.270	0.272	0.272	0.200	0.200	0.266	0.266	0.763	97.50	0.268	8.0	9.3	0.20	0.257	0.28	0.257	0.247	0.241	0.241	0.236	0.234	0.231	0.228	0.228	0.225	0.225	0.222	0.210	0.210	0.215
*	8	ε	0.200	0,301	0.295	0.295	0.285	0.296	0.225	0.292	0.285	0.265	0.262	0.262	0.876	0.276	0.273	0.273	0.200	0,273	0.200	0.208	0.200	0.266	0.200	0.263	0.257	0.253	9.28	0.247	0.244	0.241	0.236	0.238	0.231	0.228	0.225	0.225	0.222	0.222	0.222	0.212
<b>19</b>	8	E	0.271	0.271	0.268	0.271	0.268	0.208	0.265	0.262	0.250	0.250	0.256	0.252	0.252	0.248	0.248	0.246	0.243	0.240	0.243	0.24	0.24	0.24	0.24	0.233	0.33	0.23	0.23	0.221	0.221	0.221	0.215	0.211	0.206	0.208	0.202	0.202	0.202	0.190	0.100	0.100
¥	8	ε	0.302	0.302	0.302	0.302	0.302	0.296	0.208	0.295	0.292	0.292	0.200	0.266	0.263	0.783	<b>8</b> .0	0.278	0.273	0.278	0.273	0.27	0.27	0.27	0.27	0.264	0.261	0.254	0.254	0.251	0.245	0,245	0.230	0.242	0.236	0,232	0.232	0.220	0.228	0.226	0.220	0.223
Well	8	€	0.264	0.284	0.284	0.284	0.261	0.281	0.281	0.278	0.278	0.275	0.271	0.200	0.268	0.265	0.25	0.262	0.262	0.230	0.250	0.250	0.250	0.256	0.256	0.25	0.246	0.243	0.24	0.237	0.234	0.231	0.226	0.225	0.225	0.22	0.218	0.216	0.215	0.212	0.200	0.200
*	δ	E	0.292	0.202	0.292	0.292	0.269	0.280	0.282	0.260	0.263	0.26	0.276	0.278	0.28	0.273	0.27	0.27	0.267	0.264	0.264	0.264	0.251	0.20	0.261	0.257	0.251	0.248	0.248	0.245	0.230	0.236	0.235	0.232	0.232	0.229	0.250	0.222	0.222	0.219	0.216	0.210
<b>1</b>	£Ω	ε	0.302	0.298	0.296	0.207	0.297	0.297	0.295	0.201	0.287	0.286	0.283	0.279	0.278	0.278	0.276	0.272	0.27	0.268	0.20	0.288	0.268	0.20	0.264	0.257	0.254	0.240	0.246	0.243	0.24	0.238	0.235	0.232	0.220	0.227	0.226	0.223	0.221	0.218	0.210	0.215
Wei	ı	E	0.329	0.326	0.320	0.326	0.323	0.323	0.323	0.316	0.31	0.307	0.30	0.301	0.207	0.207	0.20	0.20	0.20	0.268	0.265	0.285	0.265	0.262	0.282	0.275	0.272	0.208	0.200	0.203	0.256	0.256	0,253	0.247	0.247	0.243	0.24	0.237	0.237	0.234	0.231	0.228
Wei	Ω	ε	0.298	0.295	0.295	0.291	0.291	0.291	0.29	0.288	0.265	0.282	0.262	0.278	0.278	0.276	0.272	0.272	0.20	0.26	0.20	0.250	0.500	0.263	0.263	<b>8</b> 7.	0.258	0.237	0.28	0.247	0.241	0.241	0.237	0.234	0.234	0.23	0.226	0.225	0.228	0.222	0.222	0.215
Wei	ŭ	£	0.282	0.282	0.270	0.279	0.270	0.279	0.279	0.275	0.200	0.272	0.206	0.263	0.363	0.263	8.0	0.263	8.0	0.256	0.263	0.253	0.253	0.26	0.28	0.247	0.241	0.237	0.234	0.234	0.228	0.228	0.226	0.222	0.222	0.218	0.218	0.212	0.212	0.20	0.20	0.200
Ne.	=	E	0.285	0.263	0.263	0.283	0.282	0.262	0.28	0.270	0.272	0.274	0.272	0.200	0.200	0.264	0.200	0.264	0.263	0.26 1	0.256	0.250	0.250	0.258	0.256	0.251	0.247	0.245	0.242	0.230	0.235	0.232	0.231	0.228	0.226	0.224	0.221	0.22	0.216	0.215	0.213	0.212
Corrected	True	(minutes)	1.55	1.6333	1,7166	4.6	1.8633	1,9000	2.08	2.55	98	6. 88.	<b>4</b> .08	<b>3</b> .	8	<b>9</b> .	9.00	<b>9</b>	7.08	28.	<b>9</b>	99	90,0	9.58	<b>5</b> 0.0	12.05	8.4	<b>16.05</b>	<b>6</b> .8	8.8	22.05	27.08	8.8	28.0 <del>2</del>	80.88	32.05	8	36.05	8.8	<b>4</b> 0.0 <b>4</b>	42.08	44.08
Uncorrected	Thme	(mirrutes)	5.1	1.5833	1.6666	1.78	1.6333	1.0100	~		67	3.5	•	4.6	₩	9.6	•	6.8	^	7.6	•	<b>6</b>	•	9.0	ţ	2	=	9	•	8	22	<b>5</b>	2	28	8	35	3	8	8	Ç	42	7

Table 2. Multiple-Well Pumping Test Recovery Data

Uncorrected	Corrected	ī	¥.	Wed	Wet	Ye.	×	<b>19</b> %	*	<b>X</b>	<b>X</b>	*	Well.	¥.	7	4
Time	Three	=	22	2	3	v	ō	8	8	8	8	ũ	23	8	2	23
(minutes)	(mhytes)	£	٤	ε	ε	ε	£	£	£	ξ	£	ξ	ε	ε	ξ	E
9	86.08	0.21	0.208	0.215	0.228	0.215	0.216	0.20	0.226	0.186	0.20	0.216	22.0	0.216	0.227	0.211
4	46.05	0.208	0.202	0.215	0.228	0.211	0.213	9020	0.223	0.192	0.20	0.200	0.126	0.212	0.224	<b>0.2</b>
2	80.08	0.20	0.20	0.218	0.226	0.21	0.213	0.200	0.23	0.100	0.208	0.212	&.12 83	0.200	0.22	907.0
62	82.05	0.204	0.198	0.200	0.218	0.207	0.208	0.2	0.214	0.192	0.203	0.208	6.12 23	0.20	0.218	90.00
2	54.06	0.208	0.202	0.212	0.221	0.207	0.21	0.203	0.217	0.102	0.200	0.20	ð.128	9030	0.218	0.208
8	80.08	0.202	0.198	0.206	0.218	0.204	0.203	0.2	0.21	0.188	0.199	0.200	ð.128	902.0	0.218	0.203
83	89.08	0.2	0.193	0.203	0.216	0.202	0.2	0.198	0.207	0.18 8	0.198	0.30	6.128	0.203	0.216	0.202
8	90.08	0.100	0.193	0.203	0.212	0.2	0.2	0.5	0.21	0.198		0.203	-0.122	0.200	0.216	0,0
95	95.08	0.197	0.183	0.203	0.212	0.2	0.2	0.183	0.21	0.18	0. 2	0.203	-0.122	0.203	0.212	0.1
2	86.08	0.198	0.10	0.100	0.20	0.180	0.203	0.163	0.21	0.186	0.183	8	-0.126	0.1 <b>98</b>	902.0	0.186
8	80.08	<u>0</u>	0.187	0.100	0.208	0.186	0.107	0.18	0.207	O. 156	0.188 88	0.186	<b>6.116</b>	0.18	0.20	0.186
8	88.05	9. 2	0.187	0.198	0.200	8	<b>ĕ</b> .0	0.1	0.207	0.18	0.1	0.18	6.13	9.1	902.0	9.18
2	20.05	0.192	0.10	0.10	0.200	9.0	0.107	0. •	0.201	0.186	0.183	0.198	0.110	0.18	0.206	0.1
2	72.08	0.101	0.187	0.18	0.208	0.102	9.19 P	D.187	0.20	0.186	0. 6	0.188	0.110	0.183	97.0	0.182
2	74.08	0.180	0.187	0.163	0.202	0.191	0.10	0.187	0.186	0.183	0.187	0.188	<b>6.116</b>	0.1 8	0.202	0.18
2	26.06	0.180	0.163	0.193	0.202	0.180	0.101	0.0 20.0	0.196	0.163	0.187	0.18	-0.112	0.1 <b>0</b>	0.202	0.18
2	78.06	0.186	0.163	0.183	0.190	0.186	0.191	0.1E	0.196	0.186	0.187	0.18	6.10	9.1 8	0.202	0.187
8	80.08	0.18	0.183	0.10	0.19	0.186	0.187	20.0	0.186	0.183	0.167	0.18	6.0	0.18	0.202	0.18
62	82.06	 2	0.18	0.10	0.190	0.166	0.187	0.181	0.196	0.18	0.184	0 =	<b>6.108</b>	0. T	0.18 8	E
2	<b>61</b> .08	0.163	0.18	0.10	0.198	0.165	0.187	0.181	0.101	<u>.</u>	9. 2.	0. =	6 8	0. 1	0.18 8	9.5
8	86.05	0.181	0.17	0.187	0.196	0.10	9.0	0.161	0.181	0.18	0. 6	0.187	6. 8	0.187	0.198	0.181
8	86.05	91.0	0.174	0.187	0.193	0.161	0.184	<b>6.13</b>	0.191	0.17	o. te	0.187	-0.103	0.187	0.188	6.13
8	90.06	0.1 <b>6</b>	0.177	0.187	0.190	0.181	0.181	<b>6</b> .13	0.166	<u>5</u>	0.177	0.187	6.188 801.00	0.184	9.1 8	6.13
85	92.05	0.178	0.174	20.0	0.183	0.18	0.181	0.178	0.186	0.1 2	0.177	0. 20.	900	0.184	0.1	6.13
<b>.</b>	<b>2</b> .8	0.178	0.171	0.184	<b>0</b> .0	0.178	0.181	0.178	0.186	0.17	0.17	0.16	900	0.18	5	0.176
8	90.06	0.175	0.171	0.18	0.10	0.177	0.181	0.178	0.165	0.17	0.174	•	9000	<b>9</b>	0.18	0.17
8	<b>86</b> .06	0.173	0.171	0.177	0.186	0.175	0.178	0.17	0.165	9.0	0.171	0.17	6.10	9.0	9.0	0.13 2.0
8	100.05	6.13	0.168	0.17	0.186	0. E	0.178	0.17	0.162	0.156	0.17	0.17	9.50	0.17	9.18	0.17
10	110.05	0.187	0.161	0.174	0.18	0.18 8	0.171	0.165	0.176 871.0	0.136	0.165	0.174	-0.141	0.171	0.58	<u>.</u>
5	120.05	0.162	0.155	0.168	0.174	0.162	0.165	0.162	0.19	0.5	0. 158	0.168	9.0	0.165	0.174	0.155
130	130.05	0.159	0.152	0.16 20	0.17	0.150	0.162	0,156	0.136	0.00	0.152	0.161	-0.235	0.161	0.17	0.181
140	140.05	0.156	0.149	0.161	0.187	0.155	0.159	0.153	0.163	0.00	0.140	0.158	0.267	0.158	0.187	0.147
50	150.05	0.151	0.142	0.155	0.161	0.15	0.152	0.15	0.16	0.094	0.146	0.155	0.200	0.152	0.10	0.143
\$	160.05	0.146	0.130	0.152	0.158	0.145	0.149	0.146	0.154	0.00	0.130	0.140	-0.332	0.140	0.158	0.136
27	170.05	0.145	0.136	0.149	0.155	0.142	0.148	0.14	0.151	0.065	0.136	0.146	-0.356	0.148	0.155	0.136
180	100.05	0.141	0.133	0.145	0.152	0.139	0.143	0.137	0.147	0.082	0.133	0.142	-0.363	0.142	0.161	0.132
<b>5</b>	190.05	0.138	0.13	0.142	0.148	0.136	0.7	0.1S	0.144	0.088	0.13	0.138	<b>6</b> 0.40 <b>6</b>	0.130	0.148	0.13
200	200.05	0.135	0.123	0.130	0.145	0.131	0.136	0.131	0.141	0.07	0.126	0.136	0.420	0.136	0.148	0.126
210	210.05	0.132	0.123	0.136	0.142	0.120	0.133	0.131	0.136	<b>0</b> .07	0.123	0.136	-0.448	0.133	0.142	0.122
220	220.06	0.129	0.12	0.133	0.130	0.126	0.133	0.126	0.138	0.078	0.12	0.133	-0.464	0.13	0.130	0.121

Table 2. Multiple-Well Pumping Test Recovery Data

Uncorrected	Corrected	Weil	Nell N	Wei	*	×e.	Wei	*	*	*	*	Well	*	*	Well	<b>18</b>
The	Three	=	ŭ	Ω	3	æ	5	8	8	8	8	Ē	<b>E</b> 2	a	7	8
(minutes)	(minutes)	Œ	(L)	Œ	£	(£)	(E)	Ξ	Œ	٤	£	E	ε	٤	ε	E
\$	30.00	0 197	611.0	65.0	\$	761.0	6	461.0	565	8200	0.147	6,0	797	800	9.1.0	0.117
8	940.00				2		0.497	767	5	0.00		5	9		8	
	250.05	20.00	411.0	92.128	0.133	0.12	0.124	0.118	20	0.072	0.11	6.13	0.516	2	0.132	0.114
2	200.05	0.121	0.11	0.123	0.120	0.117	0.124	0.118	0.128	0.072	0.11	0.12	9290	0.18	0.132	0.113
22	270.05	0.110	0.107	0.12	0.126	0.115	0.12	0.115	0.128	0.00	0.11	0,12	-0.545	0.117	0.128	0.111
982	290.05	0.116	0.107	0.12	0.123	0.112	0.117	0.112	0.122	0.00	9.5	0.12	0.884	0.117	6.18	0.108
200	290.05	0.116	9.0	0.117	0.123	0.11	0.117	0.112	0.122	900	9.0	0.117	-0.807	0.114	6.5	0.108
900	300.08	0.113	0.101	0.114	0.12	0.10	0.114	0.10	0.17	9000	0.101	0.114	-0.877	0.154	0.12	0.105
310	910.05	0.111	0.101	0.114	0.12	0.100	0.114	0.10	0.11	980.0	0.101	0.114	98.0	0.11	0.123	90.108
320	320.05	0.11	0.101	0.114	0.117	0.108	0.11	0.108	0.110	900	0.10	0.114	-0.563	0.111	0.12	0.101
900	300.06	0.10	0.006	0.111	0.114	0.102	0.10	9.108	9.1.0	0.063	9000	0.111	909.0	0.107	0.1 <b>2</b>	<b>.</b>
3	340.05	0.10	9000	0.11	0.114	0.104	0.10	9.0	0.1	0.0	9000	0.11	-0.826	0.107	0.12	0.00
980	360.08	0.106	9000	0.107	0.114	0.000	0.10	9.100	0.113	0.04	0.002	0.11	-0.051	9.0	6.13	0.086
200	90008	90.108	0.001	0.107	0.1	0.000	90.0	9.0	5.	9.04	0.002	0.107	-0.867	9.0	0.113	9000
976	370.05	0.102	0.001	9.10	0.107	0.096	9.10	 2.	0.11	9.04	0.00	<b>0</b> .10	0.663	9. 19	9.	0.082
980	300.08	0.102	0.088	9.0	0.107	0.000	0.101	<b>6</b> .	<b>.</b>	0.041	0.000	0.104	902.0	0.00	<u>-</u>	0.0
900	300.08	9000	0.066	0.101	0.107	0.0	0.101	0.00	0.107	0.004	0.006	<b>0</b> .101	6.73	0.000	<b>0</b> . 197	0.087
400	400.06	0.000	0.088	0.10	0.10	0.001	9000	0.00	0.108	0.031	0.082	0.19	40.764	0.000	0.10	0.087
40	410.08	0.00	0.065	0.101	9.0	0.083	0.000	0.000	0.107	160.0	0.062	<b>0</b> .101	-0.787	0.006	0.107	0.087
27	420.08	0.007	0.082	0.101	0.101	0.0	9000	0.003	8	0.028	<b>2</b> 00	<b>9</b> .19	-0.818	900	0.107	700
430	430.06	0.007	0.062	9000	0.101	90.0	0.00	0.003	9.48	0.001	0.082	9000	979	900	0.107	90.0
944	440.08	90.0	0.062	0.008	0.10	0.068	90.0	0.0	0.100	0.081	0.07	0.006	-0.841	0.005	<b>9</b> .104	90.0
450	450.06	0.004	0.070	0.008	0.10	0.000	9000	90.0	<u>.</u>	0.025	0.070	0.000	-0.867	0.062	2	0.082
460	460.06	0.094	0.070	0.005	0.098	0.086	0.005	90.0	<u>.</u>	0.028	<b>6</b> .00	0.085	0.877	0.082	0. 10	0.082
<b>£</b>	470.08	0.004	0.079	0.005	0.00	0.088	90.0	0.00	0.007	0.056	0.07	9000	<b>8</b> .9	0.002	9.0	0.082
480	460.05	0.003	0.070	0.008	0.00	0.065	0.002	0.007	0.087	0.037	0.0 20.0	9000	8.9	0.008	0.101	90.0
400	490.06	0.002	0.070	0.002	0.096	0.065	0.082	0.087	0.007	0.034	<b>0</b> .078	0.005	0.800	0.086	0.101	0.062
900	800:08	0.062	6.079	0.008	9000	0.085	0.082	0.087	0.007	0.041	<b>6</b> .00	0.005	908.0	0.086	0. 101	0.082
610	810.08	0.00	0.076	0.00	0.095	0.083	0.082	0.067	0.007	<b>9</b> .0	0.078	0.092	908	9000	9	<b>8</b> 0.0
620	\$20.05	0.00	0.070	0.092	0.005	0.083	0.080	0.067	0.097	0.031	0.078	0.002	-0.916	0.066	0.10	6.00
230	830.08	0.0	0.078	0.082	0.005	0.063	0.060	0.067	0.004	0.031	0.076	0.002	-0.922	0.008	0.00	<b>2</b> 0.0
940	\$40.05	0.000	0.076	0.088	0.005	0.063	0.082	0.087	0.097	0.026	0.076	0.00	90.00	90.0	0.0	<b>2</b> 000
650	850.06	0.0	0.076	0.082	0.00	0.083	0.060	0.087	0.094	0.004	0.078	0.002	-0.932	0.068	9000	900
8	\$60.05	90.0	0.076	0.002	0.005	0.062	0.000	0.067	0.067	0.043	0.078	0.00	-0.922	0.068	0.10	90.0
0.87	870.08	0.0	0.070	0.002	0.003	0.065	0.060	0.067	0.007	9.0g	0.070	0.068	<b>908</b> .0-	0.00	0.101	0.082
860	80.08	0.000	0.076	0.092	0.001	0.083	0.060	0.067	0.007	0.056	0.07	0.066	98.0	0.066	9000	90.0
069	800.05	0.067	0.078	0.088	0.001	0.062	0.080	0.064	0.004	0.044	0.078	0.088	9.0	0.066	9000	0.07
908	90.00	0.00	0.070	0.068	0.001	0.082	0.085	0.084	0.094	0.041	0.076	0.085	-0.887	0.065	0.00	0.07
910	610.05	0.067	0.078	0.088	0.00	0.0	0.000	0.064	0.004	0.001	0.078	0.085	-0.806	0.065	900	0.011
620	620.05	0.067	0.070	0.086	0.00	0.082	0.06	0.064	0.004	0.026	0.078	0.008	906.0	0.065	0.00	0.077

¥ a e	6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00
<b>1</b> 2 E	0.004 0.004 0.004 0.004 0.004 0.009 0.009 0.009 0.009 0.009 0.001 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101
<b>7 2 2</b>	6006 6006 6006 6006 6006 6006 6006 600
E2 4	0.803 0.803 0.803 0.803 0.803 0.803 0.803 0.803 0.803 0.803 0.803 0.803 0.803 0.803 0.803 0.803 0.803 0.803 0.803 0.803
Well Es	0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008
# 9 8	0.005 0.005 0.005 0.007 0.007 0.007 0.007 0.007 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
2 4	00.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120
<b>5</b> 8	004 0067 0067 0067 0067 0067 0067 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.109 0.109 0.109 0.109 0.109
# 85 80	0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.007 0.007 0.007 0.007 0.007 0.007 0.007
¥ (	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
	0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
	0.001 0.001 0.001 0.001 0.001 0.001 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
19 A	(7) 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008
	0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.098 0.098 0.098 0.098 0.098
Feet Recovery	000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T Buldway II	Time (mirutes) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (1970) (
-	Uncorrected Con Time 1 (minutes) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m

## HOLLOW-STEM AUGER DRILLING FIELD ACTIVITIES REPORT

PROJECT NUMBER	Cul
DATE	11/27/91
PROJECT NAME	BBI HILLSIDE
BOREHOLE IDENTIFICATION	39891 (temporary drive point for pump/tracer tests)
WEATHER CONDITIONS	Partly cloudy contact, stight Weskely bizzage ~ 5-10mph
RIG TYPE	B-57/MOBILE BULL
DRILLING COMPANY/DRILLER	BOYLES BROTHERS / R. Sharp
GEOLOGIST/ENGINEER	B. Atlieta-Geologist (S. Conden)
CREW MEMBERS	J. Geist - Heath's Sofety B Warner - Dillo-sHelper
WATER LEVEL/TIME	-2.0' after diversint installation
TOTAL DEPTH	6.0' August to 5.0' Dove of to 60'
DECONTAMINATION	Field Borem of Sween at 25.5 mm ground turn
ENVIRONMENTAL MATERIALS	
TYPES, VOLUMES, AND	No down - natural formation Materials Filled
DRUMS USED	_ arrivelus arrived deixepaint - No excess cuttings
·	to be drawned
DIAMETER OF BORING	~ 6 " used 34" ID Hollow stem angers
TYPE AND SIZE OF AUGERS	
TYPE AND SIZE OF AUGERS AND BIT	3"4"ID Hollow stem augers ~6"0.D.
	3'4"ID Hollow stem augers ~6"O.D. NONE
AND BIT	
AND BIT	NONE
AND BIT	SEE RESULTS PHOT HOLE 1 (39091) For pump!
AND BIT SAMPLING TYPES, DEPTHS	NONE  SEE RESULTS PLLOT HOLE 1 (39091) For pump!  tracer test array  14016  6.0' see results pilot Hole 1 (39091)
AND BIT SAMPLING TYPES, DEPTHS HAMMER SIZE	NONE  SEE RESULTS PLOT MIT 1 (39091) For pump!  tracer test array  14016  6.0' see results pilot Hole 1 (39091)  Installed drivepoint for pump! tracer test evaluation
AND BIT SAMPLING TYPES, DEPTHS HAMMER SIZE DEPTH TO BEDROCK	NONE  SEE RESULTS PLLOT WIT 1 (39091) For pump!  tracer test array  14016  6.0' ar results pilot Hole 1 (39091)  Installed drivepoint for pump! tracer test evaluation  Anguralto 5.0' Drove paint to 6.0'
AND BIT SAMPLING TYPES, DEPTHS HAMMER SIZE DEPTH TO BEDROCK END-OF-DAY STATUS	NONE  SEE RESULTS PLLOT HER I (39091) For pump!  tracer test array  14016  L.O' see results pilot Hole I (139091)  Installed drivepoint for pump! tracer test evaluation.  Augurelto 5.0. Drive part to 4.0'  Bottom of some 550'  1240 Stop driving screen but  1240 Begin driving drivept: after drive 1.25
AND BIT SAMPLING TYPES, DEPTHS HAMMER SIZE DEPTH TO BEDROCK END-OF-DAY STATUS CHRONOLOGICAL RECORD	NONE  SEE RESULTS PLOT MIT 1 (39091) For pump!  tracer test array  14016  L.O' see results pilot Hole 1 (39091)  Installed drivepoint for pump! tracer test evaluation  Augurent 5.0. Drive part to 4.0'  Bottom of seren 550'  1240 Stop driving Screen bent  1240 Begin driving drivept: after drive 1.25  1255 Try chring pilot hole with 2.5"10 splitspun
AND BIT SAMPLING TYPES, DEPTHS HAMMER SIZE DEPTH TO BEDROCK END-OF-DAY STATUS CHRONOLOGICAL RECORD	NONE  SEE RESULTS PLLOT HER I (39091) For pump!  tracer test array  14016  L.O' see results pilot Hole I (139091)  Installed drivepoint for pump! tracer test evaluation.  Augurelto 5.0. Drive part to 4.0'  Bottom of some 550'  1240 Stop driving screen but  1240 Begin driving drivept: after drive 1.25
AND BIT SAMPLING TYPES, DEPTHS HAMMER SIZE DEPTH TO BEDROCK END-OF-DAY STATUS CHRONOLOGICAL RECORD	NONE  SEE RESULTS PLLOT WIT 1 (39091) For pump!  tracer test array  14016  6.0' see results pilot Hole 1 (39091)  Installed drivepoint for pump! tracer test evaluation.  Augurel to 5.0' Drive point to 6.0'  Bottom of seven 550'  1240 Begin driving drivept: after drive 1.25  1255 Try driving pilot hole with 2.5"10 splitspun  13.5 Hit rock & 3.0' alumned to 3.65' not rout  1935 Try driving pilot hole with 1 TT"10 core claus sompler dass  not work
AND BIT SAMPLING TYPES, DEPTHS HAMMER SIZE DEPTH TO BEDROCK END-OF-DAY STATUS CHRONOLOGICAL RECORD	NONE  SEE RESULTS PLLOT WIT 1 (39091) For pump!  tracer test array  14016  6.0' se results pilot Hole 1 (39091)  Installed drivepoint for pump! tracer test evaluation.  Augurel to 5.0' Drove point to 6.0'  Bottom of seren 550'  1240 Begin driving drivept: after drive 1.25  1255 Try chring pilot hole with 2.5"10 splitspun  13.5 Hit rock 2 3.0' absorbed 3.15' Not rout  1335 Try driving pilot hole with 1.75"10 core drive sampler dress
AND BIT SAMPLING TYPES, DEPTHS HAMMER SIZE DEPTH TO BEDROCK END-OF-DAY STATUS CHRONOLOGICAL RECORD OF ACTIVITIES  COMMENTS	NONE  SEE RESULTS PLLOT WIT 1 (39091) For pump!  tracer test array  14016  6.0' see results pilot Hole 1 (39091)  Installed driveppint for pump! tracer test evaluation.  Augurento 5.0: Drive point to 6.0'  Bottom of series 550'  1240 Begin driving drivept:, after drive 1.25  1255 Try driving pilot hole with 2.5"10 splitspun  1305 Hit rock & 3.0' absence to 3.2" introductions  1315 Try driving pilot hole with 1 TT"10 care drive sampler dass  not work  1315 Augur glot hole with 6.0.0.1. danger's

## Attachment B2-6 Multiple-Well Field Data Sheets

Phase III RFI/RI Report

EG&G ROCKY FLATS PLANT	Manual Procedure No.:	2.08, Rev. 0 33 of 43
EM/ER GROUNDWATER SOP	Page: Effective Date:	October 29, 1991 ER&WM
Safety Related	Organization:	
Category 1	TO THE DATA SHEET	

## AQUIFER PUMPING TEST DATA SHEET

SHOLE WELL STEP- DRAWDOW TUMPING TEST

Page 1 of 3

DATE	12	103	191
------	----	-----	-----

# PERSON RECORDING DATA S Canonal

WELL # 39891 Pump | Tracer Test Evaluation Wallprint HYDROSTRATIGRAPHIC UNIT Woman Creek Valley Fill Alludium SCREENED INTERVAL C.S ft to 5.8 ft (George Language)

PUMPING WELL LD. _____in (TOL) STATIC WATER LEVEL 2.6 ft

DISTANCE TO PUMPING WELL ____O___ft

ELAPSED TIME	9re P	WATER LEVEL (Units) (TOC)	DIFFST.	Q (pumping well) (Units) (mlkec)	(gPH)
(Units) (M.n.)		2.80	O	100 ml /255cc	0.063
	1st Pumping RATE	2.88	0.08	- 1/56 may 246 50 C	0.065
		3 4 2	0.62	100ml/23scc 100ml/22.9scc	0.007
17		3.72	0.92		

etc.

EGAG ROCKY FLATS PLANT EM/ER GROUNDWATER SOP

Manual Procedure No.: Page:

2.08, Rev. 0 33 of 43

Safety Related Category 1

Effective Date: Organization:

October 29, 1991 ER&WM

## AQUIFER PUMPING TEST DATA SHEET

Page 2 of 3

DATE 12 \ 03 \ 91	PERSON RECO	PDING DAT	TA_S.CONDRAN	. · ·
WELL # 34891				
HYDROSTRATIGRAPHIC UNIT				
SCREENED INTERVAL	_fi tofi			
STATIC WATER LEVEL	_fi PUMPI	NG WELL I	Din	SEE PALE 1
DISTANCE TO PUMPING WELL	Lfi			
TEST START TIME:	<b></b> -		5	-
ELAPSED TIME	WATER LEVE	L Dies of	Q (pumping well)	<b>Q</b>
(Units)(m)	(Units) (TOC)	(f+)	Q (pumping well) (Units)(ml/sec)	(gpm)
• .				
22	7		100/22.7	•
			100/23.7	•
			100/24.2	•
26	3.95			
29	411	1.31	100/233	
			100/239	
	4.23	- १. <i>५</i> ४३ - ६८च३मा	100/22.6	_ 0.069
			"/232	
•		<b></b> .	" / 22.7	
eic. 32	444	1.46	" /22.8	0.070
		·	"/226	
			" /22.8	-
45	4.76	 1.9 ₄ ,		
(4011XAQTESTX10/29/91)			1244	0.067
				4

EG&G ROCKY FLATS PLANT Manual 2.08, Rev. 0 EM/ER GROUNDWATER SOP Procedure No.: 33 of 43 Page: October 29, 1991 Safety Related Effective Date: **ER&WM** Category 1 Organization: AQUIFER PUMPING TEST DATA SHEET Page 3 of 3 PERSON RECORDING DATA 5. CONDRAN DATE 12 \ 03\ 91 WELL # 39891 HYDROSTRATIGRAPHIC UNIT_ SCREENED INTERVAL ______fi to _____ft SEE STATIC WATER LEVEL fi PUMPING WELL LD. PRUE 1 DISTANCE TO PUMPING WELL ft TEST START TIME ____:__:_ Q (pumping well) **ELAPSED TIME** WATER LEVEL (Units) + (TOL) ST. (41) (Units)(ml/xc) (Units) (min) 2.29 100/238 0.006 .. / 24.8 0.062 5.24 11 26.2 "/24.9 5.34 2.54 2nd pumping rate "/20 0.090 2.40 " /19.6 ~ 119.7 "/27.0 5.90 0.057 .. / 28.3 1 / 28.3 70 0.057 127.1 (4011)(AQTEST)(10/29/91) TEST END WELL IS DRY HEED TO RUN ANIMHER Avi. c.c.l. STEP-DRAWDOWN TEST -

AT LOUER PUMPING BATT S.____

Manual JEG ROCKY FLATS PLANT 2.08, Rev. 0 Procedure No.: 33 of 43 EM/ER GROUNDWATER SOP Page: October 29, 1991 Effective Date: ERAWM Safety Related Organization: Category 1 Page 1 of 5 AQUIFER PUMPING TEST DATA SHEET SINGLE WELL STEP PRANDOWN THE PING TEST PERSON RECORDING DATA S. C. NORAN DATE 12 \00 \91 WELL # _ STEP! THMP! TRACER THAT EVALUATION WELLPOINT HYDROSTRATIGRAPHIC UNIT Noman Cox. Valley Fill Allarium 0.8 ft to 5.8 ft Concentration SCREENED INTERVAL ___ 2.46 (10c) 215 ft in PUMPING WELL I.D. STATIC WATER LEVEL DISTANCE TO PUMPING WELL ____ft TEST START TIME 10 : 20 : 00 Graduated of Enter Q (pumping well) و(مسونم عدا) WATER LEVEL DIFF. ELAPSED TIME (gallen) (Units) (at L/onto (Unise) (Pt) (TOE). (Units) 10/10/2/ 2.75 2.00 0.023 100 ml /40 mm 0.02 screto tol 0.025 2.005 8.87E 100 m2/44.5 0.050 2.01 100/44.3 0.032 0.070 2.01 0.072 100/49-1 0.030 2.91 0430 0.033 100 343 3.045 2.825 0.084 100/46.8 ككعين 7.655 1.030 100/ 47.9 0.033 20 0.000 2.84

1160

0.045

2.84

2.045

2.85

2.05

25

30

35

40

(4011XAQTESTX10/29/91)

100/47.2

100/44.3

100/94.2

100/45.7

6.0 P

0.03

0-031

0.079

0.034

0.034

0.035

... JAG ROCKY FLATS PLANT EM/ER GROUNDWATER SOP

Manual Procedure No.: Page:

2.08, Rev. 0 33 of 43

Safety Related Category 1

Effective Date: Organization:

October 29, 1991 **ER&WM** 

### AQUIFER PUMPING TEST DATA SHEET SINULS WELL STEP DEAMFOUND PUMPING TEST

DATE 12 6 91 PER	RSON RECORDING DATA
------------------	---------------------

DATE ILL		
WELL # _59691  HYDROSTRATIGRAPHIC UNIT  SCREENED INTERVAL6.3	Woman Creek Valley Fill Allustiam fi 10fi	SEE NEADER INFO. From Phys. 1
STATIC WATER LEVEL	_ft PUMPING WELL I.Din	Phys. 1
DISTANCE TO PUMPING WELL	ft	
TEST START TIME:	· /	

ELAPSED TIME (Units) (units)	TEP W	ATER LEVEL	DIFF. (f+)	Q (pumping well).  (Units) (military)	ENG	continuited well-der pringing west? (galleria)
. 1	14 200	72. 2.05	0.17	100/894.5	<u>0034</u>	0.034
		2.05	0.07	100/45.4	0.034	1.025
55	1 -	2.85	0.07	100 / 44.7.	0.054	0.035
	1 -		4.07	100/ 45:0	0.034	0.035
	1 -	2.85	0.17	100   44.3	ee14"	0.036
40	1 -	2.05		100 / 43.6	4.0346	والمورد
35	- Seine	2.65	0.07	100 / 35.8	0.041	antipyl.
	E 2 2 ST	7.84		100 / 35.1	0.0415	0.095
_ 32	-	2.555	0.075	100 / 25.8	0.45	0-044
15	-	2.855	0.075	100 / \$4.0	4415	0.044
esc. 40	_	2.84	0.08			0.044
%	l	2.56	0.00	100/35.8	0.041	
100		2.86	1.08	100/35.0	1.04/_	0.045
p5		. 2.845	0.005	100/ 34.8	4.42	0.046
110	ļ	2.84	0.00	100/34.9	inti_	0.045
(4011)(AQTEST)(10/29/91)				•		

Manual &G ROCKY FLATS PLANT 2.08, Rev. 0 Procedure No.: EM/ER GROUNDWATER SOP 33 of 43 Page: October 29, 1991 Effective Date: **ER&WM** Safety Related Organization: Category 1 Page 3 AQUIFER PUMPING TEST DATA SHEET SHOUS WELL STEP PROHONNY PUMPING TYST S. Condran PERSON RECORDING DATA_ DATE 12 6 191 WELL # 3989 HYDROSTRATIGRAPHIC UNIT whom Grek whiley Fill Allumium SCREENED INTERVAL ft to ____ SEE HEADER MFO. FROM in PUMPING WELL LD. STATIC WATER LEVEL PALE I DISTANCE TO PUMPING WELL ___ TEST START TIME ____ controlapida Q (pumping well) Financiar Q(pumping WATER LEVEL DUFF. **ELAPSED TIME** هودوا ( چېس (Units)(m1/sec) STEP (Units) (ft) (ft) (Units) (remites) 0012 0.096 0.07 100/34.4 , 2.64 115 100/34.1 0,042 409 1.07 120 0.047 100/324 0.09 2.07 725 0.0FT mol 33-7 0.043 0.095 2645 130 0.047 0043 100 / 33.7 0.09 2.87 135 0.046 0.042 1-1347 0.09 1483 2.82 0.04 1492 100/34.3 2.87 007 0042 145 0.04 W 1342 2.09 1.67 6.042 : 046 150 100 / 345 0.09 2.07 155 100/279 6 357 0.053 0-09 2.07 160 1.057 100/23.0 0.053 2.77 0.10 etc. 145 0.057 0.057 D.11 100/28.7 2.89 130 mately 0.053 0.064 2.695 0.115 100/27-4 1363 18 2 0.057 241 1.12 190/27.6 0.053 0.057 185 D.053 2.895 0.115 100/27-4 (4011)(ACTEST)(10/29/91) 12 100 / 27.6 0.060 0.064 2.10 2.905 1.125 sente intotal

2.92

0.14

0-045

0.04

Manual AG ROCKY FLATS PLANT 2.08, Rev. 0 Procedure No.: EM/ER GROUNDWATER SOP 33 of 43 Page: October 29, 1991 Effective Date: Safety Related **ER&WM** Organization: Category 1 Page 4 AQUIFER PUMPING TEST DATA SHEET Sarah Condon PERSON RECORDING DATA_ DATE 12 \ 6 \91 WELL # 39091 HYDROSTRATIGRAPHIC UNIT Women Cot. Willy Fill Allerian SCREENED INTERVAL v.1 ft to 5.7 ft PUMPING WELL LD. STATIC WATER LEVEL SEE INFO. PALE 1 DISTANCE TO PUMPING WELL EST START TIME Gradutedaylader Q Awade WATER LEVEL Q (pumping well) **ELAPSED TIME** (Units) (fr) Diffeft (gpm) STEP (m18) (Units) (ml/sex) (Units) (minutes) 4 0.175 0.065 0.04 12.955 100/244 200 0.06 5 100/24.5 0.061 0.1 1 2.5 2.94 0.044 0.13 0060 100/24.4 2.96 210 0061 0045 100/ 24.4 2.95 0.17 215 100/ 245 0.065 0.060 0.11 2.96 120 0.0/15 0.17 LOO | 24 A Z 0.061 2.95 225 ** STEP 5 0.27 3.05 100/19.0 230 range O-OOF MINIST 0.39 100/19:4 • • 235 3.17 0.00 100/19.4 0.42 ., 3.20 240 0.42 4 3.20 40/19.8 0.012 etc. 245 0.42 * 3.20 250 0.012 .. 0.45 100/ M.1 7.21 255 0.454 . 100/17.1 0.083 3.252 200 0.43 100 119.2 0 453 • • 3.2-245 (4011)(AQTEST)(10/29/91) • 100/19.2 1.4 1.42 3-21 270 6.0 £ 3 7 3.20 295 ١, 100/ 16.4 0.017 210 るったい 3.21 4.57 3.35

Manual 2.08, Rev. 0 EG&G ROCKY FLATS PLANT Procedure No.: 33 of 43 EM/ER GROUNDWATER SOP October 29, 1991 Page: Effective Date: **ER&WM** Organization: Safety Related Tage 5 Category 1 AQUIFER PUMPING TEST DATA SHEET SINOLE WELL STOP DEAMPOWN THROUGH TEST PERSON RECORDING DATA S. Contract DATE 12 \06 \91 WELL # 19891 PHAT! TRACER FOR EVALUATION WELL PONT HYDROSTRATIGRAPHIC UNIT WOMAN CREEK WILLSY FILL ALLESTING SCREENED INTERVAL _ 6.3 _ ft to _ 5.3 _ ft SEE HERVER PUMPING WELL LD. HE FROM STATIC WATER LEVEL _ PAST 1 DISTANCE TO PUMPING WELL TEST START TIME andustri of being Q (pumping well) WATER LEVEL DOF. (35-) (Units)(al) **ELAPSED TIME** (H) (Units) ft troe) STEP (Units) (newses) out of 0.096 100/16.5 0.62 a 12/0/2 3.40 2097 2.64 100/16.53 285 1.64 790 795 9.42 0.074 100/16.8 244 3.42 0-093 300 100/16.4 D-44 3.42 010 . 345 100/15-1 068_ 3.46 0.10 **(2)** 94 100/15.2 310 474 3.55 0.12 100/15.2 312 479 257 •• 0.18 100/15.2 320 0.815 3.595. . 0-11 325 100/14.7 0-61 3.53 B-10 •• 350 100/15.1 0.42 3.60 0.11 •• HC. 335 100/14.8 282 3.60 0.11 .. 340 100/14.9 2825 3.405 •• 0.10 345 100/15.1 4 835 7.605 350 part off frue 2.90 355 RELOVERY (4011XAQTESTX10/29/91)

#### WELL DEVELOPMENT AND SAMPLING FORM

WELL DEVELOPMENT AND SAMPLING FORM	Page 1 of 1
Recorder's Name and Title S. Condran / Hydrogeologist	<del></del>
Well ID PUMP ITRALER TEST WELL POINT ARRAY WELL PUNT & II (SEE	MAP BELOW)
Survey location coordinates: North East	
Date this report $\frac{12/9/91}{4\pi}$ , $\frac{12/15/91}{12/10/91}$ Date well installation $\frac{12/8/91}{4\pi}$ Date well dev	relopment 1 <u>2/</u> 9/9   ₅ 12/15/91 ₅ 12/16/91
Well designation: _SEE MAP BELOW	
Ground elevation: Est: Survey:	· · · · · · · · · · · · · · · · · · ·
Screened interval: 1:1' to 6:1' (For installation) Formation: Woman CREEK VALL	EY FILL ALLUVIUM
Measuring point (MP): Top of well casing other: Top of well case well s	tick up: "1.0" = ND (1215) 3.33 (1215
Water level (below MP): Start: 2.84 End: wet reasured 12/9/9/	3.19(12/19/1) 3.34(12/14)
Well depth (below MP): 7.05 Water elevation (BGS)	
Method used to measure water level: Method used to measure water level: Method used to measure water level: Method (Selinated meda (101) Estimated recharge rate	e: Not estimated
Volume of saturated annulus (assume 30 percent porosity):  Not used to calculate we volume of sop or some soprosity.	el casing
Volume Calculation: well casing volume = TC2h = T (0.070B3')2 1.21' = 0-06	
,	413
Quantity of water used during drilling: None  None After: 7.0	<u> </u>
Depth of Sediment (octow Mr). Detoile.	12116161
Development equipment: Teflen builer 14" o.D. A., Br. stalkic pump 350r	(12/16/41)
Sampling equipment: Not sampled  Orion Model 220A PH 1.01 = 4.00 DB.100 7H 7.00 m	lasured 711
pH meter No. $\frac{5/N}{0.01752}$ Calibration: $\frac{9H}{10.01} = \frac{10.14}{0.01} \approx \frac{13.7c}{0.001}$	13.1°C
Specific conductance meter No.: 5N 9811023 Calibration: Messured 1040 m	mks s H.4c
F.T.U. meter No.: NA pul GW 5082.08 Calibration: NA	· 

12/	9/11	
-----	------	--

Time	Pumping Rate	FTU	рH	Temp. °C	S.C. umbos/cm a: °C	Cam. Vol. of H ₂ O Removed		Physical Description of Water
	Sp.m.		l			Gallons	Casing Vols.	
113 4	2.2 m		7.70	7.1	734	0	0	DK. brown, vy sitty
1156	14.5747	_	7.36	6.1	495	0.25	1/2	lı .
1159		_	7.41	5.1	601	0.50	1	11
1204			7.52	6.1	602	0.75	15	11
1209			7.50	5.1	693	1.0	2	. "
1212			7.44	5.1	72+	1.25	242	11 -
1214		_	7.15	6.1	725	1.50	3	11
1220		_	7.15	6.1	724	1.75	31/2	sill is decreasible
1224		=	7.35	6.1	731	7.0	4	
1227	<del>                                     </del>	-	7.34	L.I	732	2.25	12	11
			722	5.4	735	2.50		••

12/15 Pumped | bailed silt from bottom wellownt is producing well-no parametes collected
12/16 Pumped well a 25 minutes until water clear
Cellected final round of measurements after additional development activities;
(4011-50000007) (GWZREVJKOR-1001) | ph 7:06 Temp 4.8 COND 868' 1th grang

Recorder's Name and Title S. Condran / Hydrogenlogist
Well ID PUMP/TRACER TEST WOURDING ARRAY WELL POINT # 52 (SEE MAP BELOW)
Survey location coordinates: North East
Date this report 12/9/91, 12/15/91 Date well installation 12/8/91 Date well development 12/9/91, 12/15/91
Well designation:
Ground elevation: Est: *I2 SEE MAD BELOW Survey:
a I intermit to a L. Ear / inch ii In Proceedings Nomen Coal Valley 171 News
Measuring point (MP): Top of well casing/other: Top of well casing/other: Top of well casing/other.
Water level (below MP): Start: 2.94' End: Not measured 12/9/1/ 5.30'(12/9/4/)
Well depth (below MP): 6.93' Water devation (BGS) -2.01' 5.45(13/16/6/
Method used to measure water level: (solinst Model 101) Estimated recharge rate: Not estimated  Not used to calculate well
Volume of saturated annulus (assume 30 percent porosity):
Volume Calculation: Hell rasing volume = Tr2h = T(0.07083)23.91 = 0.06 289 x 7.48 yall 0.47 gall.
Quantity of water used during drilling:NONE
Depth of sediment (below MP): Before: 6.93 After: Not pressure [12] After: Not pressure [12] [12]
Development equipment: Teflor boiler 14"0.0, Peristattic pump 350rpm (12/15/91, 12/14/91)
Sampling equipment: Not sampled  Drion Hole 230A PH 4.01= 4.00 W 13.10C pH 7.00 measured 7.11.2
pH meter No. s/N 001752 Calibration: CH 10.01 = 10.14 & 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.10 13.1
Specific conductance meter No.: 122 SM 9811023 Calibration:
F.T.U. meter No.: NA per GN SOP 208 Calibration: NA

12/9/91

Time	Pumping Rate	FTU	pH	Temp.	S.C.	Cam. Vol. of H ₂ O Removed		Physical Description of Water
	gpm				æ •C	Galloss	Casing Vots.	
1239	4.15	_	7.43	6.1	768	0	0	DK brown , s. 1 ty
1241	1		7.54	6.1	778	0.25	1/2	"
1243	7		7.52	6.1	770	0.50	1	4
1245		_	7.50	6.1	768	0.75	112	11 .
1248			7.50	6.1	813	1.0	2	11
1251			251	6.1	837	1.25	21/2	11
1253		_	7.53	7.1	787	1.5	3	decreasing sift conte
1255		-	7.55	6.1	836	1.75	34	1, 1
1301		_	7.62	6.1	855	2.0	4	. 4
		-	7.64	6.1	846	2.25	41/2	ų '
<u>130†                                    </u>			7.61	6.4	2 3 .	4 5	5	
Comme	ols:	IMA	2]	<u> </u>	<u> </u>	<u> </u>	AN	<u> </u>
		. •		0.		0 0	· · · · ·	· ·

Pumped well a 25 minuty notif water clear additional development activities: 12/15 PH 7.00 Temp 5.1 COND 1002 Hr. gray

#### WELL DEVELOPMENT AND SAMPLING FORM

Recorder's Name and Talle 3. Condean / Hy Drocedio GIST	
Well ID PUMPITHALER TEST WOLFOINT ARRAY WELLPOINT \$ 13 ( SEE MAP RELON)	
Survey location coordinates: North East	
Date this report 12/9/9/1, 12/15/9/1. Date well installation 12/9/9/1 Date well development 12/9	1/9 1 ₂ 12/15/91 12/14/91
Well designation: #I3 SEE MAP RELOW	12//7/1/
Ground elevation: Est: Survey:	•
Screened interval: 1.1 to 6.1' ( of interfection ) Formation: Woman cees will the August	
Measuring point (MP): Top of well casing/other: Tot orac (asid w 1.52 (12) 15/19) End: Not measured (14/19) 3.41 (12/14/19)	measured 1.03') 2.3.59 (valueles)
Water level (below MP): Start: 3.05' End: Not measured substant 3.41 '(12/14/191)	3.560121119
Well depth (below MP): 7.08' Water elevation (BGS) -2.02'	
heat is used to manage make levels in the (Solinet Orde) 101) Felimeted recharge rate: Not Wasned	]
Volume of saturated annulus (assume 30 percent porosity): Volume of saturated annulus (assume 30 percent porosity):	
Volume Calculation: Nell casing volume = TIC=h = T(0.07083)2 4.03 = 0.06352 72 7.480	21 = 0.489 al
Quantity of water used during drilling: NONE	3 = 40.5gm
After Not messared 12/9/91	
Development equipment: Teflon beiler 14" 0.0 Tenstaltic pans 350 cpm (12/15/19	(11/14/12/1
Sampling equipment: Not sampled	
Orion Hotel 230A PH 41015 4100 WISHES PH 400 PERSON THIS IS	loc
Orion Model 122 Cond. Std. = 1000 mm has a) 2500  Specific conductance meter No.: 5/N 98/1023 Calibration:	
Specific conductance meter No.: 5/N 98/1023 Calibration:	
F.T.U. meter No.: NA per Sel 1.08 Calibration: NA	
	•

12/9/91

Time	Pumping Rate	FTU	Hq	Temp. *C	S.C.	Com. Vol. of H ₂ O Removed		Physical Description of Water
	gpm				e:°C	Galloss	Casing Vols.	
1313	2.16	-	7.48	6.1	853	0	0	DK. brown, vy. silty
1317		_	7.49	7.1	797	0.25	1/2	*
1319		-	7.52	7.1	828	0.50	: ,	11
1322		_	7.59	6.1	731	0.75	11-	1'
1325		_	7.58	7.1	850	1.0	2	"
1329		_	7.64	4.1	904	1.25	21/2	11
1332			7.68	7.1	929	1.50	3	1+. bom 455.517
1335		-	7.68	6.1	933	1.75	31/2	It boom less withy
1338	1	1_	7.64	6.1	938	2.0	1 +	(
1341	1	1	7.71	1.0	938	2.25	41/-	(1)

C	[HAP]	I	1	2	3.	4	5				 
Comments:		o						-N .	·	· · · · · ·	
	<u>.</u>	E	0				_•_			<del></del>	 

12/15 Pamped bested 5:14 from bottom wellpant is a good produce - no parameter collected 12/14 Pumped well a 25 minutes until water clear Conducted additional round of measurements after additional development activities; (4011-400-4027) (GWIREV.) (FPH 6.99 Temp 5.3 COND 1012 H. gray)

### WELL DEVELOPMENT AND SAMPLING FORM

Record			UE					- ·
					Pump/TRACE	Q DEST	ARKAY	
								te well development
Well de	signation:							
Screene	d interval:					Formatio	a:	·
								Well stick up:
Water k	evel (below	MP):	Start:			_ End:		•
Well de	pth (below	MP):					Vater elevation	on (BGS)
Method	used to m	casure v	water le	vel:		1	estimated rec	harge rate:
Volume	of saturate	d annu	lus (ass	ume 30 pe	ercent porosity)	):		
Volume	Calculation	o:						•
Quantity	of water t	ised du	ring dri	ling:				
Depth of	sediment	(below	MP): <b>E</b>	efore: _			After	
Develop	ment equip	ment:						
pH mete	r No			Calibratio	on:			
Specific o	conductanc	e meter	No.: _		Calibra	tion:		
F.T.U. w	eter No.: _				Calibration:			
								/
Time	Pumping Rate	FIU	рН	Temp.	S.C.	Came V	eL of H ₂ O	Physical Description of
	gree					KE	acveu	Water
10.6	gree .				€.Ç	Gallons	Casing Vols.	
1345	2.15		7.68	<u> </u>	44)	Gallons 2 · 5	Casing Vols.	
1345 1347			7.68 4.63	۷.۱ 6.1	€.Ç	Gallons	Casing Vols.	Water
	2.15		<del></del>	6.1	44)	Gallons 2 · 5	Casing Vols.	Water 14. bown
	2.15		4.63 7	6.1	44)	Gallons 2 · 5	Casing Vols.	Water 14. bown
	2.15		4.63 7	6.1	44)	Gallons 2 · 5	Casing Vols.	Water 14. bown
	2.15		4.63 7	6.1	44)	Gallons 2 · 5	Casing Vols.	Water 14. bown
	2.15		4.63 7	6.1	44)	Gallons 2 · 5	Casing Vols.	Water 14. bown
	2.15		4.63 7	6.1	44)	Gallons 2 · 5	Casing Vols.	Water 14. bown
	2.15		4.63 7	6.1	44)	Gallons 2 · 5	Casing Vols.	Water 14. bown
1347	4.15		4.63 7	6.1	44)	Gallons 2 · 5	Casing Vols.	Water 14. bown
1347	4.15		4.63 7	6.1	44)	Gallons 2 · 5	Casing Vols.	Water 14. bown
	4.15		4.63 7	6.1	44)	Gallons 2 · 5	Casing Vols.	Water 14. bown

12/9/91

Well ID Pump ITRACER

Water level (below MP): Start: ___

Quantity of water used during drilling: Depth of sediment (below MP): Before:

Well depth (below MP): _

Development equipment: ___

Sampling equipment:

Date this report __

Well designation: ___ Ground elevation: Est:

Survey location coordinates: North

Recorder's Name and Title ____ 5. CONDEAN / HY DROGEDUCCI ST

SEE MAP BEWW

Screened interval:

6.18 + 0 6.18'	Measured of fine		
Formation: No	fine	fine	
Formation: No	fine	fine	fine
Formation: No	fine	fine	fine
Measuring point (MP): Top of well casing other:	TOP OF WELL CASING		

Method used to measure water level: __mckc(Solinst Hodel 101)

Volume Calculation: Well casing volume = Tr2h = T/

Volume of saturated annulus (assume 30 percent porosity):

Not sample

Pumped / bailed silt from bottom

Panped well a 25 minutes with ?

7.15'

Tellon bailer

### WELL DEVELOPMENT AND SAMPLING FORM

TEST WELPOINT ARRAY

12/9/91, 12/15/91 Date well installation 12/8/9/ Date well

(12/9/41, 12/15/1)

			Page 1	0+-1	
2000-15	7			_	
LRAY	MELPON	T#14/5	EE MAP BOL	ر <u>~</u>	
ation _	/2/8/1/ D	ate well dev	relopment /2/	- 19/91,12/15/11, 12/16/19,	
Forms	tion: <u>Woman</u> Casin 6	(REEL VALUE Well st	€4 GU AU	evium (seesurd (tot sing)	
End: _	Not messed i	2/9/4( 3	1.56° (121,519 1.46'(121419) +2.06'	( seesand ( 1.07 tally) ( see ( 12/1) END 3.59 (12/1) 3.60(12/1)	5h.

Estimated recharge rate: Not estimated used to calculate well caring volume

2 sec. 5.2.1.1

ints after additional develop, activities.

Temp 5.35 Cont 1016 It born

350 rom (12/15/19), 12/16/91)

					libration:			
Time	Pumping Rate	FIU	рН	Temp. *C	S.C. umbot/cm	Com. Vol. of H ₂ O Removed		Physical Description of Water
	gre.				# °C	Gallous	Casing Vols.	
37	4.15	-	7.16	61	938	0	0	Lt. boun, silby
40	1:		7.48	201	930	0,25	1/2_	••
42		1	7.52	6.1	935	0.50		,,
44			7.48	7.1	910	0.75	14~	3roun silm
16		_	7.43	7.1	944	1.0	2	lı .
49		_	7.44	4.1	944	1.25	212	15
52		_	7.46	711	946	1.5	3	(1
+		_	7.41	7.1	955	1.75	31/2	1(
6		)	7.45	201	957	2.0	. 4	• • • • • • • • • • • • • • • • • • • •
3		-	7.43	4.1	952	2.25	1/2	Decreasing sitt cont
5	Ţ		7.46		958	2.5	5	1.7

12/9/91

12/15

(491-400-4022) (GWZREVJ)(09-10-91) Collec

### WELL DEVELOPMENT AND SAMPLING FORM

Page 1 of 1.

Recorder's Name and Title	
Well ID PROPITE OF TEST WELL FORT ARRAY WELLAUNT TE (SE MAP)	BETOW)
Survey location coordinates: North East	·
Date this report $\frac{12/9/91}{15}$ , $\frac{12/15/91}{15/19/91}$ Date well installation $\frac{12/8}{9}$ Date well development	nt / <u>2/9</u> /9/
Well designation: SEE MAP BELOW	′
Ground elevation: Est:Survey:	
Gereened interval: 0.89 to 5.89' (for installation) Formation: Woman Crk. Valley Fill All  1.2 to 6.2 (Hasard during development 12419)	<u>vrian</u>
Measuring point (MP): Top of well casing/other: Top of well casing	1.01
Value land (helow MP). Start: 2.00 / Find: Not measured 12/9/9 3.50	*(12/14/4
Well depth (below MP):  7.12  Water elevation (BGS)  Screen (BGS)  Screen (BGS)  Method used to measure water level:  Method used to measure water level:  Method used to measure water level:  Screen (BGS)	<u>5 ′</u>
Method used to measure water level:    Electronic Water level:   Estimated recharge rate: Note:	stimated
Volume of saturated annulus (assume 30 percent porosity):	
Volume Calculation: Well caring volume - TIT' = TI(0.07083') 400 = 0.064 ×74890	.مــ <i>ـ بد</i>
Puantity of water used during drilling: None	
Depth of sediment (below MP): Before: 7.22 After: Not measured	12/5/9/
Development equipment: Teflor briber 1 1/4" O.D. Peristaltic pump 350 rpm (12	115/41,1
Compling againment: N. L. co. oled	
Orion Model 230A  Orion Model	7.6
Specific conductance meter No.: 5 N 15/1023 Calibration:	14.4°C
F.T.U. meter No.: N/A pw 50 P 2.0 r Calibration: N/A	

12/9/91

Time	Pumping Rate	FTU	pН	Temp. °C	S.C. umhos/cm a: °C	Cum. Vol. of H ₂ O Removed		Physical Description of Water
	ge					Galions	Casing Vols.	
1154	4.15	-	7.88	3.10	953	0	0	Clear
152	1	_	2.45	4,21	975	0.25	<b>У₂_</b>	Harry
1157		_	4.58	\$45 4747	940	0.50	, •	HARMA
1202		_	7.40	6.11	9+2	0.25	142	11
1207		_	3.40	6.11	972	1.00	2	bom
1211		1	7.42	6.11	966	1.25	2 1/2	
1214		1	7.47	6.11	969	1.5	3.0	4
1218		-	7.47	6-11	968	1.95	71/2	n
1221		_	7.40	6.17	968	2.0	4	-11
1223		_	3.57	0.11	968	2.25	442.	7
1228	主		7.35	6.4	949	2 1/2	5	H. bom
ommen	:atc	_	20		<u> </u>			<del>, 5</del>
			SC1	19(9) ma	P) I	2	3	
					0 .			, o par

12/15 Pumped/builed silt from bottom wellprint is a good producer-no parameters
12/16 Pamped well a 26 minutes until water was clear additional development estimates.
(4011-600-6022) (GWZREV.)(80-10-91)

[PH 7:02 Temp 5:4 Cond. 1015 Clear]

					•	<u>.</u>	•		
corder's	Name and	Title .	_5, C	OND ROW)	Hyprofedioc	121	WT #01	(SEE MAP BOOW)	
al ID	7 ump	TRA	er tes	- WELLA	INT ARRA	1 WELL PU	INT UT	(SEE MAP BROW)	
	uian anned	instee.	North		East				
ate this r	eport	12/9/9	1, 12/1	191 Date	e well installat	ion <u>12/4/</u>	9/ Date	well development /2/9/	1,12/14/41
ell desig	nation:	01	SEE M	AP BEL	· .				
					C	·			. •
	From Ground		+ 5	-1 / ne	آ ( وجوال المعيدية	ormation: _	WOMAN CR	Well stick up 4/0'	um
		N. 45	-6 11	mering /oth	er Top of	WELL CASI	~~	WELL STICK OF TO	7
casming	d Chelow R	(P)·St	art:	2.74	1	ad: Not n	neword 12/9	1 3.10'(12114141)	<u>140</u> 3.24(1215
ater leve	a (below M	11 <i>j</i> . s.		6.931		Wat	er elevation	(BGS) ~ 1.95'  A  arge rate: Not estimate	324(12/16/
ell depu	(DEROW IM	u ):	400 10001	Electr	nic whater level	101) <b>Esti</b>	mated rech	erge rate: Not estimate late well ensing who	.₹
ethod w	sed to mea	sure wa	iter seve	C	- tits).	Not use	to colon	late well ensing volu	
olume of	saturated	annulu	s (assum	se so pero	ent porosity):	77/0	07 053)-	4.32' = 0.06667 37.	487al - 11
olume C	alculation:	W	cil cas	ing volu	الماراني سي	<u>~ - 11 L P</u>	•		F4+
nantity (	water us	ed duri	ng drillir	Non			After	N. + me word 12/9/4/	
epth of	sediment (	below N	MP): Bel	iore:	6,97	(1219/4) :	/3164.	mp 350 rpm (12	lichi)
evelopm	ent equipo	nent: _	Tel	ton bale	14" OID.	A , Pen	SALINE P	<u> </u>	,
••	• •	_	م طباء	a. m(ac)					•
U meter	No sia	( 00) T 5	2 C	alibration	OH_10.01	= 10.14 2	13.1°C	2 13.100 2 13.100 2 13.100 2 13.100 2 13.100 2 13.100	
					libration:		r et H ¹ O	Physical Description of	
Time	Pumping Rate	FIU	pH	Temp.	S.C. unhos/cm e °C		oved	Water	
	gpm				2.0	Callons	Casing Vols.		
1315	÷.15		7.58	U.1	792	0	0	Dr. bion vy. sitty	-
1318	1.	_	7.58	4.1	849	0.25	1/2		
1320			7.59	<b>6</b> .1	837	0.5	<u> </u>		
132+		_	7.63	6.1	811	0.75	11/2-		
1327		-	7.64	7.1	852	1.0	2_		
1330		1-	7.66	4.1	884	1.25	21/2	<u> </u>	
1333		1-	7.65	7.1	906	1.5	3	etibron lessity	
1337			7.58	6.1	939	1.75	312		1
1340	11		7.57	6.1	943	12	41/2	1	
1343	11	1-	7.56	6.1	952	2.25	1 4/2		
	X								·. <del>-</del>
Comme	ents:			, 2	3 4	5 .		• •	<del>-</del> .
		1	MAP				<u>.</u>		<b>-</b>
					<u></u>			<del></del>	-
			E						
			<u></u>		tes until wa	ter clear			

- 12/9/91

Page	2	of	2
------	---	----	---

see pae

Recorder	's Name ar	d Title						
Well ID	#0					·		· · · · · · · · · · · · · · · · · · ·
Survey lo	cation coor	dinates	North		East			·
Date this	report				ate well installa	tion	Date	well development
Well desi	gnation:							·
Ground e	levation: E	st:			Survey: _			
Screened	interval: _					Formation:		
Measurin	g point (M	P): Top	of well	casing/o	ther:			_ Well stick up:
	-							
Well dept	h (below l	VIP): _			<del></del>	Wa	ter elevatio	a (BGS)
Method v	sed to me	asure w	ater leve	k		Es	imated reci	narge rate:
Volume o	af saturated	i annuir	ıs ( <b>a</b> ssur	ne 30 pe	rcent porosity):			
Volume (	Calculation	:						
Quantity	of water u	sed duri	ng drilli	ng:				
Depth of	sediment (	(below l	MP): Be	fore:	<u> </u>	<del></del>	After:	
Develope	ent equip	ment: _						
Sampling	equipmen	t:						
pH meter	No		¢	Calibratio	on:			
-					Calibrati			
F.T.U. m	eter No.: _				Calibration:			·
Time	Pumping Rate	FTU	рН	Temp.	S.C. umbos/cm a: *C	Cam. Vo Res	roved F of H ² O	Physical Description of Water
	gp a					Gallons	Casing Vols.	
1344	۷.15		7.57	6.1	955	2.5	5	Lt. brown
1352			7.57	6.1	954	275	54	.,
1354	<u> </u>		7.50	6.1	952	3.0	9	
		<u> </u>						L
_		lu. 6	u., L f	<b>L.</b>	المحالم المحالة	n . c.f. c1 =	ents as	kr adelibboal
Соппе						New WICK		DBAB!
	devi	LIUPLES	Tash	whics				

Temp

12/9/91

Page lof 1

						HYDROGEO		Part # co	2 (SEE MAY BELOW)	
						East_	Ny west			
	•	cation coor						12/9. Date	well development /2//	a 141 .
		-		1	12/14/	71,	1000	1711 Date	well development /2/	115/91,12/16/
		gnation:		Spe n	AP BELO	_				
	Campanad	elevation: E (From bround interval:	surface)		-90' /MU	Survey:	Formation	Weman C	rs. Valley Fill Allwin	m
	Measurin	g point (M	P): To	to bil	(TD mayor	ned dury due ther: Top	topment)	wing	_ Well stick up: ~1.0'	,
	Water les	el (below)	MP) S	tart:	2.67 1	Inla) 5.33(nis	End: D	m (12/14/91)	3.22 (12/15/91) 3.231	والمتحصا سيباء الفنية
			-					طائعية ا	# (BGS) ~1.84'	
										ated
•	Volume of	of saturated	i annuli	us (assu	me 30 per	cent porosity):	Not use	to calca	harge rate: Not estimate well casing	l <u>.</u>
	Volume (	Calculation	:W(	l cas:	ng volum	1 = Tr2h	11/0,0	70531)242	2'= 006651 fr3x 7.5	1890/_
	Quantity	of water u	sed dur	ing drill	ing: No.	·				在 = 0.50
	Depth of	sediment (	(below)	MP): Be	efore:	1. 59   1	11) 141	After:	Nut measured	
	Develops	ent equip	ment:	Tel	ilea baile	1 14"0.Dt	2614/2114		p 350 rpm (12/14/91	<i>)</i>
					,		•			
	nU meter	equipment 6-12 No	A PLACE	(19A	Calibration	PH 4,01= 4	1.30 210.7	e i i	MASURE 4:04 8 N.4.C	12/16/91 .
	•				a i a - Made	1117	_	l. ell + 1	2000 mahars and 25°C	
	_									
		-4 Ni- +	4/4		Con C	alibration.	. cal .		•	
	F.1.U. m	eter No.: _	NA pe	<u>Gu</u>	Sip zeg Ci	alibration:	A		· · · · · · · · · · · · · · · · · · ·	
		<del></del>		ı —		alibration:		ol. of H ₂ O	Physical Description of	
	Test	Pumping Rate gpm	FTU	pH	Sif zee Ci Temp. *C		Cun. V.	noved *	Physical Description of Water	
led	Time	Pumping Rate gpm		рН	Temp. °C	S.C. umbos/cm a: °C	Cum. V. Ret		Water	
12/14	Time	Pumping Rate		PH 7.54	Temp. °C	SC unhos/cm a °C	Cusa_V: Ret Gallots 0.50	Casing Vols.	Water Bown	
12/14	1110 1115	Pumping Rate gpm		PH 7.54 7.94	Temp.	SC umbos/cm a°C 867 774	Cum. V. Res	Casing Vols.	Water	
12/14	1110 1115 1120	Pumping Rate gpm		PH 7.54 7.94 7.22	5.7 5.3	\$C mhos/cm a°C 867 774 777	Cum. V. Res Gallons 0.50 0.75	Casing Vols.	Water Bown	
12/14	1110 1115 1120 1122	Pumping Rate gpm		PH  7.54  7.94  7.22  7.15	5.7 5.3 5.5	\$C unhos/cm a°C 867 774 774 772	Cum. V. Res Gallons 0.50 0.75 1.125	Casing Vols.  1 1/2 - 2/4 - 2/2	Bown 11	
12/14	1110 1115 1120 1122 1124	Pumping Rate gpm		7.54 7.94 7.22 7.15 8.13	5.7 5.3 5.5 6.1	\$C mhos/cm e°C 807 774 777 722 714	Cum. V. Res Gallons 0.50 0.75	Casing Vols.  1 1/2- 2 1/4 2 1/2 3	Brown 11	
	1110 1115 1120 1122 1124 1127	Pumping Rate gpm		PH  7.54  7.94  7.22  7.95  8.13  7.05	5.7 5.3 5.5	\$C mhos/cm a°C 867 774 774 722 714 715	Cua. V Res Galloss 0.50 0.75 1.125 1.25	Casing Vols.  1 1/2 - 2/4 - 2/2	Water  Bown  II  II  II	
12/14	1110 1115 1120 1122 1124 1127	Pumping Rate gpm		7.54 7.94 7.22 7.15 8.13	5.7 5.3 5.5 6.1 6.3	\$C mhos/cm e°C 807 774 777 722 714	Oun. V. Res Gallons 0.50 0.75 1.125 1.25 1.5	Casing Vols.  1 1/2 - 2/4 - 2/2 - 3 - 3/2 -	Brown  11  11	
	1110 1115 1120 1122 1124 1127 1321	Pumping Rate gpm		7.54 7.14 7.22 7.15 8.13 7.65 7.42	5.7 5.3 5.5 6.1 6.0 6.3	\$C mhos/cm a°C 867 774 777 714 714 715 944	Com. V Res Galloss 0.50 0.75 1.125 1.25 1.5 1.75 2.75	Casing Vols.  1 1/2- 2 1/4 2 1/2 3 3 1/2 5 1/2-	Brown  11  11  11  11  11  11  11  11  11	
	1110 1115 1120 1122 1124 1127	Pumping Rate gpm	FRU	7.54 7.94 7.22 7.95 8.13 7.65 7.92 7.36	5.7 5.3 5.5 6.1 6.3 6.9 6.3	\$C \$67 774 774 772 714 715 944 954 962	Com. V. Res Gallons 0.50 0.75 1.125 1.25 1.5 1.75 2.75 3.25 3.75	Casing Vols.  1 1 1 2 2 1 4 2 1 2 3 3 1 2 5 1 2 6 1 2 7 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	Water  Brown  II  II  II  II  II  II  II  II  II	
	1110 1115 1120 1122 1124 1127 1321	Pumping Rate gran	FTU	7.54 7.14 7.22 7.15 8.13 7.65 7.42 7.36	5.7 5.3 5.5 6.1 6.3 6.9 6.3	\$C \$67 774 774 772 714 715 944 954 962	Com. V. Res  Gallons  0.50  0.75  1.125  1.55  1.75  2.75  3.25  3.75	Casing Vols.  11/2- 21/4 21/2 3 31/2- 51/2- 61/2 71/2-	Bown  II  II  II  II  II  II  III  III  I	
	1110 1115 1120 1122 1124 1127 1321	Pumping Rate gpm	FTU	7.54 7.94 7.22 7.15 8.13 7.65 7.42 7.35	5.7 5.3 5.5 6.1 6.3 6.9 6.3	\$C \$67 774 774 772 714 715 944 954 962	Com. V. Res  Galloss  0.50  0.75  1.125  1.5  1.75  2.75  3.25  3.75  wall from	Casing Vols.  11/2- 21/4 21/2 3 31/2 51/2 61/2 71/2 12/14 Conth	Bown  II  II  II  II  II  II  III  II  III  II	
12/15	1110 1115 1120 1122 1124 1127 1325 1328	Pumping Rate gran	PTU	7.54 7.94 7.22 7.15 8.13 7.65 7.42 7.35	5.7 5.3 5.5 6.1 6.9 6.9 6.3	\$C \$67 774 774 772 714 715 944 954 962	Com. V. Res  Gallons  0.50  0.75  1.125  1.55  1.75  2.75  3.25  3.75	Casing Vols.  11/2- 21/4 21/2 3 31/2- 51/2- 61/2 71/2-	Bown  II  II  II  II  II  II  III  II  III  II	
12/15 12/16 12/16  Wellowhit	1110 1115 1120 1121 1124 1127 1321 1325 1328 Comment	Pumping Rate gpm  L.15  L.15  L.124pm  L.124pm  L.124pm  L.124pm  L.124pm  L.124pm  L.124pm  L.124pm	2/14 1 2/15 k	7.54 7.14 7.22 7.15 8.13 7.65 7.42 7.36	5.7 5.3 5.5 6.1 6.9 6.9 6.3	\$C \$67 774 774 772 714 715 944 954 962	Com. V. Res  Galloss  0.50  0.75  1.125  1.5  1.75  2.75  3.25  3.75  wall from	Casing Vols.  11/2- 21/4 21/2 3 31/2 51/2 61/2 71/2 12/14 Conth	Bown  II  II  II  II  II  II  III  II  III  II	
12/16 12/16 12/16 12/16 12/16 12/16 12/16 12/16 12/16 12/16	1110 1115 1120 1122 1124 1127 1321 1325 1328 Comment 4nd basele 4nd basele 4nd basele 4nd basele 4nd basele 4nd basele 4nd basele 4nd basele 4nd basele 52 basele 52 basele 52 basele 52 basele 52 basele 53 basele 54 basele 54 basele 54 basele 55 basele 56 b	Pumping Rate gram  L:15  L:15  L:124pm  L:10  L:	2/14 12/15 K	7.54 7.14 7.22 7.15 8.13 7.65 7.42 7.36	5.7 5.3 5.5 6.1 6.3 6.9 6.9 6.3	\$C \$67 774 774 772 714 715 944 954 962	Com. V. Res  Galloss  0.50  0.75  1.125  1.5  1.75  2.75  3.25  3.75  wall from	Casing Vols.  11/2- 21/4 21/2 3 31/2 51/2 61/2 71/2 12/14 Conth	Bown  II  II  II  II  II  II  III  II  III  II	
12/15  12/16  12/16  12/16  Neilp.int partidly  2/10 pumpul a ppin ch	1110 1115 1120 1122 1124 1127 1321 1325 1328 Comment and deselled	Pumping Rate gpm  L:15  L:15  L:15  Depart was onto produce at mase.	2/14 1 2/15 k	7.54 7.14 7.22 7.15 8.13 7.65 7.42 7.36	5.7 5.3 5.5 6.1 6.0 6.3 6.9 6.3 6.9 6.3 6.4 6.3	\$C \$67 774 774 772 714 715 944 954 962	Com. V. Res  Galloss  0.50  0.75  1.125  1.5  1.75  2.75  3.25  3.75  wall from	Casing Vols.  11/2- 21/4 21/2 3 31/2 51/2 61/2 71/2 12/14 Conth	Bown  II  II  II  II  II  II  III  II  III  II	
12/15 12/16 12/16 12/16 12/16 12/16 12/16 12/16 12/16 12/16 12/16 12/16 12/16	1110 1115 1120 1121 1124 1127 1325 1328 Comment 1325 1328 Comment 1325 1328 Comment 1325 1328 Comment 1325 1328 Comment 1326 1327 1328 Comment 1328 Comment 1328 Comment 1328 1328 Comment 1328 1328 Comment 1328 1328 Comment 1328 1328 Comment 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328 1328	Pumping Rate gpm  L:15  L:15  L:15  Depart was onto produce at mase.	2/14 1 2/15 K	7.54 7.14 7.22 7.15 8.13 7.65 7.42 7.36	5.7 5.3 5.5 6.1 6.0 6.3 6.9 6.3 6.9 6.3 6.4 6.3	\$C \$67 774 774 772 714 715 944 954 962	Com. V. Res  Galloss  0.50  0.75  1.125  1.5  1.75  2.75  3.25  3.75  wall from	Casing Vols.  11/2- 21/4 21/2 3 31/2 51/2 61/2 71/2 12/14 Conth	Bown  II  II  II  II  II  II  III  II  III  II	

Page 18.2

:	Recorder'	s Name ar	d Title		s. Conora	M/HYDENGED	COSICT			
	Well ID	7 ums	) TRAC	ER TES	T WELL A	DINT ARRAY	ware	0000	3 (SEE MAP BELOW	ر 🛋
	Survey loc	ation coor	dinates:	North	45 <del>paraba 6</del>	East				
	Date this	report _12	<u>li4 41</u>	1.5141(* 12/14/	9/ Da	te well installa	tion	7/9/ Date	well development /2/1	4/91,12/15/91
		•			F MAP BE				124	-/91
	Ground e	levation: E	st:			Survey: _				
	Screened	interval: _	Dil	0 + ·	5.80'	stellating and	romațion:	Moman Cr	Valley Fill Allanum	
	Measuring	g point (M	P): Top	of well	casing/oth	ice: <u>Top</u> od	Well Casi	n welmen	Well stick up: 4.0'	neasura Par'duning develops
						6.42 (12/15/41)		L12/14/11)	5.42 (12/15/91) 6.22 (	(۱۱۹۱۱م
		h (below h			6441	1-19/1/ 694	(whote) W	200	a-(BGS) <u>~ 2,38'                                     </u>	•
	-	-		iter levi		ric water level ( Solinst Mad			Wet act	kd.
•	Volume o	f saturated	i annulu	s (assu	me 30 perc	ent porosity):	Aft weed to	CALLULATE	well cosing village  2 sec. 5.2.1.1	
	Volume C	Calculation	: Mu	1 casiv	y volume	= 11-2h =	TT (0.03	0F3·)23.43	= 0.05406f13y 71 45	sal = 0.40 go
	Quantity (	of water us	sed duri	ng drill	ing No					fa:
	Depth of	sediment (	below M	иР): Во	efore:	.771 (12/9/91)		After:	Not ressured (12/14/91)	•
	Developm	nent equip	ment: _	Teflor	briler 1	4"0.0.	Peristalti	c pump =	150 rpmy, surge bloc	K (12/16/91)
		equipmen	t: No	+ Same		••				-
		No SI	n Model	250A	Calibration	10.01=9.		,	mesures that a 11.4°C	- או לשולבו (
					Orbo Mules SN 9311023	/22 Calibrati	ion:	1 249. = 1000	mm hud 20 2,6°C	
					•	libration:				. •
	Time	Pumping	FIU	pН	Тетр.	s.c.		r et H³O	Physical Description of Water	
		Rate gpm			•c	a: °C	Gallons	Casing Vols.	*****	
12/14	1144	4.15		7.83	5.6	741	0.40	ı	Bar	·
27	1147	1		8.36	5.9	704	0.80	2_	16	
	1231	±.			L 15 ORY				1+. bn	
12/14/91	0945			7.62						
•					6.9	667	-0.10	21/4	H. gray/bon, closely	
	1				-15 Dey	AFTER REM	2.10 2.146 5.144 AL ~ 1.49 6	9/	H. graylbon, elvoly	
			_			AFTER REM	-D-12-65	9) ALLOW WILL	H. gray/bon, closely	
	1512	2.10				AFTER REM	0130	23/4	H. gray/bm. , burly LET RECHARGE	
	1512	2.18		wa	6,1 5.8	988 988	0130 0.50	2 3/4 5 /4	H. gray/br., churly LET RECHARGE  It. gray cluring	
	1514 1518	10		₩Q. 7.18 7.10 7.23	6,1 5.8 5.7	988 988 988	0.30 0.30	2 3/4 3 3/4	H. gray/bm. , burly LET RECHARGE	
	1514 1518 1523			7.18 7.16 7.23 7.14	6,1 5.8 5.7 5.8	988 988 988 987	0:30 0:30 0.50 0.70	2 3/4 3 3/4 4 1/4	H. gray/br., closely LET RECHARGE  It. gray, closely  II  II  II  COLLECTED	
	1514 1518 1523		1057 End of	7.18 7.16 7.23 7.14	6,1 5.8 5.7 5.8	988 988 988 987	0:30 0:30 0.50 0.70	2 3/4 3 3/4 4 1/4	H. gray/br., closely LET RECHARGE  It. gray, closely  II  II  II  COLLECTED	dy 12/15
12/15 _ Added, a	1514 1518 1523 Commer	12/14 nts: 12/15 development	End of	7.18 7.16 7.23 7.14	6,1 5.8 5.7 5.8	988 988 988 987	0:30 0:30 0.50 0.70	2 3/4 3 3/4 4 1/4	H. gray/br., churky LET RECHARGE  1+. gray, clurchy 11 11 11 11 11 11 11 11 11 11 11 11 11	dy 12/15
12/15 Added ont shill not p	1514 1518 1523 Commer	12/14 nts: 12/15 development	End of	7.18 7.16 7.23 7.14	6.1 5.8 5.7 5.8 sint brite vellorint of the received	988 988 988 987	0:30 0:30 0.50 0.70	2 3/4 3 3/4 3 3/4 4 1/4 P-2 - 4 3	H. gray/br., churky LET RECHARGE  1+. gray, clurchy 11 11 11 11 11 11 11 11 11 11 11 11 11	dy 12/15
Hill had p	1514 1518 1523 Commer decented repeated	12/14 nts: 12/15 development  12/15	End of when po	7.18 7.16 7.23 7.14 Well p	6.1 5.8 5.7 5.8 sint bries welfpint to	988 988 988 987	0:30 0:30 0.50 0.70	2 3/4 3 3/4 3 3/4 4 1/4 P-2 - 4 3	H. gray/br., churky LET RECHARGE  1+. gray, clurchy 11 11 11 11 11 11 11 11 11 11 11 11 11	dy 12/15
12/14 1210 N	1514 1518 1523 Comment Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted Leanted	12/14  12/15  development  Market  block on  dappers	End of Well por	7.18 7.16 7.23 7.14 Well p	6.1 5.8 5.7 5.8 sint brite mulpint to d not ru	988 988 988 987 188 987 187 22 00 18 not cleaming vy. wet	0.30 0.30 0.50 0.70 0.90	2 3/4 3 3/4 3 3/4 4 1/4 P-2-13	H. gray brown, closely LET RECHARGE  It. gray closely  II  II  COLLECTED  And activities bailed	- - •.
Hal not P. 12/14 1210 H	1514 1518 1523 Comment Lianted	12/14  12/15  development  Market  block on  dappers	End of well purit 420 mint of her	7.18 7.16 7.23 7.14 Well p	6.1 5.8 5.7 5.8 sint brite mulpint to d not ru	988 988 988 987 188 987 187 22 00 18 not clearing 12 3	0.30 0.30 0.50 0.70 0.90 1	2 3/4 3 3/4 3 3/4 4 1/4 P-2-13	H. gray br. clurky LET RECHARGE  It. gray clurky  II  II  Colicted  And actionics—bailed  All  Fact additional decorates	- -

Page 2 of 2

Recorder	's Name at	nd Title			·····				
Well ID	W	صنعك	+ 03				· · · · · · · · · · · · · · · · · · ·		-
		•						·	1
Date this	report _			Da	te well install	ation	Date	well development _	
	gnation: _		-						<i></i>
Ground e	elevation: E	ist:			Survey:				SEE
Screened	interval: _			<u> </u>		Formation	Ľ		PAGE
Measurin	g point (M	IP): Top	of well	casing/ot	ber:			_ Well stick up:	\
Water lev	vei (below	MP): S	itart:			End:			
Well dept	th (below l	MP): _	<del></del>			W	later elevatio	n (BGS)	
								narge rate:	
Volume o	of saturates	d annuh	us (assu	ne 30 perc	ent porosity):				
Volume (	Calculation	Ŀ							1
Quantity	of water u	sed duri	ing drilli	ng:					
Depth of	sediment (	(below)	MP): Be	fore:		<del></del>	After:		
Sampling	equipmen	t:			<del>, , , , , , , , , , , , , , , , , , , </del>		-11 3 m		
	Dr	on model	25a4						ŀ
pH meter	r No 5/M	00224	19 (	Calibration	+ 10.01=	9.70 D. 10.7		1000 101 3200	
pH meter Specific o	r No. <u>SIM</u> conductano	00224 e meter	No.: _	Calibration	1113 Calibra	9,70 2 8.7° Condi tion:	c weason	b 1000 pmhos 2 25°C CS 1047 pmhos 2 9.6°	-
								easured from 211.40 b 1000 mmhos 2250 cs 1047 mmhus 29.69	
				Ca	alibration:	Cana. V	ol of H ₂ O	Physical Description of	
F.T.U. m	eter No.: _			Ca	alibration:	Cam. V	/oL of H ₂ O moved	Physical Description of Water	
F.T.U. zn	Pumping Rate gpm		рН	Temp.	S.C. umbos/cm e: °C	Came. V Re Gallons	Col. of H ₂ O moved  Casing Vols.	Physical Description of Water	
F.T.U. 200	Pumping Rate		рН 7.1(¢	Temp. °C	S.C. whos/cm e: °C	Came V Re Gallons	Casing Vols.	Physical Description of Water  1th gray , cluestry	
Time 1527 1529	Pumping Rate gpm		pH 7.16	Temp. *C	S.C. umbos/cm e: °C	Cam. V Re Gallons 1.10	Casing Vots.  4 \frac{1}{4}	Physical Description of Water	
Time 1527 1529 1533	Pumping Rate gpm		рН 7.1(¢	Temp. °C	S.C. umbor/cm e: °C  987	Came V Re Gallons	Casing Vols.	Physical Description of Water  The gray clurchy  The gray clurchy	
Time 1527 1529	Pumping Rate gpm		PH 7.16 7.09 7.12	Temp. *C  5.9  5.7  5.6	SC mhos/cm a: °C 987	Cana. V Re Gallons 1.10 1.50	Casing Vols.  4 3/4 5 */4	Physical Description of Water  It gray, cluesty  It gray, cluesty  11	
Time  1527 1529 1533 1535	Pumping Rate gpm		PH 7.1(p 7.09 7.12 7.02	5.9 5.7 5.6 5.0	S.C. umbox/cm e: °C  987  986  985	Came V Re Gallons 1.10 1.50 1.50	Casing Vots.  4 3/4  5 1/4  6 1/4	Physical Description of Water  It gray , clurry  It gray , clurry	
Time  1527 1529 1533 1535	Pumping Rate gpm		7.16 7.09 7.12 7.12 7.02	5.9 5.4 5.6 5.0	SC. mhos/cm e: °C 987 985 985 985	Cana. V Re Gallons 1.10 1.50 1.50 1.70	Casing Vols.  4 3/4  5 3/4  6 3/4	Physical Description of Water  It gray, cluesty  It gray, cluesty  11	
Time  1527 1529 1533 1535	Pumping Rate gpm		7.16 7.09 7.12 7.12 7.02	5.9 5.4 5.6 5.0	SC. mhos/cm e: °C 987 985 985 985	Cana. V Re Gallons 1.10 1.50 1.50 1.70	Casing Vols.  4 3/4  5 3/4  6 3/4	Physical Description of Water  It gray, cluesty  It gray, cluesty  11	
Time  1527 1529 1533 1535	Pumping Rate gpm		7.16 7.09 7.12 7.12 7.02	5.9 5.4 5.6 5.0	SC. mhos/cm e: °C 987 985 985 985	Cana. V Re Gallons 1.10 1.50 1.50 1.70	Casing Vols.  4 3/4  5 3/4  6 3/4	Physical Description of Water  It gray, cluesty  It gray, cluesty  11	
Time  1527 1529 1533 1535	Pumping Rate gpm		7.16 7.09 7.12 7.12 7.02	5.9 5.4 5.6 5.0	S.C. unhos/cm e: °C 987 986 985 985 990	Cana. V Re Gallons 1.10 1.50 1.50 1.70	Casing Vols.  4 3/4  5 3/4  6 3/4	Physical Description of Water  It gray, cluesty  It gray, cluesty  11	
Time  1527 1529 1533 1535	Pumping Rate gpm		7.16 7.09 7.12 7.12 7.02	5.9 5.4 5.6 5.0	SC. mhos/cm e: °C 987 985 985 985	Cana. V Re Gallons 1.10 1.50 1.50 1.70	Casing Vols.  4 3/4  5 3/4  6 3/4	Physical Description of Water  It gray, cluesty  It gray, cluesty  It gray, cluesty	
Time  1527 1529 1533 1535 1537 1541	Pumping Rate gpm		7.16 7.09 7.12 7.12 7.02	5.9 5.4 5.6 5.0	S.C. unhos/cm e: °C 987 986 985 985 990	Cana. V Re Gallons 1.10 1.50 1.50 1.70	Casing Vols.  4 3/4  5 3/4  6 3/4	Physical Description of Water  It gray, cluesty  It gray, cluesty  It gray, cluesty	
Time  1527 1529 1533 1536 153 2 1541	Pumping Rate gpm		7.16 7.09 7.12 7.12 7.02	5.9 5.4 5.6 5.0	S.C. unhos/cm e: °C 987 986 985 985 990	Cana. V Re Gallons 1.10 1.50 1.50 1.70	Casing Vols.  4 3/4  5 3/4  6 3/4	Physical Description of Water  It gray, cluesty  It gray, cluesty  It gray, cluesty	

(4011-600-0022) (GW2REV.1)(99-10-91)

F.T.U. meter No.: NA per GW SUP 2 Calibration: NA

# WELL DEVELOPMENT AND SAMPLING FORM

WELL DEVELOPMENT AND SAMPLING FORM  Page 1 of Z
Recorder's Name and Title S. CONDRAW   NYDROGOLOGY ( T
Well ID Well Point OY PUMPHERER TEST NELL POINT ARRAY (SEE MAR BELLIN)
Survey location coordinates: North East
Date this report $12/14/91$ , $12/19/91$ Date well installation $12/3/91$ Date well development $12/14/91$ , $12/19/91$
Well designation: #04 SEE MAP BELOW NEXT FALE
Ground elevation: Est: Survey:
Screened interval: 1.0 to 6.0' ( ressured drain) Formation: ubner Creek Valley Fill Allumium
Measuring point (MP): Top of well casing/other: Top of well casing Well stick up: 11.0' (2014)
Water level (below MP): Start: 3.28 End: 41+ messared 12/14/11 3.36 (12/15/11) 3.58 (12/15/11)
Well depth (below MP): 6.96 (12/2/2) Water elevation (BGS) -228 340 (12/16/4)  Fietheric water level 54 12/19/19  Water elevation (BGS) -228 340 (12/16/4)
Method used to measure water level: meter (Solinst works) [101) Estimated recharge rate: Not estimated well casing volume
Volume of saturated annulus (assume 30 percent porosity):
Volume Calculation: Well casing volume = Tir2h = Tr (0,030,43)=3,15 = 0,0580 53 x 7,48 yell = 0.43 get
Quantity of water used during drilling: Now
Depth of sediment (below MP): Before: U.96 (12/19/9)  After: MA measured 12/19/94
Development equipment: Tetton bailer 14" O.D. 1: Peristaltic punp 350 cpm (12/14/91)
Sampling equipment: Not Sampled  Orion Mulul 250A PH = 4.00 2/0.700 PH 7.00 mossues 700 20 11.4. e
pH meter No. 5/N 602249 Calibration: 10.01=9.70 2000 10.700 [12/16/2]
Specific conductance meter No.: 3N 18/1023 Calibration: messves 1047 m.k.s 10 9.60 c

1234   .25	Description of Water
1235	سانو بس
1224 .25 — 7.91 9.7 150 0.50 1  1285 .25 — 7.01 9.7 150 0.75 142 1  1287 .125 — 7.92 5.5 957 1.0 72 1  1297 .25 — 7.86 5.6 957 1.50 3 dure of 1  1240 .25 — 7.84 5.8 954 1.95 3 dure of 1  1241 .25 — 7.93 5.4 950 750 440 1  1241 .25 — 7.93 5.4 950 750 440 1  1242 .25 — 7.93 5.4 958 5.5 960 2.50 5 12  1244 .25 — 7.93 5.4 958 5.6 960 1  1244 .25 — 7.93 5.4 958 5.0 6 1  1246 — 7.25 5.4 968 768 5.0 6 1  1246 — 7.25 5.4 961 7.50 761 1  1247 .25 — 7.84 5.4 961 7.50 761 1  1248 .25 — 7.84 5.4 961 7.50 761 1  1249 .5 — 7.54 5.4 961 7.50 762 1  1249 .25 — 7.49 5.4 961 7.50 762 1  1249 .25 — 7.49 5.4 961 7.50 762 1  1249 .25 — 7.49 5.4 961 7.50 762 1  1249 .25 — 7.49 5.4 967 765 762 1	
1285   .25	•
	•
1299 .25 — 3.16 5.4 950 1.25 2.72  1219 .25 — 3.46 5.4 955 1.50 3 dure  1240 .25 — 3.14 5.5 954 1.95 3.7  1241 .25 — 3.29 5.4 950 2.0 4  1243 .125 — 3.38 5.4 952 2.25 4.7  1244 .25 — 3.38 5.4 952 2.95 5.7  1244 .5 — 3.25 5.6 952 3.55 9.6  1244 .5 — 3.25 5.6 952 3.55 9.6  1244 .5 — 3.25 5.6 952 3.55 9.6  1244 .5 — 3.25 5.6 952 3.55 9.6  1247 .5 — 3.49 5.6 967 3.50 7.12  1247 .25 — 3.49 5.6 967 3.75 3.72  1247 .25 — 3.49 5.6 967 3.75 3.72	
1237   -25	
1240 - 25	sing with fram th
1241	•
1243 .125 — 3.45 S.T 952 2.25 472 1243 .5 — 3.15 5.5 960 2.5 5 12 1244 .25 — 3.15 5.4 953 5.0 6 1245 1246 — 3.25 5.4 953 5.5 975 3.35 972 1246 .5 — 3.25 5.4 961 3.50 7 1247 .25 — 3.49 5.6 967 3.50 7 1247 .25 — 3.49 5.6 967 3.5 372 1247 .25 — 3.49 5.6 967 3.5 372 1247 .25 — 3.49 5.6 967 3.5 372 1247 .25 — 3.49 5.6 967 362 4 5 762 1247 .25 — 3.49 5.6 762 4.25 376	•
1249 .5 - 7.81 6.5 960 2.50 51/2 1244 .25 - 7.83 5.4 15.8 5.0 6 1245 1246 .5 - 7.25 5.6 15.8 15.0 5 1/2 1246 .5 - 7.25 5.6 15.1 15.0 7  1246 .5 - 7.54 5.4 141 3.50 7  1247 .25 - 3.49 5.6 967 3.35 31/2 1247 .6 - 2.61 5.7 16.2 4 5.7 16.2 4 5.9 12.1 12.4 5.7 16.2 4 5.9 12.1 12.4 5.7 16.2 4 5.9 16.1 12.4 5.7 16.2 4 5.9 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 16.2 5.7 1	•
1244 25 7.13 5.4 958 5.6 9    1245	<u></u>
1246	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
1247 .25 = 7.49 5.6 967 8.75 7/2 1247 6 = 2.6/ 5.7 762 4 F Ph.) 2.49 .125 = 9.6 5.7 765 4.25 9%	•
1247 .25 = 3.41 5.2 762 4 Ph.1 1247 6 = 2.41 5.2 762 4.25 9%	••
249 125 - 9.9 5.4 765 4.25 8%	bam
2.97 ,125 - 1.9	•
2 .	4
250 .25 — 3-51 5-8 764 435 911 435 911	"

Page Zog Z

Recorder	's Name ar	nd Title							_
Well ID	04	cont	- da					·	
					East				- 1
								well development	- 1-
					Survey:	•		• • •	
Careeres Terresera	interval:					Formation:		·	1 :
Manning.	noint (M	P). To	of well	resing/of	her			_ Well stick up:	\ F
									_ \
Men och	wed to me	··· / -	ster las-			Fe	timated reci	n (BGS)	
					ent porosity).			·	
							•		
									. 1
Devel	emment (	ment.	J. DC	~~~ <u></u>		, ,			
-	• •								
	• -								
pH mete	r No	<del></del>	'	Canoración	:	·		ì	· /
Specific (	conductance	e meier	No: _		Calibrat				' /
F.T.U. 🗷	ieter No.: _			C	libration:		· · · · · · · · · · · · · · · · · · ·		•/
			_					1	Í
Time	Pumping Rate	FTU	pН	Temp.	S.C. umbos/cm	Cam. Vo	ol of H ₂ O	Physical Description of Water	i
	gpes			_	æ °C	Gallous	Casing Vols.		
1252	125		7.20	5.4	968	3	- John Har	Broom Silly	
1254	.125		2.19	5.4	968	5.25		•	
1285	. 25		714	Ç.*	948	E.F	. 11	1.	
12.55	.5		7.24	5.3	968	5.45	111/2	11	
12.94	.25	_	7.29	5.8	967	6	12	Le boson loss sing	
1857	.25	<u> </u>	7.32	5.3	968	6.25	124	Le born lest silly	4
1257	-12-5	<u> </u>	३।५	4.6	167	6.5	1345	,	
1300	.25		7.14		944	4	14	•	
1301	. 25		745	5.7	968	<del>                                     </del>			
<u></u>	<u></u>	<u> </u>	<u> </u>						ß
			1	J - '	2 3,	4 5.	**	W	
	nts:		IMAR	<del> </del>			1.	•	
Comme				0					
Comme				•				•	
	·			Ė .	minuks	until a	sater was	s clear twood development	<del>-</del>
	nis:		IMAG	I .	· 3.		7.	W	- -

Pige 1 of 1
Recorder's Name and Title 5. CONDEAN   HYDROGEDLOG-IST
Well ID PUMP! TRALER TEST WELLPOINT ARRAY WELLPOINT # OF (SEE MAP BELOW)
Survey location coordinates: North East
Date this report 12/9/91, 12/14/91 Date well installation 12/8/91. Date well development 2/9/91, 12/16/
Well designation: WELL ROINT #05 SEE MAP BELOW
Ground elevation: Est:  (how board fortra)  (neward during)
Screened interval: 0.81 to 5.81 ( installation) Formation: Woman CEL. VALLEY HILL RECOURT
Measuring point (MP): Top of well casing/other: Top of well casing Well stick up: alo of and a decelop.
Water level (below MP): Start: 2.90' End: Not measured 3.26 (12/19/10) 240 3.40'(12/15
Well depth (below MP): 6.89 Water elevation (BGS) -1.981 3.41(12)16
Method used to measure water level: Metr (Solient model 101) Estimated recharge rate: Not estimated well case of
Volume of saturated annulus (assume 30 percent porosity):
Volume Calculation: Well (45'ny volume = Tiv2h = TI (0.07025) - 3.99'= 0.06259 613 x 7.48 ft3 = 0.47 gal
Quantity of water used during drilling: New 7nd 20.540
Depth of sediment (below MP): Before: 6.89'  After: 41+ measured
Development equipment: Tetlon bailer 1'4" U.D. Prostatic pump 350 cpm (12/16/11)
Sampling equipment: Not sampled  Orion model 230A  pH 4.01= 4.00 2 /3.1°C pH 7:00 medical 7:11  pH meter No. 5/N 20/752 Calibration: pH 10.01= 10:14 " 2/3.1°C
Specific conductance meter No.: SN 9811023 Calibration: method 1040 = whos wo 14.4° e.
F.T.U. meter No.: NA per GM 5 OP 2.08 Calibration: NA

**:** :

Time	Pumping Rate	Rate C umbos/cm Ri		oi. of H ₇ O moved	Physical Description of Water			
	gpen				a: °C	Gallons	Casing Vols.	
1356	1125		7.47	6.1	899	0	0	DK. brown cilty
1558	•125	_	7.48	6.1	918	0.25	1/2	4
1402	.043		7.17	6.)	940	0.5	1	1
1404	.125	-	7.48	6.1	950	0.75	11/2	f _t
1406	-125	-	7.46	41	956	1.0	2—	11
14.7	,25	-	7.47	7.1	959	1.25	21/2	1+, brn. less silty
1404	.125	1-	7.53	6.1	964	1.5	3	14
1410	, 25	1=	7.46	6.1	957	1.75	31/2	1
1412	.125		7,47	61	960	20	4	11
1416	.043	1	7.52		959	2.25	41/2	(1
1417	.25		7.44		960	2.5	5	. It brown

Comments:

[HAP] I

O

D

E

12/14 purped well a 25 minutes until water was clear
Also collected final round of parameters after additional development activities:

(4011-400-0022) (GWZREV.1)(07-1041) PH 7.03 Temp 5.5 Cond 964 clear

Page	į	of	_+
_/-			

					1/HYDROGEOLO		- # E1	(me had set ow)	
								(SEE MAP BELOW)	
Survey lo	cation coor	dinates	: North 214/41,	12/15/91_	East		44 5 4	well development/2/19	a i
						tion / <u>2/7/</u>	7/ Date	: well development/4/1/	ग ५.१२/७/१/
•	gnation:		SEE M						•
Ground e	levation: E	st: bu)			Survey:	WOMAN CRI	. VAUEY F	IL ALLING	
Screened	interval: _	1.0	0 + 6.	01 01	wed chains ) Mation Swaldwins dea ther: Top of	Formation:	<del>*</del>	·	neared .
	• •	-						_ Well stick up: ~ 1.0' (	1.10 ¹ danig der
Water lev	rel (below l	MP): S	tart:	2.681	(12/9/91)	End:	<u>- essect 12/19</u>	let .	
Well dept	th (below i	MP): _		7.03 4	to se sulphy	W	ater elevation	n (BGS) <u>~1.58 (121</u> 2)	17
Method u	sed to me	asure w	ater lev	el: (Sol	inst mode (101)	Es	timated rec	rarge rate: Not estimate well casing robus	kd
Volume o	of saturated	l annult	ıs (assu	me 30 per	cent porosity):	per so	P 6W.2	sec. 5,2,1.1	
Volume (	Calculation	WEI	1 casin	y volume	= T124 = T	(0,07063	12-4.35=	0.06856413, 7.48441:	-0.519~
Quantity	of water u	sed duri	ing drill	ing: <u>1/01</u>	re			,f13	
							After	Not measured 12/9/91	
Develop	nent equip	ment: _	101	flon bail	cr 14"0.06	१२/१५/१) १९/१। १२/१५/९।	Pristattic &	Not measured 12/9/9/9 12/14/9/9 12/15/91), Sur	ge blockli
Sampling	equipmen	t: N	ot san	noul			/		
		M. 41 22	A / . Jelal	7	OH 4.0/	<i>⊃</i> 4,∞	13,15C P	H TOO MARKET TO	
nH meter	No. Su	001752	121417	Calibratio	m: PH 10, ul	= 10.14	13.10c	2131°C	٠.
pH meter	r No. <u>sw</u>	eneter	No: 121911	Calibration	n: PH 10, ul	= 10.14 i	13.1" e 1. \$d. = 1,00. measure	2134°C 27°C (when a ball of a ball o	د
							13.100 1. \$d. = 1,00 measure	H Thus marked This  2 13.1°C  3 27°C  4 1040 Marked 2 14.4°C	د
					n: PA 10,01 (PAH) (alibration: MA		13.1° e 1. \$d. = 1,000 mcasucci	2131°C 27°C d 1040 min 10401 h	د
		VA pc	, Sop	2.08 C	alibration: 🚜				د
	eter No.: _				S.C.	Cum. Vo	o /3.   v p  d. \$d. = 1,00  mcasuca  ocasuca  oc	D 13.1°C  D 27°C  D 1940 multiple D 14.4°  Physical Description of Water	<u>د</u>
F.T.U. m	eter No.: _	VA pc	, Sop	2.08 C	alibration: MA	Cum. Vo	or of H ² O	Physical Description of	<b>c</b>
F.T.U. m	eter No.: _	VA pc	, Sop	2.08 C	S.C.  s.c.	Cass. Vo	ol, of H ₂ O noved Casing Vots.	Physical Description of	<b>c</b>
F.T.U. m	Pumping Rate gpm	VA pc	∠ Se p pH	2.06 C	S.C. makes/cm at °C	Casa. Vo Ren Galloss	ol of H ₂ O noved Casing Vols.	Physical Description of Water  Dr. bro., vy, Silly	٢
F.T.U. m	Pumping Rate gpm	VA pc	рн 7-59	7.08 C	S.C.  S.C.	Case Vo Res Galloss O 0.25	Oct of H ₂ O noved  Casing Vots.	Physical Description of Water  Dr. Iron, Vy. Sill-1	c
Tase 1401 1403	Pumping Rate gpm	VA pc	7 Sep pH 7.59 7.58	7 - C C C C C C C C C C C C C C C C C C	S.C. S.C. S.C. S.C. S.C. F.S.S. F.T.T. F.G.K. F.G.O.	Cuen. Vo Ren Galloss O 0.25 0.50	cal of H ₂ O noved  Casing Vols.  O  '  1  V  1	Physical Description of Water  Dt. bro., vy, Sill-1	c
F.T.U. m  1401 1403 1405 1405	Pumping Rate spm	VA pc	7 Sop PH 7.59 7.58 7.61 7.60	2.08 C	SC S	Cure. Vo. Res. Gallons	cat of H ₂ O noved  Casing Vots.  O  '3-  (  1 *2.	Physical Description of Water  Dr. Iron, Vy, Silly  11  11	c
1401 1403 1405 1408 1408	Pumping Rate gpm	VA pc	7 50 p 3-59 3-55 3-61 3-60 3-60	7.1	\$C	Case. Vo Res Gallons 0 0.25 0.50 0.35 1.D	Casing Vols.  O  1 1 2  2 1 2	Physical Description of Water  Dr. bro., vy, Silby  11  4  11	<b>c</b>
1401 1403 1405 1405 1408 1410 1411	Pumping Rate spm - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 -	VA pc	7.59 7.59 7.61 7.60 7.60	2.08 C  Temp. °C  6:1  4:1  4:1  7:1  7:1	SC	Cass. Vo Ren Gallons O . 25 D.50 O . 75 I.D. 1. 25	Casing Vols.	Physical Description of Water  Dr. Iron, Vy, Silly  11  11  11  11	c
1401 1403 1405 1405 1410 1410	Pumping Rate gpm - 125 - 125 - 125 - 125 - 125	VA pc	7.50 PH 7.59 7.61 7.60 7.60 7.60	2.08 C  Temp. °C  6:1  4:1  6:1  7:1  7:1  7:1	\$C	Casa. Vo Ren Galloss 0 0.25 0.50 0.75 1.D 1.25 1.35	Casing Vols.  O  1 Y2  2 1'2  3 3'/2	Physical Description of Water  Dr. bro., vy, Silby  11  4  11	
1401 1403 1405 1405 1408 1410 1411 1413	Pumping Rate spm - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125	VA pc	7.59 7.59 7.61 7.60 7.60 7.60 7.60	2.08 C  Temp. °C  6:1  4:1  6:1  7:1  7:1  7:1  7:1  7:1	SC	Casa. Vo Res Gallons 0 0.25 0.50 0.75 1.D 1.25 1.55	Casing Vols.  O  1/2  1 1/2  2 2/12  3 3/2  4	Physical Description of Water  Dr. Iron, Vy. Sill-y  11  11  11  11	
1401 1403 1405 1405 1410 1410	Pumping Rate gpm - 125 - 125 - 125 - 125 - 125	VA pc	7.50 PH 7.59 7.61 7.60 7.60 7.60	2.08 C  Temp. °C  6:1  4:1  6:1  7:1  7:1  7:1	\$C	Casa. Vo Ren Galloss 0 0.25 0.50 0.75 1.D 1.25 1.35	Casing Vols.  O  1 Y2  2 1'2  3 3'/2	Physical Description of Water  Dt. bco., vy, Silby  11  11  11  11	
1401 1403 1405 1405 1410 1410 1411 1413 1415	Pumping Rate spm -125 -125 -125 -125 -125 -125 -125 -125	VA pc	7.59 7.59 7.61 7.60 7.60 7.60 7.60	2.08 C  Temp. °C  6:1  4:1  6:1  7:1  7:1  7:1  7:1  7:1	SC	Casa. Vo Res Gallons 0 0.25 0.50 0.75 1.D 1.25 1.55	Casing Vols.  O  1/2  1 1/2  2 2/12  3 3/2  4	Physical Description of Water  Dr. Iron, Vy. Sill-y  11  11  11  11	
1401 1403 1405 1405 1408 1410 1411 1413 1415 1423	Pumping Rate gpm  . 125 . 125 . 125 . 125 . 125 . 125 . 125	FIU =	7 Sop PH 7.59 7.55 7.61 7.60 7.60 7.65 7.64	2.08 C  Temp. °C  6:1  4:1  5:1  7:1  7:1  7:1  (6:1)  (6:1)	SC	Casa. Vo Res Gallons 0 0.25 0.50 0.75 1.D 1.25 1.35 1.25	Casing Vols.  O  1/2  1 1/2  2 2/12  3 3/2  4	Physical Description of Water  Dr. Iron, Vy. Sill-y  11  11  11  11	
1401 1403 1405 1405 1408 1410 1411 1413 1415 1423	Pumping Rate spm -125 -125 -125 -125 -125 -125 -125 -125	FIU =	7 Sop PH 7.59 7.55 7.61 7.60 7.60 7.65 7.64	2.08 C  Temp. °C  6:1  4:1  6:1  7:1  7:1  7:1  7:1  7:1	SC	Casa. Vo Res Galloss 0 0.25 0.50 0.75 1.D 1.25 1.25 1.25	Casing Vols.  Casing Vols.  0  1/2  2 1/2  3  3 1/2  4  4 1/2	Physical Description of Water  Dt. bro., vy, Silty  11  11  11  11  Prom	

12/9/9/

·413 Well

Page 2 of \$

	's Name ar	nd Title						
Well ID	_EI							
Survey lo	cation cool	dinates	North		East			
Date this	report			Da	te well install	ation	Date	well development
					<u> </u>			
Ground e	levation: E	st:			Survey:	· .		
Measurin	g point (M	P): Top	of well	casing/ot	her:			_ Well stick up:
								n (BGS)
Method 1	used to me	asure w	ater leve	Ŀ		Est	imated rech	arge rate:
			•	_				
-								
-								
•	• -							
					ı:			
					Calibra			
F.1.U. E	ieter No.: _			~				
Time	Pumping Rate	FIU	рН	Temp.	S.C.		ol of H ₂ O soved	Physical Description of Water
	gp.				€ °C	Gallons	Casing Vols.	
1429	.042		7.84	7.1	952	2.5	3/2	Ban
			7.74	١. ما	767	3	6	
1448	4.08		+		<del>                                     </del>	7		
	4.08		7.12	5.1	963	3.25	61/2	Higray / boom, chidy
1448° 1617 1622	4.08		7.12 7.30	5.1 511	963	3.25		- 41
1448	4.08		7.12	5.1	963		61/2	H. gray / boom, chicky
1448° 1617 1622	4.08	-	7.12 7.30	5.1 511	963		61/2	- 41
1448° 1617 1622	2.08		7.12 7.30	5.1 511	963		61/2	- 41
1448° 1617 1622	4.08		7.12 7.30	5.1 511	963		61/2	- 41
1448° 1617 1622	2.08		7.12 7.30	5.1 511	963		61/2	- 41
1448° 1617 1622	2.08		7.12 7.30	5.1 511	963		61/2	- 41
1448° 1617 1622 1625		West	7.12 7.30 7.53	5.1 5.1 5.1	963	3.5	6× 7	- 41

12/9/91

**=**:.

11

11 clear

		٠	WELL	DEVELO	PMENT AND	Samplin(	G FORM	
Recorde	er's Name :	and Titl	e				· .	
Well ID								
Survey I	ocation cod	ordinate	s: Nort	b	Eest		·	•
Date thi	is report _				ate well install	lation	Dat	te well development (
Ground	elevation:	Est:			Survey:			
Screene	interval: _					Formation	ــــــــــــــــــــــــــــــــــــــ	·
Measuri	ng point (N	(P): To	p of we	ll casing/o	ther:			Well stick up:
				•				3. 26 (12/15)
Well de	th (below	MP): _	7.	14' (12/19)		W	ater elevation	on (BGS)
								harge rate:
Volume	of saturate	d annui	us (assı	ıme 30 per	cent porosity):			
				-				
Quantity	of water u	sed dur	ing dril	ling:				
Depth of	sediment	(below	MP): B	elore: 20	4 (12/14)		After	Not measured
Develop	ment equip	ment:	<u>.</u>					
Sampling	g equipmen	t:						
pH mete	r No			Calibration	n:			
Specific (	conductano	e meter	No.: _		Calibrat	ioa:		
-					alibration:			
						. •		
Time	Pumping Rate	FTU	PH	Temp.	S.C. tembos/con	Con. V.	of H ² O	Physical Description of Water
	gra				∉ •C	Gallons	Casing Vols.	
1348	0,125		7.21	44	946	2.45	74	It gray cloudy
BD	0.125	_	264	5.9	969	4.0	8	
1351	0.25		7.43	5.8	17-3	425	. 34	•••
1852	0.25		7.52	5.7	773	4.5	7	•
357	0.25		3.50	4-1	473	475	91/2	•
240			7:05	8.3	969	5.5	11/2	71
254			1.00	7.2	367	5,75		<del></del>

5.9 Clear No development activities 12/10-13 so as not single well tracer test

975

973

6.3

2.13

12/11

Page	4	of	4
rage	ı	0:	- 1

Recorder	r's Name a	ad Title				· .	•		
	<u> </u>								
			: North		East				_ ') ¬
Date this	report			Di	te well install	tion	Date	well development 13	F) Me Par [=
									_ /
									- SEE PASI
Screened	interval:					Formation:		<del></del>	- for addita
								_ Well stick up:	
Water let	vel (below	MP): S	tart:	3.28 (12)	16(21)	End:	mercal		<b>-</b> {
								n (BGS)	
								narge rate:	
									1
									_
							•		_
									_
									_ \
_	_					•		20.45	
nH meter	7 No. 5/	Model ?	150A U2	(16) Calibration	PH 4, 01 = 4	1.00 210.79 = 1.70 2 10	C PH	hou= 208 211. 4°C	_ / .
Specific o	conductano	e meter	No.:	tion mock! SIN 9811	122 Calibrat	ion:	measures	. 1000 pmphos 225 1047 pm h-J 29.60	و ا
-					libration:			· .	_ / 🛡
						•	CONLY	12/16/9) D7 400 4/12/9_12/14	11/2/15 FOR
Time	Pumping	FIU	рH	Temp. °C	S.C.	Om. Vo	f or 11.00	Physical Description of Water	THE ATTUE TO
	Rate gras			- C	E °C	Galloss	Casing Vols.		
1513	, 683		4.41	6.3	772	1/4	٧		
1516	1 .		722	40	979	γ			_
1519			7.24	4.0	981	9/4	1 14	.,	_
			7-19	5.9	179	, ,	2	1/	•
1524	. 85		1.1.1.1						-1
1524	104		7.13	5.9	177	14	342	19	
				5.8	977 984	11/2	3_	14.grago, slightly cla	
1528	104		7.17	5.8 5.3		11/2	3	17.90097, slipbly cla	
1231	104		7.13	5·8 5·3	944	11/2 2/14 2/22	3_	17. grage, slightly cla	
1531 1534	.003		7.13 4.07 7.19	5·8 5·3	974 973	11/2	3 gr(_ 4	17.90097, slipbly cla	
1531 1534 1536	.003		7.13 Ro7 7.19 7.09	5·8 5·7 5·7	974 973	11/2 2/14/ 2/22 50 12/0/91	3 8'C 4	14.grag ⁰ , slightly cla 11	

12/16/91

WELL DEVELOPMENT AND SAMPLING FORM  Page 1 of 3
Recorder's Name and Title S. Condran / Hydrogrologist
Well ID PUMP I TRAVER TEST WELLPOINT ARRAY WELLPOINT # EZ(SEE RAPBROW)
Survey location coordinates: North East
Date this report 12/19/1/ Date well installation 12/2/9/ Date well development/2/14/9/12/15/9/
Well designation: #E2 12/16/91
Ground elevation: Est: Survey:
Screened interval: 0.90 to 5.90 ( installation ) Formation: Woman Creek Valley Fill Allumium
Measuring point (MP): Top of well casing other: Top of well casing Well stick up: 41.0' (day decide)
Water level (below MP): Start: 2.91 (12/14) 4.73(12/15) End: 14 mental 12/14 5.184 (12/15)
Well depth (below MP): 6.92 (12/3/31) Water elevation (BGS) 1.93
Method used to measure water level: Electronic Water level (Solinet Model 101) Estimated recharge rate: Not estimated
Volume of saturated annulus (assume 30 percent porosity): Not used to calculate well easing volume 125 50 P GW 2 Sec. 5.2.1.1
Volume Calculation: Well curing volume = Truh = TI (0.07083) -401' = 0.06320ft 3x 3.48qw = 0.47
Quantity of water used during drilling: None
Depth of sediment (below MP): Before: 6.92 (12/1/16)  After: dot measured 12/19
Development equipment: Teflor beiler 1'4" O. P. 12/15/91, Surge block (12/16/91),
Sampling equipment: Not Sampled  Orion Model 250 A ph 401 = 4.00 Dio. TC MESINC pH 7:00 = 7:05 D 11.4°C  pH meter No. SIM 0012 49 Calibration: 2H 10.01 = 9.70 D 10.7°C MESINC pH 7:00 = 7:05 D 11.4°C
Specific conductance meter No.: SN 4211023 Calibration: Cond. Std. = baonum 1 225°C  Specific conductance meter No.: SN 4211023 Calibration: measured 1047 members 20 9.6°C
F.T.U. meter No.: NA per 6w 509 2.08 Calibration: NA

	Time	Pumping Rate	FTU	рĦ	Temp. *C	S.C. umbos/cm ec °C		ol of H ₂ O moved	Physical Description of Water	
		gp·m					Gallons	Casing Vots.		
12/14	1432			7.12	5.5	812	0	0	DK bown vy s. H	
	1433	.25	_	7.14	5.7	808	0.25	1/2_	fi	
	1434	-25		7.11	6.0	810	0.5	1		
	1437	-083	1	7.62	6.0	799	075	11/2	,1	
2115	1055	200-2/min		374	t punying	€ 200 m	l/min			
	1058		_	DE	/				·	
	1358			7.30	7.5	847	1.0	2	H. Bour	
12/14	0909			6.40	6.0	947	1.25	21/2_	clear slightly cla	
	0911	-125		6.66	5.4	932	1.5	3	It. brown, cloud	
	0914	.083		6.69	5.5	928	1.75	31/2		

Comments:

Sey of my mellount did not recover well from 12/14 development achieves

Sey and my mellount did not recover well from 12/14 development achieves

Shilled deceased development H,D THAP I and more work

Shilled out needs more work

E

**=** :

PAGE Z ON -	Page	2	2	_3
-------------	------	---	---	----

Vell ID		=2_							
urvey k	ocation cod	ordinate	s: Nort	h	East				/
Date this	s report _			D	ate well instal	lation	Dat	e well developmen	· _ /
Vell des	ignation: _							·	
iround :	elevation:	Est:			Survey:	:			\
creened	interval:			·		. Formation	:		\
deasuri:	ng point (N	4P): To	p of we	ll casing/o	ther:			Well stick up:	
later le	vel (below	MP): 3	Start: _	3.08 (1	2/16/91)	End:w	t measured	(12/16/91)	
'ell dep	th (below	MP): _				W	ater elevation	on (BGS)	\
								harge rate:	I.
									<u> </u>
		-	•		_				
-	equipmen								
meter	r No			_	a:				
				Calibration			-		- 1
cific o	conductance	æ meter	No.: _	Calibration	Calibra	tion:			- 1
cific o	conductance	æ meter	No.: _	Calibration		tion:			- 1
ecific o	eter No.:	æ meter	No.: _	Calibration Calibration Calibration	Calibration:	tion:	of N°O	Physical Description of	_/ _/
ecific o	conductance	e meter	No.: _	Calibration	Calibration:	Com. Vo	ol of H ₂ O noved	Physical Description of Water	_/ _/
Time	eter No.:  Pumping Rate	e meter	No.: _	Calibration Calibration Calibration	Calibration:	Com. Vo	ot of H ₂ O noved Casing Vols.	Physical Description of Water	_/ _/
Time	eter No.: _ Pumping Rate gpm	e meter	No.: _	Calibration Calibration Calibration Calibration	Calibration:	Cana. Vo	ol of H ₂ O noved	Physical Description of Water	_/ _/
Time	eter No.: _ Pumping Rate gpm	e meter	PH	Calibration Calibration Calibration Calibration	Calibration:	Cana. Vo	ot of H ₂ O moved  Casing Vols.  4	Physical Description of Water  Balun, Clarely  11	_/ _/
Time	eter No.: _ Pumping Rate gpm	e meter	No.: _	Calibration Calibration Calibration Calibration	Calibration:  S.C.  S.C.  S.C.  S.C.  S.C.  925	Cass. Vo	of H ₂ O moved  Casing Vols.  4	Physical Description of Water  Balun, Clarely  11	_/ _/
Time 0915	Pumping Rate gran	e meter	No.: _	Temp. °C	Calibration:  S.C.  S.C.  S.C.  S.C.  S.C.  P25  925  945  DEMAGRIJ  945	Com. Vo. Ren Gallons 2 2.15	cat of HyO noved  Casing Vota  4  4 1/2  PAHARE  5	Physical Description of Water  Bolum, Clarely	_/ _/
7.U. m	Pumping Rate gran	e meter	PH (2.72) TORY 7.25 WALL 7.40	Temp. °C  5.5  6.3  BAILED  7.9  7.8	Calibration:  S.C.  S.C.  P25  925  945  DEYAGAIJ  945  948	Casa. Vo Ren Gallons 2 2.15 WH 1-61 2.5 2.35	Casing Vols.  4 1/2  PANARE  5 1/2	Physical Description of Water  Bolum, Clarely  11  11  11  11	
Time 0915	Pumping Rate gran	e meter	No.:_ DRY 7.25 Way 7.18 7.40	Temp. °C  5.5  b.3  BAILED  7.9  7.8  8.6	Calibration:  S.C.  S.C.  P25  925  P45  DEMAGRIJ  945  948  951	Cana. Vo Ren Callons 2 2.15 WALL Lett 2.5 2.35	Casing Vols.  4  4 1/2  PANACE  5  5'/2	Physical Description of Water  Bollyn, Cloudy  11	
Time 0915 0942 034 054	Pumping Rate gran	e meter	No.: _ DRY 7.25 WAL 7.40 7.08	Temp.  C.  5.5  L.3  BALED  7.9  7.8  8.4	Calibration:  S.C. S.C. S.C. S.C. P25  925  945  DEMAGRIJ  945  948  951  941	Cana. Vo. Ren Gallons 2 2.15 WLL LGT 2.5 2.75 3.15	Casing Vols.  4 1/2  PRAMARE  5 1/2  4 1/2	Physical Description of Water  Bolum, Clarely  11  11  11  11	
Time 0915 0942 0014 0036 0054	Pumping Rate gran	e meter	No.:_ DRY 7.25 Way 7.18 7.40	Temp. °C  5.5  b.3  BAILED  7.9  7.8  8.6	Calibration:  S.C.  S.C.  P25  925  P45  DEMAGRIJ  945  948  951	Cana. Vo Ren Callons 2 2.15 WALL Lett 2.5 2.35	Casing Vols.  4  4 1/2  PANACE  5  5'/2	Physical Description of Water  Brown, clarety  11  11  11  11  11  11  11	

(4011-400-0022) (GW2REV.1)(00-10-01)

== 12/14

Page 3 of 3

	location co	ordinate	s: North		East			
Date th	is report _			D	ete well insta	llation	Da	te well development
Well de	signation:							
Ground	elevation:	Est: _			Survey			
Screene	d interval:				,	Formation	ı:	
Measur	ing point (1	MP): To	p of wel	ll casing/o	ther:			Well stick up: _
Water i	evel (below	MP):	Start: _			_ End:		
Well de	pth (below	MP): .				W	Vater elevati	ion (BGS)
Method	used to me	easure v	vater lev	el:		E	stimated rec	charge rate:
Volume	of saturate	d annu	us (assu	me 30 per	cent porosity)	:		
				-	-			
								r
John c								
_		ment:						
Develop	ment equip							
Develop Samplin	ment equip	ıt:						
Develop Samplin pH met	ment equip g equipmen er No	nt:		Calibration	n:			
Develop Samplin oH meto Specific	ment equip g equipment er No conductant	nt:		Calibration	n: Calibra	tion:		
Develop Samplin oH meto Specific	ment equip g equipment er No conductant	nt:		Calibration	n:	tion:		
Develop Samplin oH mete Specific F.T.U. r	ment equipment of No conductant neter No	nt:	No.:	Calibration	n: Calibra alibration:	tion:		
Develop Samplin oH meto Specific	ment equipment of No conductant neter No.:	nt:		Calibration	n: Calibra alibration:	tion:		
Develop Samplin oH mete Specific F.T.U. r	ment equipment equipment er No conductant meter No.:	nt:	No.:	Calibration Calibration	n: Calibra alibration:	Cum. V		Physical Description of Water
Develop Samplin pH meto Specific F.T.U. r	ment equipment er No conductant neter No.: Pumping Rate gpm	nt:	No.:	Calibration Calibration Calibration Calibration	n: Calibra alibration:	Cum. V	Cot. of H ₂ O moved  Casing Vols.	Physical Description of Water
Develop Samplin oH mete Specific F.T.U. r	ment equipment er No conductant neter No.: Pumping Rate gpm	nt:	No.:	Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration	Calibra alibration:  S.C. washos/cas a: *C	Cum. V Res	ol of H ₂ O	Physical Description of Water
Develop Samplin oH mete Specific F.T.U. r	ment equipment er No conductant neter No.: Pumping Rate gpm	nt:	PH 7.55 7.52 7.55	Calibration Calibration Calibration Calibration Calibration Calibration	Calibra alibration:  S.C.  makes/ca a °C  748	Case. V Res	Cot. of H ₂ O moved  Casing Vols.	Physical Description of Water
Develop Samplin pH metro Specific F.T.U. r Time	ment equipment er No conductant neter No.: Pumping Rate gpm	nt:	PH 7.55 7.55 7.55 7.51	Calibration  Calib	Calibra alibration:  S.C. Abox/ca  C. T48 940 940 944	Cum. V Ret Gallons 4.0 4.25 4.75	Casing Vols.	Physical Description of Water
Develop Samplin oH met Specific F.T.U. r Time	ment equipment of No conductant neter No.:	nt:	PH  7.55  7.52  7.55  7.21  7.24	Calibration  Calib	Calibra  Calibra  S.C.  MADOS/CR  E ° C  148  940  944  948  959	Cum. V Res Gallons 4.0 4.25 4.75	Casing Vols.  S  Guing Vols.  Guing Vols.  Guing Vols.  Guing Vols.	Physical Description of Water  Lity gray, records
Develop Samplin oH metro Specific F.T.U. 1	ment equipment of No conductant neter No.:	nt:	PH  7.55  7.55  7.52  7.55  7.21  7.17	Calibration  Calib	Calibra  Calibra  s.c.  s.c.  shoo/ca  c. °C  948  940  944  948  959  959	Cum. V Ret  Gallons 4.0 4.25 4.75 5.25	Casing Vols.  S  Guing Vols.  Guing Vols.  Guing Vols.  Guing Vols.  Guing Vols.  Guing Vols.	Physical Description of Water  Lity gray, cloudy  ii
Develop Samplin oH meter Specific F.T.U. r. 1235 1237 1511 1519 1524	ment equipment of No conductant neter No.:	nt:	PH  7.55  7.55  7.55  7.21  7.14  7.14	Calibration  Calib	Calibra  Calibra  alibration:  S.C.  mhos/ca  a. °C  148  940  944  948  959  959  959	Cum. V Res Gallons 4.0 4.25 4.75 5.25	Casing Vols.  S  Guing Vols.  Guing Vols.  Guing Vols.  Guing Vols.  Guing Vols.  Guing Vols.  Guing Vols.	Physical Description of Water  Lity gray, cloudy  11  11  11  11  Lity brown, cloudy
Develop Samplin oH metro Specific F.T.U. 1  Time  1235 1237 1239 1511 1519 1524 1530	ment equipment of No conductant neter No.:	nt:	PH  7.55  7.52  7.55  7.21  7.14  7.14  7.14  7.09	Temp. *C  7.7  1.0  8.1  6.4  5.8  5.7  5.6	Calibra  Calibra  S.C.  Mhos/ca  a °C  948  940  944  959  959  959  960  960	Cum. V. Resi Gallons 4.0 4.25 4.75 5.25 5.25 5.75	Casing Vols.  S  Guing Vols.  Guing Vols.  Guing Vols.  Guing Vols.  Guing Vols.  Guing Vols.	Physical Description of Water  Lity gray, cloudy  11  11  11  11  11  11  11  11  11
Develop Samplin pH meto Specific F.T.U. r Time	ment equipment of No conductant neter No.:	nt:	PH  7.55  7.55  7.55  7.21  7.14  7.14	Calibration  Calib	Calibra  Calibra  alibration:  S.C.  mhos/ca  a. °C  148  940  944  948  959  959  959	Cum. V Res Gallons 4.0 4.25 4.75 5.25	Casing Vols.  S  Guing Vols.  Guing Vols.  Guing Vols.  Guing Vols.  Guing Vols.  Guing Vols.  Guing Vols.	Physical Description of Water  Lity gray, cloudy  11  11  11  11  Lity brown, cloudy

Recorde	r's Name s	and Title	: <b>5</b> ,	CONDEAN	HYDROGEDLE	OGICT .			
							(SEE IN	AP A BOW	<u></u>
					East		·	Se islight	
•							4  Date	well development 12	14/1/12/14/14
	ignation:								- · · · · · · · · · · · · · · · · · · ·
Ground	elevation:	Est:			Survey:	•		· ·	_
Screened	Fon Good	swf-u	0 to 6.	O' / Measur	red during)	Formation	Women Co	x Valley Fill Allwin	-
Measuri	ng point (N	AP): To	of well	casing/of	during develop	of Well Ca	ang	_ Well stick up: 4.0	presend m B.91' som a develop
Water le	vel (below	MP): S	Start:	3,10 1021	H)	End: Not .	- mucd 12/14	122 (INIS) END	3.23 (1415)
Well dep	xh (below	MP): _	ge 13	3000	17 (1246)	W	ater elevatio	nt (BGS) ~ 2.19	
					mic water le	vel meter	بر بدانهم timated recl	parge rate: Not-est	muted
						west mes	d to calcu	to sec. 5. L. / 101-	
Volume	Calculation	e: <u>Weit</u>	casing	Volene	= Tr2h=	T (0,0708	31) 2 3.12:	= 0,06100ft2, 7,4840	d = attend
			_	ng: Nor	·e.		. 6(12)	al comiai CIA	13 se. 95 d
				fore:	6.93	(12/14/41) (12/4/41)	After:	Not mise with	. ·
								(12/10/91)	_
					•			6,	
-11to	O No. of	rion Mou	12/250	A Calibration	PH 4.01= 4	100 D 10.7"	STOP PH	tionessous 7 of 201	1.400) 12/16/87
bu mere	T NO5//	0 00 22	<del>77</del> _0	ion Medel	122 Callbord	= 1.10 = 10 cund	· 5 Hd = 1000	minis Disie	
-					Calibrat				THAP
F.T.U. <b>=</b>	neter No.:	NA p	er GW.	50 - 2.00 Ca	libration:			<del></del>	
									1 / 2 3 4
Time	Pumping Rate	FTU	PH	Temp.	S.C. washoo/can		or H ₂ O	Physical Description of Water	z
	gpes .	j			æ °C	Gallons	Casing Vols.		<b> </b>  • • • •
1320			7.43	6-1	844	0		Dr.bourg.Silby	F• • • •
1821	1.25	-	2.45	6.3	\$20	0.25	1/2		4
1322		_	74	6.5	872	0.50	•		-1
1323		1=	234	6.4	508	0.35	Me	<u> </u>	4
1726			2.57	64	805	1.0	- 11	••	
1323		!=	7.47	44	924	1.85	21/2	•	-{
7330	<del>                                     </del>		2.41	6.6	517	7.50	3	4.	-1
1915	<del>                                     </del>	1	3.67	44	9 60	1.75	37,	se rabbly.	-1
1414	<del>                                     </del>	-	3,00	ho	967	2	4	Em cloudy	1
1417	<b>↓</b>	1=	3.7.2	5.9	1 946	2.25	4 4 E	1 m. 00	<b>-</b>
1920		-	7.42	6.1	168 .	2.5	\		
Comme	1 7	+	7.15	4.0	964	2.45	5.1/L		
1423	17	+=		<del>                                     </del>		3	6	••	
1424		+=	2.35	5.8	944	3.25	61/2	1	
1926	1	1=	7.31	5.9	961	3.50	7	"	─
1427	- [ ]		7.31		165	275	942	•	
14.0	1 4	1	190-	1	94.9-	14			1

12/14 Pumped well a 25 minutes until water was then 12/14 pumped well to 25 minutes after additional develop.

[2/14 Pumped well to 25 minutes after additional develop.]

Comme

Kec	corder's N	bas smal	Taue _		SNOLANI	HYDROGEOU	T LERA	ASSE M	AP <del>SELON</del>	
					CER TEST	- WELLPAN			स्यामना .	।थाऽरिश
Sur	vey locati	ion coordi	nates: N	iorth <i>liski (~</i> .	poren u	East	12/2/0	Date V	vell development 12/11	4191,12/161:
Dat	te this re	port12_	114/91	,12/16/	4/ Date	Well installatio	<u> </u>	4	vell development /2/1	
We	II design	tioa:	# E4	SEE	MAP BET	WHAT PAU	· · · · ·			_
Gro	ound eley	ation: Est				Survey:		1 0 4	J. H. Gil Allusium	•
Scr	eened in	rom bround lerval:	1.0 +3	<u> </u>		- 10/474		Omeo Cit.	Valley Fill Allewine	(rundo.
Me	esuring 1	ooint (MP)	: Top (	of well c	asing/other		well casi	J 12/19/15	Well stick up: 41.0'	d during deret (121 mb 1)
		(below M			3.28 (12)	(4ei) En	A		V. V	7. 20 h
		(below M			6. 70 CI21141 1.02 (1219	191) Ewater level a			(BGS) 2.32 '	<del>-</del>
			ure Wal	er level:	(Salims	+ Model 101)	ESU	- 1	rge rate: Not estimate well volume	<u>†z</u> a
			_	_		··ity)·	0.1 5	JP GW. Z	34 . 3	- , .
V0	olume of	Jenjetion.	Wall	cation	a volume	= 17/2h -	71 (0.03	28 31) 2 3.7	74' = 0.05845 x 7.4	2941 = 0.4
Vo	olume Ci		d durin	ø drillin	- None					- W 0.5
							)	After:	Not measured	-
Do	epth of s	ediment (b	CIOW IV	u j. ua.	haile 11/4	کارا ^{14 4} (۱۵۱۵) د از (۲۵۰۵)	115191,1241019 Peristaltic	pmp (12)	(U191), Surge block	(12116/41)
D	evelopmo	ent equipm	ent:	1000	, (	1				المالات
Sa	ampling c	quipment:	nodel 3	Not S	<u> </u>	PH 4.01 = 4.00	201017°C	TH TOO	mercine that 5 4.4.	٢) +
nl	H meter	No. SIN	00224	9C	alibration:	in.el = 9.1	Cond.	SH = 1000 M	-hold 25°C	ا الح
Sı	necific co	nductance	meter	No.:	SIN 9 3110	23 Calibratio	u:	WES 1044	110	- 75 8
Sı	necific co	nductance	meter	No.:	SIN 9 3110	23 Calibratio	u:	<u> </u>	whit is 25°C, puntus is 9.6°C	4 4 0.00
Sı	necific co	nductance	meter	No.:	SIN 9 3110	23 Calibration:	u:			- 6 med
Sı	necific co	nductance	meter	No.:	4N 43110	23 Calibratio	Can. Vol.	of H ₂ O	Physical Description of	ning wo med on 12/14 decol
Sı	necific co	nductance ter No.:	meter	No.:	SIN 9 3110	23 Calibration:N	Com. Vol.	of H ₂ O	Physical Description of	ctening up need from 12114 decal
Sı	pecific co	nductance	meter	No.:	YN 43110	23 Calibration: Notice S.C. Makos/cm & °C	Com. Vol. Remo	of H ₂ O	Physical Description of Water	
Sı	pecific co	nductance ter No.:	meter	No.:	Temp.	SC.  whose/cm  a: °C  \$7+3	Com. Vol. Remo	of H ₂ O med  Casing Vols.	Physical Description of	11 not clearing was rectable
S ₁	Time	nductance ter No.:	meter	PH 7.02	10 4 3110° Cali	S.C. mbos/cm e °C	Coma Voi Remo	of H ₂ O	Physical Description of Water	1
S ₁	pecific co	enductance ter No.: Pumping Rate gpm	meter	PH 7.02-7.15	1 4 3110° Cali Temp. *C  1.0  4.0  4.2  4.4	SC.  mbox/cm  a °C  S+3  PS+  792	Com. Vol. Remo	of H ₂ O yeed  Casing Vots.	Physical Description of Water  DK. Brvs., vy. 9211-4	9446 not
S ₁	Time	Pumping Rate gpm	meter	PH 7.02 7.35 7.35 7.40	19N 43110 2.08 Cali Temp. °C 6.0 6.2 6.4 6.2	S.C. whos/cm c°C  \$+3  \$52  750	Com. Vol. Remo	of H ₂ O oved  Casing Vols.  6  1/2	Physical Description of Water  DK. Bon., vv. 2-15-4	Mao shill not
S ₁	Time	Pumping Rate gpm	meter	PH 7.02-7.35 2-12-7-40 7-40	Temp. *C  6.0  6.2  6.4  6.2	SC mhos/cm a °C S+3 PS+ 3 Ps-	Com. Vol. Remo	of H ₂ O yeed  Casing Vots.	Physical Description of Water  DK. Brvs., vy. 9211-4	Mao shill not
S ₁	Time  Time  13.03  13.04  15.07	Pumping Rate gpm	meter	PH 7.02 7.35 7.35 7.40 7.51	10 4 3110° Cali  Temp.  *C  6. 0  6.2  6.4  6.2  6.4  6.2	2.2 Calibration:	Cama Vol Remo	of H ₂ O med  Casing Vols.  O  1/2.  1  1 ¹ /2.  2	Physical Description of Water  DK. Brn., vy. 2:11-4	Mao shill not
S ₁	Time  13.05 13.05 13.05 13.05	Pumping Rate gpm	meter	PH 7.02-7.35 2-12-7.51 2-54	Temp. *C  6.6  6.2  6.4  6.2  6.4  6.5  7.2	SC mhos/cm a °C S+3 PS+ 3 PS-	Cana. Vol. Remote Calloss 0 0.3-5 0.5-5 1.0 1.2-5 1.5-5	of H ₂ O yed  Casing Vols.  O  1/2  1  1 ¹ /2  2  2 ¹ /4	Physical Description of Water  DK. Brvs., vy. 9211-4	wellpoint NEO SHII not
S ₁	Time  13.03  13.04  15.07  15.07	Pumping Rate gpm	meter	PH 7.02 7.35 7.35 7.51 7.54 7.58	Temp. *C  6.0  6.2  6.4  6.2  6.4  7.2	2.2 Calibration:	Com. Vol. Remo O. 1.5 0 . 5 0 . 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	of H ₂ O prod  Caring Vota.  O  1  1  2  2  4	Physical Description of Water  DK. Brn., vy. 2:11-4  10  10  11  11  11  11  11  11  11  1	wellpoint NEO SHII not
S ₁	Time  13.03 13.05 13.05 13.05 13.07 13.07 13.14	Pumping Rate gpm	meter	PH 7.02-7.35 7.40 7.51 7.54 7.63	10 4 1110 Cali  Temp.  *C  6.0  6.2  6.4  6.2  6.8  7.1  5.5	23 Calibration:	Com. Vol. Remain On St. O. 95	of H ₂ O prod  Caring Vota.  6  1/2  1  2- 2- 4  3 1/2	Physical Description of Water  DK. Son., vy., 2511-4  1,  4,  4,  4,  4,  4,  4,  4,  4,  4	Mao shill not
S ₁ F.	Time  Time  1303  1305  1307  1307  1314  1342  1450  0120	Pumping Rate gran	meter	PH  7.02  7.35  2-52  3-40  7-51  2-56  2-57  4-68  6-63	100 Cali  Temp.  C  6.6  6.2  6.4  6.2  6.4  7.2  7.1  5.5  6.6	2.2 Calibration:	Com. Vol. Remo Onloss 0 0.35 0.55 1.05 1.55 1.55 1.55 1.55 1.55 1.5	of H ₂ O med  Casing Vote  O  1  1  2  2  4  4  4  5	Physical Description of Water  DK. Brn., vy. 2:11-4  8,  9,  14, brann, clarby 11	of day wellpoint 11 to shill not
S ₁ F.	Time  Time  1303  1305  1307  1307  1314  1342  1450  0120	Pumping Rate gran	meter	PH  7.02  7.35  2-52  7-40  7-51  2-54  2-63  6-92	1 4 4 3 110° Cali  Temp.  *C  6. 6  6.2  6.4  6.2  6.8  7.2  7.1  5.5  5.6  5.6	22 Calibration:	Com. Vol. Remo Onloss O O.35 O	of H ₂ O med  Casing Vote.  O  1/2  1/2  2-1/2  3 1/2  4 1/2  5 5 1/2	Physical Description of Water  DK. Srn., vy. 2:11-  1,  1,  1,  1,  1,  1,  1,  1,  1,	End of day wellpoint NEO shill not
S ₁ F.	Time  Time  13.03  13.05  13.05  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.07  13.0	Pumping Rate gran - 125 - 25 - 25 - 25 - 25 - 25 - 25 - 2	FTU FTU	PH  7.02  7.35  7.40  7.51  7.51  7.61  7.72  7.78  6.67  6.92	100 Cali  Temp.  C  6.6  6.2  6.4  6.2  6.4  6.5  5.6  5.6  5.6  5.6  5.6  5.6	23 Calibration:	Com. Vol. Remo Onloss 0 0.35 0.55 1.05 1.55 1.55 1.55 1.55 1.55 1.5	of H ₂ O med  Casing Vote  O  1  1  2  2  4  4  4  5	Physical Description of Water  DK. Brn., vy. 2:11-4  8,  9,  14, brann, clarby 11	End of day wellpoint NEO shill not
S ₁ F.	Time  Time  1303  1305  1307  1307  1314  1342  1450  0120	Pumping Rate gran	FTU FTU	PH  7.02  7.95  7.95  7.90  7.91  7.91  7.91  7.91  7.91  7.91  7.91  7.91  7.91  7.91	1 4 9 110°  1 2.00° Cali  Temp.  C  6.0  6.2  6.4  6.2  6.4  7.1  5.5  5.6  5.6  5.9  1ul writes	23 Calibration:	Com. Vol. Remo Onloss O O.35 O	of H ₂ O med  Casing Vote.  O  1/2  1/2  2-1/2  3 1/2  4 1/2  5 5 1/2	Physical Description of Water  DK. Sen., vy. silly  1.  1.  1.  1.  1.  1.  1.  1.  1.  1	12/15 End of day wellpoint N.O shill not
S ₁ F.	Time  Time  13.03  13.05  13.05  13.05  13.05  13.07  13.07  13.07  13.07  13.07  15.07	Pumping Rate gpm - 125 - 25 - 25 - 25 - 25 - 25 - 25 - 2	FTU FTU	PH  7.02  7.35  7.40  7.51  7.51  7.61  7.72  7.78  6.67  6.92	1 4 3110 Cali  Temp.  C  6.0  6.2  6.4  6.2  6.4  6.5  7.1  5.5  6.6  5.6  5.6  5.7  1.1  5.8	23 Calibration:	Com. Vol. Remo O. 15 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 .	of H ₂ O med  Casing Vote.  O  1/2  1 1/2  2 2/4  3 1/2  4 1/2  5 1/2  4 1/2  5 1/2  4 1/2  5 1/2  4 1/2  5 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6	Physical Description of Water  DK. Brn., vy. 2:11mg  6,  9,  11 brum, glardy  11	12/15 End of day wellpoint N.O shill not
S ₁ F.	Time  Time  13.03  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.05  13.0	Pumping Rate gpm - 125 - 25 - 25 - 25 - 25 - 25 - 25 - 2	FTU FTU	PH  7.02  7.95  2-92  2-40  7-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-51  2-	100 Cali  Temp.  C  6.0  6.2  6.4  6.2  6.4  7.2  7.1  5.6  5.6  5.6  5.7  5.7  5.7  5.8	23 Calibration:	Com. Vol. Remons  O.25  O.25  O.25  I.05	of H ₂ O med  Casing Vote.  O  1/2  1 1/2  2 2/4  3 1/2  4 1/2  5 1/2  4 1/2  5 1/2  4 1/2  5 1/2  4 1/2  5 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6 1/2  6	Physical Description of Water  DK. Brn., vy. 2:15mg  10  10  11 brown, clarky  11  12  14 brown, clarky  17	12/15 End of day wellpoint N.O shill not
S ₁ F.	Time  Time  13.03  13.05  13.05  13.05  13.05  13.07  13.07  13.07  13.07  13.07  15.07	Pumping Rate gran - 125 - 25 - 25 - 25 - 25 - 25 - 25 - 2	FTU FTU	PH  7.02  7.35  7-10  7-10  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-51  7-	10 4 3110 Cali  Temp.  C  6. 0  6. 0  6. 2  6. 4  6. 2  6. 6  6. 8  7. 1  5. 8  10	23 Calibration:	Com. Vol. Remo O. 15 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 .	of H ₂ O  red  Casing Vols.  O  1/2  1/2  2/4  3/4  4/4  5  5/4  Charge  G  C  C  C  C  C  C  C  C  C  C  C  C	Physical Description of Water  DK. Brn., vy. 2:11/2  10  11  11  12  12  14  15  16  17  17  17  18  19  10  11  11  12  12  14  15  16  17  18  18  19  19  10  10  11  11  12  12  14  15  16  17  18  18  18  18  18  18  18  18  18	ahs end of day wellpoint Hao shill not

Page	2	of	2
------	---	----	---

Title		· .
Recorder's Name and Title	the state of the s	
Well ID Survey location coordinates: North	- · · · · · · · · · · · · · · · · · · ·	
Date this report Date w	cil installation Date well development/2/14/4/	•
Well designation: E4	191112011	
Ground elevation: Est:	Survey:	
Screened interval:	Formation:	
	Well stick up:	
Water level (below MP): Start:	End:	
Well depth (below MP):	Water elevation (BGS)	- 00/4
	Estimated recharge rate:	e page
	porosity):	
Volume Calculation:		
Quantity of water used during drilling:		
Depth of sediment (below MP): Before:	After:	
Development equipment:		
Sampling equipment:	·	
pH meter No Calibration:	•	7
Specific conductance meter No.:	_ Calibration:	
F.T.U. meter No.: Calibra	ation:	
Time Pumping FTU pH Temp.	S.C. Com. Vol. of H ₂ O Physical Description of	
Rate C	mbos/cm Removed Water	

- 12/14/4]

Time	Pumping Rate	FIU	pět	Temp.	S.C. umbos/cm et °C		oL of H ₂ O moved	Physical Description of Water
	gp-ss				# °C	Gallons	Casing Vols.	
1529	,083		7.12	\$6	962	4.25	81/2	H. bon, chady
1504	.050	-	4.07	5.7	966	4.5		11
123	.083		7.04	5.5	959	4.75	91/2	\1
15 %	-063		3.00	5.4	110	5	10	
1542	.125		7.02	5.6	958	5.25	101-	ч
1542		-	7.05	5.5	954	5.5	11	1,
						<u> </u>		
						<u> </u>		
							<u> </u>	,

Comments: 12/16 Used surge block to develop well

[ 12/16 Used Surge block to develop well

[ 12/16 Collected from round of mante, after edditional develop, activities;

12116 Colected from round of mants, after editional develop. a
TIPH 7.02 Temp. Sib Cond 956 It. bown

Page 1 of 2

W	ell ID .	PLMP	1TRACE	2 7ES	,7 uz	C PUNT NE	RAY WEL	LPLINT 2	
						East			·
D	ate this	report /2	19/41	12/14/91	$\mathbf{D}_{i}$	ate well install	ation 12/	7/91 Dat	e well development 12/
W	ell desig	nation:	12/14	191	#ES	SEE MAP	SELOW_		plish,
_			?a.			C	2		
					5.90' (	leasured during	Formation	- Woman C	Well stick up: ~1.0'
M	casuring	z point (M	IP): Top	of well	casing/of	ther: TUP of	LIELL (AS	126	Well stick up: -1.0'
W	ater leve	el (below	MP): S	tert:	3.69'	(12/9/94)	End: _wat	t mersund (1	24/51)
W	ell depti	h (below l	MP): _		6.83	6.83(1214) (12/9/9)	") w	ater elevation	en (BGS) <u>~2.831</u>
M	ethod u	sed to me	asure w	ater leve	ity Elect	ronic water were const l	or) E	stimated rec	en (BGS) <u>~2.83¹</u> harge rate: Not estimate well casing
									SOP 6W. 2 Sec. 5
									= 3.20' = 0.05044 H3
					ng: <u>N</u> o		<del></del>		
D	epth of	sediment	(below 1	MP): Be	fore: _6	(121)	·	After	- Not measured (12/4/9
_	•			- 1	L. Clar	1200.0 1	Dichil	:   12 l	12 Healt 12
				•		' /	1-1 17 114141	<i>                                      </i>	
				•		' /	1-1 17 114141	<i>                                      </i>	
Sa pł	mpling H meter	equipmen Ori No. SN	t: N on 16de 0017	ot sa, 1 230A	Calibration	1201 Hd : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 :	= 10.14 10 12 15 = 4.00 12 15 = 10.14 15	12/15/41,13	1 100 mesured 711 2
Sa pI Sp	mpling H meter pecific or	equipmen Ori No. <u>SN</u> onductanc	t: Non Toda 0017: e meter	ot sa. 1 230A 52 ( No.: 5	Calibration	(12/1 pH 4:01 = n: pH in 01 cl 122 v23 Calibra	4 ,   2  4 4  = 4,00 &  2 = 10,14 & Co tion:	12/15/41,13	- 1,000 mesuced 711 2 - 1,000 mesuced 711 2 - 1,000 mesuced 711 2 - 1,000 mesuced 711 2 - 1,000 mesuced 711 2
Sa pI Sp	mpling H meter pecific or	equipmen Ori No. <u>SN</u> onductanc	t: Non Toda 0017: e meter	ot sa. 1 230A 52 ( No.: 5	Calibration	1201 Hd : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 : 1201 :	4 ,   2  4 4  = 4,00 &  2 = 10,14 & Co tion:	12/15/41,13	1 100 mesured 711 2
Sa pl Sp	mpling H meter pecific or	equipmen Ori No. <u>SN</u> onductanc	t: Non Toda 0017: e meter	ot sa. 1 230A 52 ( No.: 5	Calibration	(12/1 ph 401 = n: ph 1901 = 11 122 = 22 5 Calibration:	4 ,   2    4   = 4,00	1   12   15   19   13   19 C 13   19 C 13   19 C 15   18 C 15   18 C 16   18 C 17   18 C 18 C	1 400 meswed 711 2 250 (1000 mmhrs 2) 14
Sa pl Sp	mpling H meter pecific or	equipmen Ori No. SN onductance eter No.: Pumping Rate	t: Non Toda 0017: e meter	ot sa. 1 230A 52 ( No.: 5	Calibration	(12/1  ph 4-01  ph 4-01  ph 1001  (1 122  22.5 Calibration:  S.C.  mbox/ca	4 ,   2   14 4  = 4, 00 = 18 = 10,   4 = 2 tion:	12/15/41,13	1 100 mesured 711 2
Sa pI Sp	mpling H meter pecific of	equipmen Ovi No. SN onductance eter No.:	t: Non Thole 0017: e meter No pe	No: 50	Calibration Wash Hode Wash Hode Sop 1.04C	(12/1 pH 4-01 pH 101 11 122 12 2 Calibration:	4 ,   2   14 4  = 4, 00 = 18 = 10,   4 = 2 tion:	1   12   15   19   13   19   19   19   19   19   19	HOO me swed hill a 250 (1040 parks 20 14.
pi Sp F.	mpling H meter pecific of	equipmen Ori No. SN onductance eter No.: Pumping Rate	t: Non Thole 0017: e meter No pe	PH 5.78	Calibration Wash Hode Wash Hode Sop 1.04C	(12ft  ph 401  ph 401  ph 101  (172  22 5 Calibra  alibration:  S.C.  mbos/ca  E°C  807	4 ,   2    4 4  = 4,00	ond Star preserved	Physical Description of Wester
pi Sr F:	mpling H meter pecific co T.U. me	equipmen Ori No. SN onductance eter No.: Pumping Rate gpm	t: Non Thole 0017: e meter No pe	PH 5.78	Calibration  Franchischer  Calibration  Franchischer  Calibration  Cal	(12/1  pH 4-01  pH 16-01  11 122  22 3 Calibra  alibration:  S.C.	4 ,   2    4   = 4, 00	on of H ₂ O moved	Physical Description of Water  14. brown of 14.
pH Sp F.	Time	Pumping Rate  \$2.25	t: Non Thole 0017: e meter No pe	PH 8.38 8.38 8.38 8.38 7.34	Temp.  Calibration  Temp.  Call  Table	(12f1  ph 401  ph 401  ph 401  1 122  22 5 Calibra  alibration:  S.C.  mhos/ca  a ° C  807  455	4 ,  2     4   = 4,  0    2    = 10,  4	Casing Vol.	Physical Description of Water  H. brown .: 1 by  11
pi Sr F:	mpling H meter pecific of T.U. me	equipmen Ori No. SN onductance eter No.: Pumping Rate gpm	t: Non Thole 0017: e meter No pe	PH 8.78 7.74	Calibration Wash Hode IN 98/14 Sop 2.0fC	(12/1  pH 4-01  pH 4-01  pH 18-01  11 122  22 3 Calibra  alibration:  S.C.  anhos/ca  E°C  807  455  675	4 ,  2     4    = 4, 00	Caring Vols	Physical Description of Wester  H. brown .: 14
pi Sr F:	Time  142-2 142-7 142-8 1431	Pumping Rate  \$2.25	t: Non Thole 0017: e meter No pe	PH   5.78   7.74   7.75   7.86	Temp.  *C  U-1  7-1  7-1  7-1	(12f1  ph 401  ph 401  ph 401  1 122  22 5 Calibra  alibration:  S.C.  abox/ca  a ° C  807  455  675  673	4 ,   2    4	Casing Vols	Physical Description of Water  H. brown .: 1 by  11
pH Sp F.	mpling H meter pecific of T.U. me	Pumping Rate  \$2.25	t: Non Thole 0017: e meter No pe	PH 8.78 7.74	Calibration Wash Hode IN 98/14 Sop 2.0fC	(12/1  pH 4-01  pH 4-01  pH 18-01  11 122  22 3 Calibra  alibration:  S.C.  anhos/ca  E°C  807  455  675	4 ,  2     4    = 4, 00	Caring Vols	Physical Description of Water  H. brown Silly  11
pi Sr F:	Time  142-2 142-7 142-8 1431	Pumping Rate  \$2.25	t: Non Thole 0017: e meter No pe	PH   5.78   7.74   7.75   7.86	Temp.  *C  U-1  7-1  7-1  7-1	(12f1  ph 401  ph 401  ph 401  1 122  22 5 Calibra  alibration:  S.C.  abox/ca  a ° C  807  455  675  673	4 ,   2    4	Casing Vols	Physical Description of Water  H. brown Silly  11
pi Sr F:	Time  142-2 142-3 142-8 1431	Pumping Rate  \$2.25	t: Non Thole 0017: e meter No pe	PH   5.78   7.74   7.75   7.86	Temp.  *C  U-1  7-1  7-1  7-1	(12f1  ph 401  ph 401  ph 401  1 122  22 5 Calibra  alibration:  S.C.  abox/ca  a ° C  807  455  675  673	4 ,   2    4	Casing Vols	Physical Description of Water  H. brown Silly  11
pi Sr F:	Time  142-2 142-3 142-8 1431	Pumping Rate  \$2.25	t: Non Thole 0017: e meter No pe	PH   5.78   7.74   7.75   7.86	Temp.  *C  U-1  7-1  7-1  7-1	(12f1  ph 401  ph 401  ph 401  1 122  22 5 Calibra  alibration:  S.C.  abox/ca  a ° C  807  455  675  673	4 ,   2    4	Casing Vols	Physical Description of Water  H. brown Silly  11
pH Sp F.	Time  142-2 142-3 142-8 1431	Pumping Rate  \$2.25	t: Non Thole 0017: e meter No pe	PH   5.78   7.74   7.75   7.86	Temp.  *C  U-1  7-1  7-1  7-1	(12f1  ph 401  ph 401  ph 401  1 122  22 5 Calibra  alibration:  S.C.  abox/ca  a ° C  807  455  675  673	4 ,   2    4	Casing Vols	Physical Description of Water  H. brown Silly  11
pH Sp F:	Time  142-2 142-3 142-8 1431	equipmen Ori No. SIN onductance eter No.: Pumping Rate SP	t: Non Thole 0017: e meter No pe	PH 8.384 7.34 7.36 7.86	Temp.  *C  U-1  7-1  7-1  7-1	(12f1  ph 401  ph 401  ph 401  1 122  22 5 Calibra  alibration:  S.C.  abox/ca  a ° C  807  455  675  673	4 ,   2    4	Casing Vols	Physical Description of Water  H. brown Silly  11

(4011-400-4022) (GW2REVJ)(09-10-91)

Page	2	of	2
1270	4	•	-

	_							٠ .	·	
						East				
		_						Date	e well development	<u>-/</u> 14(4) /
						·				
	Ground e	elevation: l	Est:			Survey:			·	<b>-</b> .
`.	Measurin	ng point (M	LP): Top	of we	ll casing/of	ber:			_ Well stick up:	<u> </u>
	Water le	vel (below	MP): S	Start:	5.96 (12/H)	32212/11	Fnd:	t messwed (12	114) 6.78(12/K) 6.2	(INWAN)
	Well dep	th (below)	MP): _	6.95 6.78	L12/15/4	1	w	ater elevation	on (BGS)	_
	Method t	used to me	asure w	ater lev	æl:		E	stimated reci	harge rate:	
	Volume	of saturate	d annuli	us (assu	ıme 30 per	cent porosity):				<del>_</del> ,
	Volume (	Calculation	Ľ			· · · · · · · · · · · · · · · · · · ·				
	Quantity	of water u	sed duri	ing dril	ling:	85 (1244)		·		_
	Depth of	sediment	(below !	MP): B	efore:	85 (1244) 178 (1215)		After:	out measured 12/14	
1	-			-				`		<u>.</u>
	Sampling	equipmen	t:						·	
1						17.7		_		
	nH meter	Orio	model	200A   9	Calibration	PH 4.01 = 7	9.70 20 10.7-	ሮ ያለክረ ምር	00 = 7.08 P11.9°C	
	pH meter	No. Sie	n Market J 00224	19	Calibration	pH 4.01 = 4 172	9.79 20 10.	Top Muchinity state	= 1000 mulgin 250	e) hallet
	pH meter	NoSte	n model 1 00224 c meter						= 7.08 D11.400 = 1000 ambos ad 250 1042 D 9.600	e) ialuk
	pH meter	NoSte	n model 1 00224 c meter			23 Calibration:				- )ialmh
	pH meter	NoSte	n model 1 00224 c meter					· ·		
	pH meter	No. Str.	n model 1 00224 c meter				Com. V	· ·	· · ·	
	pH meter Specific of F.T.U. m	No. Ste	medel 1 00224 e meter		Temp.	alibration:	Com. V	ol. of H ₂ O	Physical Description of Water	
	pH meter Specific of F.T.U. m	No. Sir conductance seter No.:	medel 1 00224 e meter		Temp.	s.C.	Cum. V.	ol. of H ₂ O noved Casing Vols.	Physical Description of Water	producing (
4/9/	pH meter Specific of F.T.U. m	No. Sir conductance seter No.:	medel 1 00224 e meter	PH	Temp. °C	S.C.	Com. V. Res	ol. of H ₂ O noved Casing Vols.	Physical Description of Water  d.K. brown alley	tuinpad s. Ma
	pH meter Specific of F.T.U. m	No. Sir conductance seter No.:	e meter	pH 	Temp. °C	sc.  sc.  sc.  sc.  sc.  sc.  sc.  sc.	Com. V. Res	ot of H ₂ O moved  Casing Vots.  3  3 4	Physical Description of Water  d.K. brown a by	producing (
4/9/	pH meter Specific of F.T.U. m	No. Sir conductance seter No.:	e meter	PH 4.51 4.51 4.55 4.07	Temp. "C"  \$-3  \$-5  \$-5	s.C. mbox/cm e.°C  673 630 723	Came. V. Rev. Gallons 1. 5 . 7. 75 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 .	cal of H ₂ O moved  Casing Vota.  3 3 4 4 4 7 2	Physical Description of Water  d.E. brown , a liky or a	ked well is producing
4/9/	pH meter Specific of F.T.U. m	Pumping Rate gpm	e meter	PH 9.51 9.52 9.65 7.69 7.44 7012	Temp. *C  \$.3  \$.5  \$.5  \$.5	S.C.  S.C.	Com. V. Res Galloss 1.5 1.75 2 2.15 2.7	cal of H ₂ O moved  Casing Vota.  3  3 4  4  4 9  6	Physical Description of Winter  d.E. brown ships  or  frame for the parallel in	tuinpad s. Ma
4/9/	pH meters Specific of F.T.U. m  Time:  1354  1351  1351  1351  1351  1351	r No. Sir conductance seter No.:	medel 1 00224 e meter	PH 9.51 9.55 9.65 7.44 2012	7:mp. 7:3 7:5 5:5 5:6 5:7 6:4	s.c.  s.c.  mbox/cm  c.c  c.c  c.c  c.c  c.c  c.c  c.c	Came. V. Rev. Gallons 1. 5 . 7. 75 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 .	cal of H ₂ O moved  Casing Vota.  3 3 4 4 4 7 2	Physical Description of Water  d.E. brown , a liky or a	worked well is producing
4/9/	pH meters Specific of F.T.U. m  Time  1354  1354  1354  1354  1355  1354  1354  1354  1354  1354  1354	Pumping Rate gpm	medel 1 00224 e meter	## ### ###############################	7:mp. 7:3 7:5 7:5 7:4 7:4 7:4	S.C.  S.C.  Shootcan  C'C  C73  630  723  717  719  9/6	Com. V. Res Galloss 1.5 1.75 2 2.15 2.5	ol. of H ₂ O moved  Casing Vols.  3  3 Vs.  4  4 Vs.  5Vs.	Physical Description of Winter  d.E. brown allow  or description of the property of the personnel of the per	orked well is producing
4/9/	pH meters Specific of F.T.U. m  The  1354  1351  1351  1351  1507	r No. Sir conductance seter No.:	medel 1 00224 e meter	9.52 9.55 7.09 7.14 7.12 7.20	7:3 7:3 7:5 5:6 5:4 5:7 6:7	sc mbos/cm e°C 673 630 723 717 719 914 944	Com. V. Rev. Gallons 1. 5 1.35 2.35 2.55 2.55	cal of H ₂ O moved  Casing Volu.  3 3 4 4 4 5 5 5	Physical Description of Water  d.E. broom, ally  or  distributes  in  in  it	worked well is producing
4/9/	pH meters Specific of F.T.U. m  Time  1354  1354  1354  1354  1354  1507  1513	r No. Sir conductance seter No.:	medel 1 00224 e meter	7.51 7.55 7.07 7.14 7.12 7.24 7.20 7.20	7 cmp. "C  3.3  5.5  5.6  5.4  6.7  6.7	S.C.  S.C.	Com. V. Rev. Gallons 1.5 1.75 2 2.15 2.5 3 3.25	ol of H ₂ O moved  Casing Vols.  3  3 Vs.  4  4 Vs.  5Vs.	Physical Description of Winter  d.E. brown silby  01  15  10  14  14  15  16  11	worked well is producing
4/9/	pH meters Specific of F.T.U. m  The  1354  1354  1354  1354  1354  1507  1513	Pumping Rate gran	medel 1 00224 e meter	7.52 7.67 7.44 7.12 7.24 7.20 7.20	7 cmp. "C  3.3  5.5  5.6  5.7  6.7  6.7	SC.  SC.  SC.  SC.  SC.  SC.  SC.  SC.	Com. V. Rev. Collors 1. 5 . 7.25 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2	Casing Vota.  3 3 V2 4 4 V2 5 V3	Physical Description of Water  d.E. broom, ally  or  distributes  in  in  it	e suge block on ES moduling years to have well is producing
4/9/	pH meters Specific of F.T.U. m  Time  1354  1354  1354  1354  1354  1507  1513	Pumping Rate gran	medel 1 00224 e meter	7.51 7.55 7.07 7.14 7.12 7.24 7.20 7.20	7 cmp. "C  3.3  5.5  5.6  5.4  6.7  6.7	S.C.  S.C.	Com. V. Rev. Gallons 1.5 1.75 2 2.15 2.5 3 3.25	ol of H ₂ O moved  Casing Vols.  3  3 Vs.  4  4 Vs.  5Vs.	Physical Description of Water  d.E. brown , a'lthy or description of the second of the	worked well is producing

Name _

## **GROUNDWATER LEVELS** MEASUREMENTS/CALCULATIONS

			ROCKY FL	A12 PROJECT	Revision 1.2
				ON I BBI HILLSIDE	
			Date	19/9/	
			Personnel 1.	S.CONGLAN	
			2	C. RIENILLIS	
Manufacturer	SOLINST	Model	101	Serial No. 10373	
Date Passed_	12/3/91		Date Due	3/3/92	

**EQUIPMENT:** 

CALIBRATION: QC REVIEW:

Well No.	-Tout	TOWC	
土	WD _p (۲+)	WLD _e (t+)	Comments
Measurement 1	2.84	7.09 6.75	
Measurement 2	2.84	7.05 6.75	
Measurement 3	2.84	7.65 6.75	
	2.84 Average WD	Schalej 705 6.75 Average MTD	+ 0-30 = 7.05 SEC  Probe End ^d TD ^o Chk'd by
	Average WD	Average MID	Proce End 1D Chk a by
Well No.			
<u> </u>	WD _p	MTD ^c	Comments
Measurement 1	2.94	6.63	
Measurement 2	2.94	6.63	
Measurement 3	2.94	6.63	
	2.94	6.63	+ .3 - 6.93 550
	Average WD	Average MTD	Probe End ^d TD ^e Chk'd by
Well No.			
<b>I</b> 3	WD ^b	MTD ^c	Comments
Measurement 1	3.05	6.78	
Measurement 2	3.05 -	6.78	
Measurement 3	3.05	6.78	•
	3.05	6.78	+ .3 = 7.08 SEC
	Average WD	Average MTD	Probe End ^d TD° Chk'd by

actes:
TOWC = top of well casing
WD = depth to water from MP
MTD = measured total depth from MP
Probe End = kength beyond measuring point on probe
TD = total depth of well from MP

tex:
All measurements are relative to Mark Point (MP) = north side of TOWC
QC review by supervisor is a check of reasonableness
Measurements 1 and 2 must be within .01 ft of a 3rd measurement must be taken

Revision 1.2

### **GROUNDWATER LEVELS** MEASUREMENTS/CALCULATIONS

**ROCKY FLATS PROJECT** 

Page	2	3	5
------	---	---	---

		Project No	_
		Personnel 1. S. CONDRAN	_
•		2 C. BIENILUS	_
EQUIPMENT:	Manufacturer SOUNST	Model 101 Serial No. 10373	_
CALIBRATION:	Date Passed 12/3/9/	Date Due	_
OC REVIEW:	Name	Date	



Well No.	TOUC	Touc	!
I†	WDb(ft)	MTDe A	Comments
Measurement 1	3,09	4.85	
Measurement 2	3.09	6.85	
Measurement 3	3.09	6.85	
	3.09	6.85	+ 0.3 = 7.15 SEC
	Average WD	Average MTD	Probe End ^d TD ^e Chk'd by
Well No.			
15	WD _p	MTD ^c	Comments
Measurement 1	3.15	6.92	
Measurement 2	3.15	4.52	
Measurement 3	3.15	6.92	
	2.15	6.92	+ 0.3 = 7.22 SEC
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by
Well No.			
01	WD ^b	MTD ^c	Comments
Measurement 1	2.74	6.67	
Measurement 2	2.74	6.67	
Measurement 3	2.74	6.67	•
		, , ,	
	2.74	6.67	+ 613 = 697 SEC
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by

reconsister.

A = TOWC = top of well casing

b = WD = depth to water from MP

c = MTD = measured total depth from MP

d = Probe End = length beyond measuring point on probe

e = TD = total depth of well from MP

All measurements are relative to Mark Point (MP) = north side of TOWC OC review by supervisor is a check of reasonableness.

Measurements 1 and 2 must be within .01 ft of a 3rd measurement must be taken

Page 375

ROCKY FLA	Revision 1.2	
Project No	ONI BHI HILLSIDE	
Date	2/9/91	
	3, CONDRAN	
	C. BIENILUS	

**EQUIPMENT:** 

Manufacturer Sources Model 10 | Serial No. 10373 Date Duc __ 2/2/91_ Date Passed 12/2/11

CALIBRATION: QC REVIEW:

Date ____ Name ____



Well No.	TOUC	<b>⊴</b> buc	
02	WD*(A)	MTDecft	Comments
Measurement 1	2.40	6.59	
Measurement 2	2.40	6.59	
Measurement 3	2.40	6.59	
	2.40	6.59	+ 0.3 = 6.89 Sec
	Average WD	Average MTD	Probe End ^d TD ^e Chk'd by
Well No.			
03	WD ^b	MTD ^c	Comments
Measurement 1	2.88	6.47	
Measurement 2	2.88	6.47	
Measurement 3	2-88	10.47	
	2.88	647	+ 0.3 = 6.77 SEC
	Average WD	Average MTD	Probe End ^d TD ^e Chk'd by
Well No.			
04	WD ^b	MTD ^c	Comments
Measurement 1	2.89	6.64	
Measurement 2	2.89 -	4.66	
Measurement 3	2.85	10.66	•
	2.89	6.66	+ 0.3 = 6.96 sic
	Average WD.	Average MTD	Probe End ^d TD ^o Chk'd by

- TOWC = top of well casing
  WD = depth to water from MP
  MTD = measured total depth from MP
  Probe End = length beyond measuring point on probe
  TD = total depth of well from MP

- All measurements are relative to Mark Point (MP) = north side of TOWC OC review by supervisor is a check of reasonableness.

  Measurements 1 and 2 must be within .01 ft of a 3rd measurement must be taken

Page 485

		Project No. OH ( BB) HILLS OF
		Date 12/9/91
	•	Personnel 1. 2. CONDER V
		2 C. BIENIALLS
•	_	
EQUIPMENT:	Manufacturer Socials	Model Serial No
CALIBRATION:	Date Passed 12/3/1/	Date Due 3/3/4 2
QC REVIEW:	Name	Date



Well No.	40 MC	TOUC	
05	WDb (A)	MTD*(A)	Comments
Measurement 1	2.90	. 6.59	
Measurement 2	2.90	6.59	•
Measurement 3	2.50	6.59	
	2.50	6.59	+ 0.3 = 6.89 50
	Average WD	Average MTD	Probe End ^d TD ^a Chk'd by
Well No.			;
El	WD ^b	MTD ^e	Comments
Measurement 1	2.68	4.73	
Measurement 2	2.68	6.73	
Measurement 3	2.68	6.37	
	2.68	6.73	+ 03 = 7.03 56
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by
Well No.		·	
E2-	WD _p	MTD ^e	Comments
Measurement 1	2.58	6.62 6.92	
Measurement 2	2.58	0.626.9/2	
Measurement 3	2.58	6.626.Fiz	
	2.58	56/92	+ 0.3 - 6.92 560
	Average WD	Avepage MTD	Probe End ^d TD ^e Chk'd by

Footnotes:

A = TOWC = top of well casing

b = WD = depth to water from MP

c = MTD = measured total depth from MP

d = Probe End = length beyond measuring point on probe

c = TD = total depth of well from MP

tes:
All measurements are relative to Mark Point (MP) = north side of TOWC
OC review by supervisor is a check of reasonableness.
Measurements 1 and 2 must be within .01 R of a 3rd measurement must be taken

Page 535

ROCKY FLATS PROJECT	Revision 1.2
Project No. Out BOI HILLSIDE	
Date 12/9/9/	
Personnel 1. 5. CowdeAn	
2 C. BIENIULLS	

**EQUIPMENT:** CALIBRATION: Manufacturer SouthST Model 10) Serial No. 10543 Date Due 3/3/42 Date Passed 12/3/41

Date _

**OC REVIEW:** 

	Well No.	10m G	TOUC	
	E3	WDb (ft)	MTD ^e (f+)	Comments
	Measurement 1	3.75	. 6.67	
	Measurement 2	3.75	4.67	•
	Measurement 3	3.75	6.67	
		3.75	6.67	+ 0.2 = 6.17 Sec
		Average WD	Average MTD	Probe End ^d TD ^e Chk'd by
	391-H N-			
	Well No.	WD ^b	MTD ^e	Comments
		3.96		Conditions
	Measurement 1	3.96	4.32	
	Measurement 2		6.72	
	Measurement 3	3.96	6.72	
i		3.96	6.72	+ 0.3 = 7.02 56
		Average WD	Average MTD	Probe End ^d TD ^o Chk'd by
	Well No.	·		
	84	WD ^b	MTDe	Comments
	Measurement 1	3.69	6.32	
	Measurement 2	3.69	6.32	
•	Measurement 3	3.65	6.32	
		3.69	6.32	+ 0.3 = 6:67 5 ^c
		Average WD	Average MTD	Probe End ^d TD ^o Chk'd by



TOWC = top of well casing
WD = depth to water from MP
MTD = measured total depth from MP
Probe End = length beyond measuring point on probe
TD = total depth of well from MP

All measurements are relative to Mark Point (MP) — north side of TOWC OC review by supervisor is a check of reasonableness.

Measurements 1 and 2 must be within .01 R of a 3rd measurement must be taken

Page 125

			ATS PROJECT	Revision 1.2
		Date		
			T. SINDELAR	
		. 2	J. GEIST	
	_		Form filled and by S. Conde	
EQUIPMENT:	Manufacturer SOLINST	Model 10 )	Serial No. 10373	
CALIBRATION:	Date Passed	Date Due _	3/3/12	
QC REVIEW:	Name	Date		



			•
Well No.	TOWC	TOUC	
エー	WD ⁶ (f+)	MTD*(f+)	Comments
Measurement 1	3.19	Not measurel	
Measurement 2	3.19		
Measurement 3	3.19		
	3.19		
		Average MTD	Probe End TD Chk'd by
Well No.			
<b>I</b> 2	WD ⁶	MTD ^e	Comments
Measurement 1	3.30	Not measured	•
Measurement 2	330		
Measurement 3	3.30		
	3.30		+ • SEC
	Average WD	Average MTD	Probe End® TD® Chk'd by
Well No.			
<b>T3</b>	WD ⁶	MTDe	Comments
Measurement 1	3.41	not measured	·
Measurement 2	3.41		
Measurement 3	3.41		
	3.41		+
	Average WD	Average MTD	Probe End ^d TD ^e Chk'd by

notes:
TOWC = top of well casing
WD = depth to water from MP
MTD = measured total depth from MP
Probe End = length beyond measuring point on probe
TD = total depth of well from MP

ROCKY FL	ATS PROJECT	Kevision 1.2
Project No.	ONI BBI HILLSIDE	
Date	12/14/91	
	T. SINDZAR	· · · · · · · · · · · · · · · · · · ·
	T LEIST	
	Form fixed and by S. O.	ndran
101	Serial No. 10373	
Date Due	3/3/12	
Dete	ŧ	

EQUIPMENT: CALIBRATION: QC REVIEW:

Manufacturer SOLINST Model Name _



	•		
Well No.	TOWC	TOWC.	
14	WDb (f+)	MTD*(#+)	Comments
Measurement 1	3,44	not measured	
Measurement 2	3.46		
Measurement 3	3.46		
	3.44		+ sec_
	Average WD	Average MTD	Probe End ⁴ TD ^e Chk'd by
Well No.	·		÷;
15	WD ^b	MTD ^c	Comments
Measurement 1	3.50	Not mescure!	
Measurement 2	3.50		·
Measurement 3	3 50		
	1 = -		<u> </u>
	3 5 0 Average WD	Average MTD	Probe End ^d TD ^e Chk'd by
Well No.		·	Comments
01	WD ^b	MTDe	Comments
Measurement 1	3.10	not measured	
Measurement 2	3.10	<b></b>	
Measurement 3	310		
	3.10		+
	Average WD	Average MTD	Probe End ^d TD ^e Chk'd by

notice:
TOWC = top of well casing
WD = depth to water from MP
MTD = measured total depth from MP
Probe End = length beyond measuring point on probe
TD = total depth of well from MP

tes:
All measurements are relative to Mark Point (MP) = north side of TOWC
QC review by supervisor is a check of reasonableness.
Measurements 1 and 2 must be within .81 R of a 3rd measurement must be taken

Thyc 3 of 5

			ATS PROJECT	Revision 1.2
	•	Project No.	CK I BBI HILLSIDE	<u> </u>
		Date		
		Personnel 1	T. SINOZAR	
		2	TGEIST	
• .			Form fixed and by S. Com	dran .
EQUIPMENT:	Manufacturer SOLINST	Model 101	Serial No. 10373	
CALIBRATION:	Date Passed	Date Due	3/3/12	
QC REVIEW:	Name	Date		



			·
Well No.	TOWC	TOWC .	
02	WD ^b (#)	MTD ^e (#)	Comments
Measurement 1	DKY	Not mesured	
Measurement 2			
Measurement 3			
	Average WD	Average MTD	+ Sx & Sx & Probe End ^d TD ^o Chk'd by
Wan Na			
Well No.	WD _p	MTD ^e	Comments
Measurement 1	DLY	Not measured	
Measurement 2			
Measurement 3			
			+ =
	Average WD	Average MTD	Probe End ^d TD ^e Chk'd by
Well No.			
04	WD ^b	MTDe	Comments
Measurement 1	3.28	pot me a sweet	
Measurement 2	3.28		
Measurement 3	7,28		
	3.28		+ <u>sce</u>
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by

Footnotes:

A = TOWC = top of well casing

b = WD = depth to water from MP

c = MTD = measured total depth from MP

d = Probe End = length beyond measuring point on probe

e = TD = total depth of well from MP

Next:

All measurements are relative to Mark Point (MP) — north side of TOWC

OC review by supervisor is a check of reasonableness

Measurements 1 and 2 must be within .01 R of a 3rd measurement must be taken

ROCKY FL	ATS PROJECT	KEARION I'Y
Project No.	ON I BBI HILLSIPE	<del></del>
Date	2/14/91	
Personnel 1.	T. SINDELAR	
2.	- 1 - 157	
	Form filled and by S. Cond	/hn .
101	Serial No. 10373	
Date Due	3/3/12	
Date		

**EQUIPMENT:** CALIBRATION: Manufacturer SOUNST Model_ 

QC REVIEW:

Name_

Well No.	TOWC	TOWC.	
05	WDb (ft)	MTD*(#+)	Comments
Measurement 1	3.26	not measured	
Measurement 2	3.26		
Measurement 3	3.24		
	3.24	, ,	+ <u>sec</u>
4	Average WD	Average MTD	Probe End ^d TD ^e Chk'd by
Well No.			•
EI .	WD ^b	MTDe	Comments
Measurement 1	5.14	7.04	· · · · · · · · · · · · · · · · · · ·
Measurement 2	3.14	2.04	·
Measurement 3	3.14	7.04	
Measurement 3	7.1	,	
	214	7.04	+ 550
	Average WD	Average MTD	Probe End TD Chk'd by
Well No.		MTDe	Comments
E2	WD6		
Measurement 1	2.91	6.92	
Measurement 2	2.91	6.92	
Measurement 3	2.91	4.92	
	2.51	6.92	+ = +
7.7	Average WD	Average MTD	Probe End TD Chk'd by

Footnotes:

A = TOWC = top of well casing

b = WD = depth to water from MP

c = MTD = measured total depth from MP

d = Probe End = length beyond measuring point on probe

e = TD = total depth of well from MP

dex.

All measurements are relative to Mark Point (MP) = north side of TOWC

OC review by supervisor is a check of reasonableness.

Measurements 1 and 2 must be within .81 R of a 3rd measurement must be taken

Manufacturer Sounst Model

Name

ROCKY FL	ATS PROJECT	Revision 1.24
Project No.	ON I BBI HILLSIDE	
Date	12/14/91	
Personnel 1.	T. SINOZAR	
2.	J. GEIST	
	Form fixed and by S. Candr	<u> </u>
101	Serial No. 10373	
Date Due	3/3/12	
Date		



**EQUIPMENT:** 

CALIBRATION:

OC REVIEW:

			•	
Well No.	TOWC	TOWC.		
E3	WD ^b (#)	MTD*(4+)	Comments	
Measurement 1	3.10	496		
Measurement 2	3.10	4.96		
Measurement 3	3.10	4.96		
	2 .0	0.90		
	3.10	Average MTD	Probe End ^d TD ^o	Chk'd by
	Average WD	Average M1D	Proce End 1D	Clik d by
Well No.				•
<b>E4</b>	WD ⁶	MTD ^e	Comments	
Measurement 1	3.28	690		
Measurement 2	3.28	6.70		
Measurement 3	3.28	6.70		
	0.48	. 20		SEA
	3.28	6,70	+ *	SEC.
學是自治療學者	Average WD	Average MTD	Probe End TD	Chk'd by
Well No.			,	
E5	WD ^b	MTDe	Comments	
Measurement 1	5.96	6.83		
Measurement 2	5A6 ·	6.83		
	5.9%	6.83		
Measurement 3	CAL	18-		5 eC
10 11 10 20	5.94	6.83	Probe End ^d TD ^o	Chk'd by
<b>W</b> .	Average WD	Average MTD		

Footnotes:

A = TOWC = top of well casing

WD = depth to water from MP

MTD = measured total depth from MP

Probe End = length beyond measuring point on probe

TD = total depth of well from MP

ents are relative to Mark Point (MP) = sorth side of TOWC

CREEK LL E5	DATA SET: ESPT.IN 03/18/92	AGUIFER TYPE: Unconfined SOLUTION METHOD: Cooper-Jacob TEST DATE: 12/18/91 TEST WELL: 03 OBS. WELL:	ESTIMATED PARAMETERS:  T = 0.1292 ft ² /min  S = 0.345  TEST DATA:  Q = 0.2019 ft ³ /min  r = 5.51 ft  b = 3.27 ft
Project No.: OPERABLE UNIT 1 Location: WOMAN CRE 881 HILLSIDE AQUIFER TEST - WELL	<b>置水11.1 加加11.1 加加11.1 1 2.0</b>	0.315 0.245 0.245 0.175	0.105 0.007 0.035 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Page	ŧ	of	5
------	---	----	---

			ATS PROJECT	Revision 1.2
		Project No.	ON I BEI HILLS IDE	
		Date	12/15/91	
		Personnel 1.	T. SINDRAR	
		2	T. SAVKO / C. BIENILL	15
		•	thorn filled out by 5. London	<del>.</del>
EQUIPMENT:	Manufacturer Sounst M	odel	Serial No. 10373	
CALIBRATION:	Date Passed 12/5/41	Date Due _	3/3/92	
QC REVIEW:	Name	Date		



Well No.	TOWC BEG IEND				
II.	WDb(f+)	MTD ^e	Соп	nments	
Measurement 1	3.30 / 3.33	N+ measured			
Measurement 2	3.30   3.33				
Measurement 3	3.30 / 3.33				
	3.30 3.33		+ = _		
	Average WD	Average MTD	Probe End ^d	TD°	Chk'd by
Well No.					
T2	WD ^b	MTD ^c	Соп	nments	
Measurement 1	3.41 /3.44	Not messared			
Measurement 2	3.41 13.44				
Measurement 3	3.41/3.44				
	3.41/3.44		+		
	Average WD	Average MTD	Probe End	TD°	Chik'd by
Well No.	_				
23	WD ^b	MTD ^c	Соп	nments	
Measurement 1	3.52 /3.59	Not me aswed			
Measurement 2	3.521 3.59	·			
Measurement 3	3521 3.59				
	3.521 3.59		+ = _		
	Average WD	Average MTD	Probe End ^d	TD°	Chk'd by

Poolster:

A = TOWC = top of well casing
b = WD = depth to water from MP
c = MTD = measured total depth from MP
d = Probe End = length beyond measuring point on probe
c = TD = total depth of well from MP

nex.
All measurements are relative to Mark Point (MP) = north side of TOWC
OC review by supervisor is a circk of reasonableness.
Measurements 1 and 2 must be within .01 ft of a 3rd measurement must be taken

	•	ROCKY FLATS PROJECT Revision	1.2
		Project No. On 1 281 HILLS 162  Date 12/15/41	<del></del>
		Personnel 1. T. SINDRAR	
		2 T. SAVKO / C. BIENILLUS	
• •	•	(form filled out by S. London)	
EQUIPMENT:	Manufacturer Sounst Model	Serial No	
CALIBRATION:	Date Passed 12/3/9/	, Date Due _ 3/5/9 2-	_
QC REVIEW:	Name	Date	



Well No.	TOWC BELLEND		
<b>I</b> 4	WDb(f+)	MTD ^e	Comments
Measurement 1	356 /359	shit measure !	
Measurement 2	3.56 1 3.59		
Measurement 3	3.56   3.59		
	356/359	,	•
	Average WD	Average MTD	Probe End ^d TD° Chk'd by
Well No.			
15	WD ^b	MTD ^e	Comments
Measurement 1	3.61 1 3.64	Not measured	
Measurement 2	3.61/3.64		
Measurement 3	3.411 3.64		
	3.61/3.64		+ *
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by
Well No.			·
01	WD ^b	MTD¢	Comments
Measurement 1	3,20 /3.24	Not measured	
Measurement 2	3.20 1 3.24		
Measurement 3	3.20/ 3.24		
	3.20/7.24		+
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by

rootnotes:

A = TOWC = top of well casing

b = WD = depth to water from MP

c = MTD = measured total depth from MP

d = Probe End = length beyond measuring point on probe

c = TD = total depth of well from MP

Notes:

Notes:

Notes:

Nall measurements are relative to Mark Point (MP) = north side of TOWC

OC review by supervisor is a check of reasonableness

Measurements 1 and 2 must be within .01 ft of a 3rd measurement must be taken

Name_

•		ATS PROJECT ON 1 EBI HILLS IDE	Revision 1.2
	Date	12/15/91	
	Personnel 1.	T. SINDRAR	
	2.	T. SAVKO / C. BIENILL	/5
		(form filled out by 5. London	·)
Manufacturer SOUNST	Model	Serial No. 10373	
Date Passed 12/5/41	Date Due _	3/3/92	
Name	Date		

**EQUIPMENT:** CALIBRATION:

QC REVIEW:

Well No.	TOWC BEL IEND WDb(ft)	MTDe	c	omments	
O2_ Measurement 1	5.33 /3.22	not measured			
Measurement 2	5.33/3.22				
Measurement 3	5.33/ 3.22				
	5.33/3.22		+		
	Average WD	Average MTD	Probe End ^d	TD°	Chk'd by
Well No.					
03	WD ^b	MTD ^c	c	omments	
Measurement 1	6.42/6164	Not measured	<u> </u>		
Measurement 2	6.42/6.64				
Measurement 3	6.4216.64				
	6.42/6.64		+ =		
	Average WD	Average MTD	Probe End ^d	TD°	Chk'd by
Well No.			·		
04	WD ^b	MTD ^c	c	omments_	
Measurement 1	3.36/3.38	Not measured			
Measurement 2	3.36/3.38	·			
Measurement 3	3.36/3.38				
	236/3.38		+ =		
	Average WD	Average MTD	Probe End ⁴	TD°	Chk'd by

Footnotes:

A = TOWC = top of well casing

b = WD = depth to water from MP

c = MTD = measured total depth from MP

d = Probe End = length beyond measuring point on probe

c = TD = total depth of well from MP

ites:

All measurements are relative to Mark Point (MP) = north side of TOWC

OC review by supervisor is a check of reasonableness

Measurements 1 and 2 must be within .01 R of a 3rd measurement must be taken

POCKY FLA	TS PROJECT	Revision 1.2
Project No	12/15/91	
Personnel 1.	1 SINDRAR	1115
2_	T. SAVKO / C. BIENILL	lan)

EQUIPMENT:

Serial No. _ 1037 3 Manufacturer SOUNST Model_ 

CALIBRATION: QC REVIEW:

Date Passed 12/5/9/

Date_

	TONC [®] (NP)
11	
	<b>4</b>
P   00	
V   2	

ne		. Date	
Well No.	TOWC BEL IEND		Comments
	WDb(ft)	MIDe	Conuncias
_ 05	3.38 / 3.40	Not measured	
Measurement 1	3.38/3.40		
Measurement 2			
Measurement 3	334 3.40		
	3.381 3.40		+ Chk'd by
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by
Well No.			Comments
EI	WD ^b	MTD ^c	-
	3.24 1326	Not measured	<u> </u>
Measurement 1			
Measurement 2	3 24 13.26		
Measurement 3	3.24/ 3.26		
大型学/A/A/A/A	1	1	l+
	3.24/9.26	1	Probe End TD Chk'd by
	Average WD	Average MTD	11000
1000			
Well No.	4		Comments
E2	WD ⁶	MTDe	
Measurement 1	4.73   5.84	Mot measure a	
Measurement 2	4.73 1 5.84		
Measurement 3	112-1 - 0		
		. 1	J+
	>		Probe End TD Chk'd b
<b>1</b>	Average WD	Average MII	

Footnotes:

A = TOWC = top of well casing

b = WD = depth to water from MP

c = MTD = measured total depth from MP

d = Probe End = length beyond measuring point on probe

e = TD = total depth of well from MP

Nex:
All measurements are relative to Mark Point (MP) = north side of TOWC
OC review by supervisor is a check of reasonableness.
Measurements 1 and 2 must be within .01 R of a 3rd measurement must be taken

Pega 50f5

# **GROUNDWATER LEVELS** MEASUREMENTS/CALCULATIONS

	•	ROCKY FL Project No.	ATS PROJECT	Revision 1.2
	-	Date	12/15/41	
	·	Personnel 1	T. SINDRAL	
		2	T. SAVKO / C. BIENILL	
		•	there filled out by S. London	~ <b>)</b>
EQUIPMENT:	Manufacturer SOUNST	Model	Serial No. 10373	
CALIBRATION:	Date Passed 12/3/41	Date Due	3/3/92	
OC REVIEW:	Name	Date		



Well No.	TOWC BEL IEND		
E3	WDb(fr)	MTD ^e	Comments
Measurement 1	322/323	Not measured	
Measurement 2	3.22/3.23		
Measurement 3	3221323		
	9.22/3.23	. ,	+ =
	Average WD	Average MTD	Probe End ^d TD° Chk'd by
Well No.			
E4	WD ^b	MTD ^c	Comments
Measurement 1	3.83/4.56	Not menured	· · · · · · · · · · · · · · · · · · ·
Measurement 2	3.8316.56		
Measurement 3	383/6.56		
	383/4.56		+ =
	Average WD	Average MTD	Probe End ^d TD° Chk'd by
Well No.			
E5	WD ^b	MTD ^c	Comments
Measurement 1	6.7816.24	not measured	
Measurement 2	6.781 6.24		
Measurement 3	4.78/ 6.24		
	e sel 1 - 4		_
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by

Footnotes:

A = TOWC = top of well casing
b = WD = depth to water from MP
c = MTD = measured total depth from MP
d = Probe End = length beyond measuring point on probe
c = TD = total depth of well from MP

All measurements are relative to Mark Point (MP) = north side of TOWC QC review by supervisor is a check of reasonableness. Measurements 1 and 2 must be within .01 ft of a 3rd measurement must be taken

#### FORM GW.LA

#### **GROUNDWATER LEVELS** MEASUREMENTS/CALCULATIONS

ROCKY FLATS PROJECT	Revision 1.2
Project No. ONI BEI HILLSIDE	•
Date 12/16/91	
Personnel 1. S. Compació	
2 T. SINDEWAL	

**EQUIPMENT:** CALIBRATION:

QC REVIEW:

Manufacturer Southist Model 101 Date Due _ 3/3/92_ Date _ Name ___



Well No.	TOWC		
II	WD ^b (F _t )	MTD ^e	Comments
Measurement 1	3.34	Not measured	
Measurement 2	334		
Measurement 3	3.34		
	3.3\$4	,	+ =
	Average WD	Average MTD	Probe End ^d TD ^a Chk'd by
Well No.			;
IZ.	WD ^b	MTDe	Comments
Measurement 1	3.45	Not measured	
Measurement 2	3.45	· .	
Measurement 3	3.45		
	345		+
	Average WD	Average MTD	Probe End ^d TD ^e Chk'd by
Well No.		:	
<b>£</b> 3	WD ^b	MTD ^e	Comments
Measurement 1	3.56	Not maswed	
Measurement 2	3.56		
Measurement 3	3.56		
	356		· ·
	Average WD	Average MTD	Probe End ⁴ TD ⁶ Chk'd by

Footnotes:

A = TOWC = top of well casting

b = WD = depth to water from MP

c = MTD = measured total depth from MP

d = Probe End = length beyond measuring point on probe

c = TD = total depth of well from MP

AR measurements are relative to Mark Point (MP) = north side of TOWC
OC review by supervisor is a check of reasonableness
Measurements 1 and 2 must be within .01 R of a 3rd measurement must be taken

Revision 1

Manufacturer Sounist

Date Passed ___

Name

12/3/11

#### **GROUNDWATER LEVELS** MEASUREMENTS/CALCULATIONS

Project No. ₂ Date	JULIAI
Personnel 1.	5. Compated
	T. SINDEWAL
odel /0 / Date Due _	Serial No. <u>10373</u>

ROCKY FLATS PROJECT:



**EQUIPMENT:** 

OC REVIEW:

CALIBRATION:

Well No.	TOWC		
<b>I</b> 4	WD ^b (4+)	MTD ^c	Comments
Measurement 1	3.60	Not measured	
Measurement 2	3,60		•
Measurement 3	3.60		
			_
	3.60	A	Probe End ^d TD ^o Chk'd by
	Average WD	Average MTD	Probe End ID CLICT
Well No.			<u>:</u>
15	WD ^b	MTD ^e	Comments
Measurement 1	3,45	not measured	
Measurement 2	3.65	·	
Measurement 3	3.65		•
	3.65	Average MTD	Probe End TD Chk'd by
2000 (10 · 10 · 10 · 10 · 10 · 10 · 10 ·	Average WD	Average M1D	Flore Litt
Well No.			·
01	WD ⁶	MTD ^c	Comments
Measurement 1	3.24	not mained	
Measurement 2	3.24	•	
Measurement 3	3.2f		
	3.29	August MTD	Probe End ^d TD ^a Chk'd by
	Average WD	Average MTD	11006 2310

Date

totex
TOWC = top of well casing
WD = depth to water from MP
MTD = measured total depth from MP
Probe End = length beyond measuring point on probe
TD = total depth of well from MP

tes:
All measurements are relative to Mark Point (MP) = north side of TOWC
OC review by supervisor is a check of reasonableness.
Measurements 1 and 2 must be within .01 R of a 3rd measurement must be taken

Revision 1.2

#### **GROUNDWATER LEVELS** MEASUREMENTS/CALCULATIONS

		•		OKI BUI HILLSIDE	
			Date/2		
			Personnel 1	S. Comordal	
	•		2	T. SIN DEHALL	
EQUIPMENT:	Manufacturer_	SOLINIST	Model _ / 0 /	Serial No	· · · · ·
CALIBRATION:	Date Passed	12/3/11	Date Due	3/3/92	
QC REVIEW:	Name		Date	.'	

**ROCKY FLATS PROJECT** 



Well No.	TOWC		
02	WD ^b (f+)	. MTD ^e	Comments
Measurement 1	3.23	Not measure!	
Measurement 2	3.23		
Measurement 3	3.23		
	3.23	, .	+
	Average WD	Average MTD	Probe End ^d TD ^a Chk'd by
Well No.			
03	WD ^b	MTD ^e	Comments
Measurement 1	6.22	not measured	
Measurement 2	6.22	·	
Measurement 3	6.22		
	6.22		+ <b>-</b>
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by
Well No.			
04	WD,	MTDe	Comments
Measurement 1	3.40	Not measured	
Measurement 2	3 40		
Measurement 3	3.40		
	3.40		· ·
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by

notex:

TOWC = top of well casing

WD = depth to water from MP

MTD = measured total depth from MP

Probe End = length beyond measuring point on probe

TD = total depth of well from MP

#### **GROUNDWATER LEVELS** MEASUREMENTS/CALCULATIONS

		•	Project No.	ATS PROJECT:	Revision 1.2
			Personnel 1 S. Compared  2 T. SIM DETAIL		
EQUIPMENT:	Manufacturer _	SOLINIT	Model _/o /	Serial No	•
CALIBRATION:	Date Passed	12/3/91	Date Due	3/3/92	
QC REVIEW:	Name		Date		



			·
Well No.	TOWC		
05	WD ^b (ft)	. MTD ^e	Comments
Measurement 1	3.41	not measured	
Measurement 2	3.41		
Measurement 3	3.41		
	3.41		
	Average WD	Average MTD	Probe End ^d TD ^a Chk'd by
Well No.			
E1	WD ^b	MTD ^e	Comments
Measurement 1	3.28	notmeasureu	
Measurement 2	3.28	·	
Measurement 3	3.28	· l	
	3.28		
	Average WD	Average MTD	Probe End ^d TD ^e Chk'd by
Well No.			·
EZ	WD ^b	MTD ^c	Comments
Measurement 1	3.08	Not reasured	
Measurement 2	3.08		
Measurement 3	3.08		
	3.08		+ <u></u>
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by

notes:
TOWC = top of well casing
TOWC = top of well casing
WD = depth to water from MP
MTD = measured total depth from MP
Probe End = length beyond measuring point on probe
TD = total depth of well from MP

Next:

All measurements are relative to Mark Point (MP) = north side of TOWC

OC review by supervisor is a check of reasonableness,

Measurements 1 and 2 must be within .01 R of a 3rd measurement must be

#### **GROUNDWATER LEVELS** MEASUREMENTS/CALCULATIONS

ROCKIFL	A15 PROJECT :	Kevision 1.2
Project No.	OH! BO! HILLSIDE	
Date		
Personnel 1	5. Comoadd	
	T. SINDEWAL	
	• •	
101	Serial No. 10373	
Date Due	3/3/92	
D-4-		

**EQUIPMENT:** CALIBRATION:

**OC REVIEW:** 

Manufacturer Sourist Model Date Passed _____ 12/5/91 Name



			·
Well No.	TOWC		
<b>E</b> 3	WD ⁶ (f+)	. MTD ^è	Comments
Measurement 1	3.25	Not measured	
Measurement 2	3.25		
Measurement 3	3.25		
	3.25		
	Average WD	Average MTD	Probe End ^d TD° Chk'd by
Well No.			
E4	WD ^b	MTD ^e	Comments
Measurement 1	3.50	Not measured	
Measurement 2	3.50	·	
Measurement 3	3.50	· ·	
	3.50		+ <b>-</b>
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by
Well No.			•
E5	WD ^b	MTDe	Comments
Measurement 1	3.92	Not measured	
Measurement 2	3.32		
Measurement 3	3.32		
	3.37-		+
	Average WD	Average MTD	Probe End ^d TD ^o Chk'd by

Postacts:

A = TOWC = top of well casing

b = WD = depth to water from MP

c = MTD = measured total depth from MP

d = Probe End = length beyond measuring point on probe

c = TD = total depth of well from MP

sex:

All measurements are relative to Mark Point (MP) = north side of TOWC
OC review by supervisor is a check of reasonableness;
Measurements 1 and 2 must be within .01 ft of a 3rd measurement must be taken

EG&G ROCKY FLATS PLANT EM/ER GROUNDWATER SOP Safety Related Category 1	Manual Procedure Page: Effective l Organizat	Date:	2.08, Rev. 0 33 of 43 October 29, 1991 ER&WM				
AQUIFER PUMPING TEST DATA SHEET SHOLE WELL STEP- DRAWDOW PUMPING TEST Page 1 of							
DATE 12 \03\91	PERSON RECORDING	BDATA S Conon	al				
WELL # 39891 Pump Trace! HYDROSTRATIGRAPHIC UNIT SCREENED INTERVAL	Woman Creek Valley  fit to 5.8 ft (from or se 12/214)  fit PUMPING WE	Fill Allutium	in				
ELAPSED TIME (Units) (p.n)	WATER LEVEL DIE	FFST. Q (pumping v					
2 1st Pumpine RATE  J  13	2.80 0 2.88 0.0 3.42 0.6	8 /100 mg/	243 11 0.065 245 11 0.065 2354 0.069				
	3.72 0.9	2					

etc.

EG&G ROCKY FLATS PLANT EM/ER GROUNDWATER SOP

Manual
Procedure No.:
Page:
Effective Date:
Organization:

2.08, Rev. 0 33 of 43 October 29, 1991 ER&WM

Safety Related Category 1

## AQUIFER PUMPING TEST DATA SHEET

Page 2 of 3

DATE 12 03 91	PERSON RECORDING DATA S. CONORAN				
WELL # _34891 HYDROSTRATIGRAPHIC UN SCREENED INTERVAL					
STATIC WATER LEVEL	ft PUMP	ING WELL I	Din	SEE PAGE 1	
DISTANCE TO PUMPING WE	ILLft				
TEST START TIME:_	:		5		
ELAPSED TIME (Units)(~~)	WATER LEV	TEL DIFF ST	Q (pumping well) (Units)(ml/sec)	(gpn)	
22		_	100/22.7 100/23.7 100/24.2	0.046	
26		1.15			
		-	100/233		
. 32	4.23	1. 4£3 scul3[9]	100/22.b "/232 _"/23.7		
etc. 32	440	1.46	"/22.8 "/22.6		
45	4.76	1.94	" / 23.8	·· o.ou.7	
(4011)(AQTEST)(10/29/91)			/ 23 3		

EG&G ROCKY FLATS PLANT Manual EM/ER GROUNDWATER SOP Procedure No.: 2.08, Rev. 0 Page: 33 of 43 Safety Related Effective Date: October 29, 1991 Category 1 Organization: **ER&WM** AQUIFER PUMPING TEST DATA SHEET Page 3 of 3 DATE 12 \03\ 91 PERSON RECORDING DATA _ 5 CONORAN WELL # 39891 HYDROSTRATIGRAPHIC UNIT ____ SCREENED INTERVAL _____ft to _____ft SEE STATIC WATER LEVEL _____fi PUMPING WELL LD. in PAGE 1 DISTANCE TO PUMPING WELL ft TEST START TIME ____:__: **ELAPSED TIME** WATER LEVEL Q (pumping well) (Units)(ml/44) (Units) (min) (Units)f+(roc) (gpm) ST. (ft) 5.09 2.29 100/238 0.000 " / 24.8 5.24 2.44 0.062 11 26.2 "/24.9 5.34 2.54 2nd pumping rate 5.40 0.080 2.60 "/20 " 119.6 " 119.7 5.90 "/27.0 0.057 . 128.3 1 / 28.3 1 / 28.8 70 3.10 (4011)XAQTESTX(10/29/91) 74 TEST END WELL IS DRY NEED TO RUN ANIMHER

STEP- DRAWDOWN FEST ---

Manual AG ROCKY FLATS PLANT 2.08, Rev. 0 Procedure No.: EM/ER GROUNDWATER SOP 33 of 43 Page: October 29, 1991 Effective Date: Safety Related **ER&WM** Organization: Category 1 Page 1 of 5 AQUIFER PUMPING TEST DATA SHEET SINGLE WELL STEP-PRANDOWN PUMPING TEST PERSON RECORDING DATA_ 5. CONDRAN DATE 12 \ 66 \ 9/ WELL # 19991 PRHP/TRACER TEST EVALUATION WELLPOINT HYDROSTRATIGRAPHIC UNIT Nonan Cok. Valley Fill Allarium 5.8 ft (Francoustry) SCREENED INTERVAL __ 0. 10 ft to _ 4 12/491 2.98 (10c) 2.6 ft PUMPING WELL I.D. in STATIC WATER LEVEL १८ । श्रेष्टीया Se 12/0/91 DISTANCE TO PUMPING WELL _SAME___ft TEST START TIME 10 : 20: 00 Graduated ag tindar Q (pumping well) ۵(بسبام عدا) WATER LEVEL **ELAPSED TIME** DIFF. STEP (gallian) Minates (Units) (ml/mi (Unite) (Pt) (TOC) (F+) 14/4/2100 2.78 2.00 -41 0.02 0.073 2. 355 41 100 m2 /48 ge 0025 2.005 100 m2/ 49.8 0.030 2.01 100/449.3 0.032 2.01 0.070 0.07 1 100/49-1 2.91 0470 10 0.00 3.045 100/47.0 2. 825 0.084 100/46.8

2.655

2.94

2.84

2.045

2.85

2.05

0.055

0.000

1160

0.045

007

1.13

100/ 47.9

100/47.2

100/44.3

100/96.2

100/45.7

1.030

0.00

0.031

0-0 H

243

0.033

0.074

2.024

0.034

0.035

(4011)(AQTEST)(10/29/91)

10

25

30

35

40

45

J&G ROCKY FLATS PLANT EM/ER GROUNDWATER SOP

٠.

Manual Procedure No.:

2.08, Rev. 0 33 of 43

Safety Related Category 1 Page: Effective Date: Organization: October 29, 1991 ER&WM

# AQUIFER PUMPING TEST DATA SHEET

Sende a

DATE 12 6 91	PERSON RECORDING DATA	APV	
WELL # _59691 HYDROSTRATIGRAPHIC UNIT	Woman Creek Valley Fill Allustiam		
SCREENED INTERVAL	_ft toft		SEE HEADER INFO. from Page 1
STATIC WATER LEVEL	_ft PUMPING WELL I.D	in (	Physi
DISTANCE TO PUMPING WELL	ft		
TEST START TIME:_		)	

ELAPSED TIME (Units) (Units)	STEP	(Units) (ft)(re	c) (ft)	(Units) (ml/signal)	(dellerie)
50		2.05	0.07	100/44 4·6	0.034 0.036
• /	1	2.05	0.07	100/45.4	0.034 0.035
60	- 1	2.65	0.07	100 / 44.7.	0.034 . 0.035
<u> </u>		2.85	4.04	100/ 45:0	4.034 0.035
		2.45	0.17	100 / 44.3	wast 0.03 F
	STEP Zal STEP	£ 2.05	0.07	100 / 43.6	A1546 0.05
_ 35	- 1	1.85	0.07	100 / 35.8	0.041 anti-
	STEP 2	2.555	0.075	100 / 35.1	0.0415 0.095
<u>n</u>		2.055	0.075	100 / 25.8	- 0.45 0.044
- 85	1	2.64	0.05	100 / \$4.0	6415 0.444
esc. 40	}	2.66	0.00	100/35.8	0.04
<u></u>	1	2.86	0.08	100/85.0	0.045
100	1	2.845	0.005	100] 34.8	1.42 0.046
<u> </u>	1	2.86	0.00	100/34.9	0.045
(4011)(AQTESTX10/29/91)				•	

Manual G&G ROCKY FLATS PLANT 2.08, Rev. 0 Procedure No.: EM/ER GROUNDWATER SOP 33 of 43 Page: October 29, 1991 Effective Date: Safety Related **ER&WM** Organization: Category 1 Page 3 AOUIFER PUMPING TEST DATA SHEET SHOUS WELL STEP PRAWOUNT PUMPIKE TEST PERSON RECORDING DATA S. Condran DATE 12 6 11 WELL # 3989 HYDROSTRATIGRAPHIC UNIT Worsen Greek Walley Fill Allumium SCREENED INTERVAL _____ft to ____ SEE HEADER PUMPING WELL I.D. in MFO. From STATIC WATER LEVEL _ PALE ! DISTANCE TO PUMPING WELL TEST START TIME ____:_ controlapinhan nester Q(quepir Q (pumping well) WATER LEVEL DUFF. **ELAPSED TIME** STEP (Units)(ml/mc) (Units) (f+)(m) (f+) (Units) (mutes) 0012 0,096 100/34.4 2.67 115 100/3A. ( 409 1.07 120 0.043 0.047 0.09 100/324 2.07 125 1.0FT mol 33 7 1.043 2695 0.095 130 0.047 100/33.7 0043 0.09 2.87 135 0.046 0.042 1483 2.57 0.09 1-134.7 0.00% 2.07 142 007 100/34.3 145 0042 0.046 W /342 0.09 1.67 150 0.04 L 0.016 0.09 2.07 155 100/ 279 0.057 0.053 0-09 2.07 140 100/23.0 0.053 1.057 0.10 2.77 etc. 165 0.053 0057 D.ll 100/23.7 120 malety 2.89 0.115 0.053 0.054 1257 2.695 100/27-4 140 1.12 0.05 F 100/27.6 0.053 185 2.895 0.057 0.115 0.053 100/274 (4011)(AQTEST)(10/29/91) 100 / 29.6 12 2.10 0.060 0.064

2.905

2.92

195

0.125

0.14

Jew The 12/0/11

0-065

0.04

G&G ROCKY FLATS PLANT Manual 2.08, Rev. 0 Procedure No.: EM/ER GROUNDWATER SOP 33 of 43 Page: October 29, 1991 Effective Date: Safety Related Organization: ER&WM Category 1 Page 4 AQUIFER PUMPING TEST DATA SHEET Sarah Confran PERSON RECORDING DATA __ DATE 12 6 91 WELL # 39691 HYDROSTRATIGRAPHIC UNIT Was Crt. way Fill Allunian SCREENED INTERVAL ______ft to ______ft PUMPING WELL LD. STATIC WATER LEVEL ft SEE INFO. PALEI DISTANCE TO PUMPING WELL _ TEST START TIME Graduatedaylader Q Awade Q (pumping well) WATER LEVEL **ELAPSED TIME** (Units) (frxx) Diff(ff) STEP (dam) (m18 (Units) (ml/ser) (Units) (minutes) (<del>I</del>) 0.175 0.065 100/244 0.061 200 2.955 0.06 5 100/24.5 140.0 205 2.94 0.18 0.044 0.18 0 460 100/24.4 2.96 210 0045 0.061 100/ 24.4 017 2.95 215 100/ 245 0.005 0.18 0.060 2.94 120 0.17 0.005 0.061 100/24.42 2.95 225 at whi STEP 5 0.27 100/19.0 3.05 230 0.00 E pure 100/19·4 235 0.39 • • 3.17 0.002 0.42 100/1914 ., 210 3.20 0.42 3.20 10/19.3 etc. 245 0.08 2 100/ 19.1 0.42 3.20 250 0.0\$3 0.45 100/19.1 3.21 255 0.454 . 0.083 100/17.1 3.282 200 0.43 0 .653 1,0119.2 245 (4011)(AQTEST)(10/29/91) 100/19.2 1.48 0.42 3-21 270 0.013 100 19.1 12 3.20 245 100/ 16.4 0.017 0.43 280 3.21

1.57

3.35

241

Manual EG&G ROCKY FLATS PLANT 2.08, Rev. 0 EM/ER GROUNDWATER SOP Procedure No.: 33 of 43 Page: October 29, 1991 Effective Date: Safety Related **ER&WM** Organization: Category 1 Tage & **AQUIFER PUMPING TEST DATA SHEET** SINOLE WELL SIGN DRAWPOWN TUMPING TEST PERSON RECORDING DATA S. Congrad DATE 12 \66 \ 91 WELL # 19991 PUMP! TRACER TOST EVALUATION WELL POINT HYDROSTRATIGRAPHIC UNIT WOMAN CREEK WILEY FILL ALLWINNA SCREENED INTERVAL 0.7 ft to 5.7 ft SEE HERVER STATIC WATER LEVEL ______ft PUMPING WELL I.D. IND From PAST 1 DISTANCE TO PUMPING WELL _____ft TEST START TIME anduchi odbiler FINE RUBER WATER LEVEL DEF. Q (pumping well) **ELAPSED TIME** ( ---(35m) (Units) f+ troe) (ft) (Units)(al/sec) STEP (Units) (menutes) gat of 2 Ranta 0.094 0.62 100/16.5 285 100/16.53 100/16.8 0.094 300 3.42 444 0.017 345 3.42 D-64 100/16.4 268 100/15-1 010 शि 3.46 310 0.10 315 3.55 474 100/15.2 257 479 100/15.2 0.10 320 •• 0.815 100/15.2 0.10 3.595 325 0.61 0.17 3.54 100/14.7 350 41 0.10 100/15.1 012 etc. 335 3.40 340 3.60 abl 100/14.8 0.11 345 2815 3.405 100/14.9 0.11 •• 350 4 835 100/15.1 7.605 0.10 SENT OFF FUMP 356 2.90 (4011)(AQTEST)(10/29/91)

RELOVERY

.

-Wall Number		_				
-Well Number:	Tun	ITEACER	TEST	ARRAY		

Date: 12/15/91 PAMEING RATES
All readings are depth to water from top of casing

AFTE TUMPING STOCKED	Reading Flow (feet)	-Time knight	Reading
Min : sec	(feet) SURINIAL		(feet)
		8 say 800 d.	
7135		1.6 6Pm	
7:43		46	
		3:14/5 sal	
13:45		1.55 GPm	
ל פו ופל		1.6	
36:20		1,6	
5-12 18 4		1,4	
34:55		l	
50:00		8:15/5 gel 1. 54 c 12/14	
Hrs: Min : Sec		422 (12/12/12	
:10:00		1.6	
127:00		1.6	
		3:30/5 Jul	
7:24:00		1.43	
		्राम् ग्रम् <b>श</b> ान्।	
3:15:00	•	irs	
V	·.	COMMENT 1-5	-
6:00:00		L5	
7:59:00			
8:00 5 12/19/91		1.5	
	•		
· :			
,	•		•
: .	· · · · · · · · · · · · · · · · · · ·		
			<del></del>
}		1	

EG&G ROCKY FLATS PLANT Procedure No.: 2.08, Rev. 0
EM/ER GROUNDWATER SOP Procedure No.: 33 of 43
Fage: October 29, 1991
Effective Date: ER&WM
Category 1

# AQUIFER PUMPING TEST DATA SHEET

DATE 12 \IR \91	PERSON RECORDING DAT	TA_S CONDRAN	
WELL #II HYDROSTRATIGRAPHIC UNIT SCREENED INTERVAL	fi to <u>L. 2</u> fi	<u>muill</u> u	
STATIC WATER LEVEL 3.37	fi PUMPING WELL I	Din	-
DISTANCE TO PUMPING WELL	5.15 ft (Survey 1/2/12)	•	
ELAPSED TIME	: 25  240 into test  00:01 elepsed time into test  WATER LEVEL  (Units)	Q (pumping well)(Units)	SEE ATTACHED
(Units)			SHEET (1)
			1

etc.

Project:	DNI HOI HILLSIDE		
Hydrogeologist:	5 Coworad		
Well Number:	II.		
Date:	12/18/41		
Static Water Level	3.37 (12)		
Stickup:	0.81 (masured) 1	7.82' (5-1104)	
	All readings are depth to	o water from top of car	sing

Time (FLAPSER)	Reading (feet)	TIME (ELAPSED) MR MIN SEQ	Reading (feet)
12:47 (1 min)	3.36	c1 35 30	3,50
4.30 mm	3.37	02 10 35	3,52
7 50	3.39	02 40 12	3,54
11 00	3.41	03/2/5	3.56
13 31	3.4/	034003	3.50
16 20	3,42	1415	3.60
19 00	3.42	4:59	3.60
25 56	3.43	5: 36	3.43
33 02	3. 43	6:07	3,64
45 64	3.44	<b>6</b> · 40	3.68
52 10	3.46	7:12	3.66
1:01 40	3 , <b>4</b> 6	7:49	3.69
DI: 15 : 13	3.22 x 12/13/41	8:03	3.W
(1 25:20		8.05	3,45

HK MIN TEC

Date:	12/18/11 All readings are	depth to wa	ter from top o	of casing	
Well Number:	<u></u>				

Time	Reading (feet)	Time	Reading (feet)
8-10.05	3.63	·	·
8:4:25	3.67		
8:26:01	3.61		-
<b>ટ</b> ઃ 34ઃ64	3.60		
B:46:50	360.		
<b>৭</b> ৩৪:50	3.57		
			***************************************
	•		
:	•		

EG&G ROCKY FLATS PLANT EM/ER GROUNDWATER SOP Safety Related Category 1	Procedure Page: - Effective D Organization	ate:	2.08, Rev. 0 33 of 43 October 29, 1991 ER&WM
	ER PUMPING TEST DAT	A SHEET	
DATE :2 \18 \ 91	PERSON RECORDING	DATA_S CONOR	<u>AN</u>
WELL # HYDROSTRATIGRAPHIC UN SCREENED INTERVAL			
STATIC WATER LEVEL 3.	fi PUMPING WE	LL I.D	in
DISTANCE TO PUMPING W	FIL 3.05 ft (Survey 1/21/92)	,	
TEST START TIME 12:	Pump started 2:40 see int Recovery started 8:00:01	o test elapsed time into tes	SEE ATTIPCHE
ELAPSED TIME (Units)	WATER LEVEL (Units)	Q (pumping (Units)	well)
	-		

(4011)(AQTEST)(10/29/91)

Project:	ONI BEI NILLSIDE			
Hydrogeologist:	3, Comoran			
Well Number:	I2	• •		_
Date:	12/18/41			_
Static Water Level	3.46'(Tec)		. w.	
,				

Stickup: 0.93 (musurel) 0.92 (smay)

All readings are depth to water from top of casing

Time  Miii SEC	Reading (feet)	Time (ELAPSED) WR MIN SEC	Reading (feet)
3.CE min	i	01 37 10	
6 20	3,50	02 11 40	3.64
9 35	3.50	0241 25	3.64
12 24	3.52	03 13 20	3.67
15 08	<i>3.5</i> 3	0341 15	3.69
17 43	3.53	4:15	3.70
20 39	3,53	4: 59	3.71
27 54	3.s4	5:36	3.74
34 11	3.54	טויט	3.14
44:30	3. <b>6</b> 0	6:40	3.74
53 K	3.57	7:11	3.77
1:03 25	3:58	7:49	3.78
CI: 19 16	3.60		
c1:27:01	3.60		

Well Number:	IL		
Date:	va I. alá.		

All readings are depth to water from top of casing

Time	Reading (feet)	Time	Reading (feet)
8.93.12	3.78		
B-06:34	3.13		
B: 11: c5	3.74	·	
8 व <b>ड</b> ै: 25	3.73		
8-24: 40	3.71		
8-74:00	3.70		
8-46:30	3.70		
9.201:25	367		
	•		
			·
· •			

### Manual EG&G ROCKY FLATS PLANT 2.08, Rev. 0 Procedure No.: EM/ER GROUNDWATER SOP 33 of 43 Page: October 29, 1991 Effective Date: Safety Related **ER&WM** Organization: Category 1 AQUIFER PUMPING TEST DATA SHEET PERSON RECORDING DATA _ 5 CONDRAN DATE 12 \18 \91 HYDROSTRATIGRAPHIC UNIT WOMAN CRK VALLEY FILL ALLEMAN PUMPING WELL LD. 3.575 ft DISTANCE TO PUMPING WELL 2.42 ft (Sarvey 16/12) TEST START TIME 12: 46: 25 Note: Pump started 2 min 40 sec after start time Recovery started 8:00:01 elapsed time into test Q (pumping well) WATER LEVEL **ELAPSED TIME** SEE (Units) (Units) (Units) ATTACHED SHEFT ()

(4011)(AQTEST)(10/29/91)

etc.

Project:	Ohi tei Hills	າດຕົ	
Hydrogeologist:	5. COMPEAN		
Well Number:	<u> 1</u> 3	••	
Date:	12/15/91		
Static Water Level	3.575 (mc)		
Stickup:	In a (messured)	1.05 (Survey)	
•	All readings are depth	to water from top of c	asing

Time N/A SEC	Reading (feet)	TIME (ELATSEP) HR MIN SEC	Reading (feet)
3.30 <u></u>	3.60	01 37 30	3. 73
6 37	3.6 <b>3</b>	02 11 59	3. 74
10 00	3.62	0241 40	3,78
12 42	3.64	03 13 30	3.80
15 24	3.65	03 41	3.82
18 04	3.66	4: 13	3.85
20 54	3,66	4:57	3.85
28 11	3.66	5:33	3.87
34 78	3.67	600	3.90
44: 10	3.7 <i>1</i>	6:37	3, 81
53 57	3.70	7:08	3.91
1: 03: 21	3.75	7.45	3.41
1:18.78	3,75		
(1: 27:36	3.73	,	·

Well Number:	 		
• -			

	e: 12/15/51 All readings are de	pth to water from top	of casing
. Time	Reading (feet)	Time	Reading (feet)
8:01:05	3.98		
8:04	3.70		
8:08:21	3.84		
1:16:20	3.82		
8:24.25	3.80		
8:30.21	3.50		
3-42:05	3,7 1		<u></u>
9:07:19	3.24		
-			
•			
7.			

# EG&G ROCKY FLATS PLANT EM/ER GROUNDWATER SOP Page: Effective Date: Category 1 Manual 2.08, Rev. 0 Page: October 29, 1991 Effective Date: ER&WM

# AQUIFER PUMPING TEST DATA SHEET

DATE 12 18 91	PERSON RECORDING	DATA_S CONORAN	
WELL # HYDROSTRATIGRAPHIC U SCREENED INTERVAL			
STATIC WATER LEVEL	3.61 ft PUMPING WE	IL I.D. 17 in	
DISTANCE TO PUMPING V	WELL 3.24 ft (Survey 1/2/22)	•	
TEST START TIME 12	: 46: 25 Note: Pump started 2 mi Recovery started 8.0	in 40sec after test start time to 0:01 elapsed time into test	
ELAPSED TIME (Units)	WATER LEVEL (Units)	Q (pumping well) (Units)	SEE ATTACHED SHEET(1)
			. (
			-
. •			
• • etc.			/

Project:	Oal SSI HILLSON	งษั	
Hydrogeologist:	5.conocan		
Well Number:	14	• ,	
Date:	12/18/191		
Static Water Level	3.61 (mc)		
Stickup:	1.02 (maswed)	1.06 (Survey)	· · ·
	All readings are depth	to water from top of cas	sing .

Time	Reading (feet)	Time	Reading (feet)
4:42	3.70	1:01:10	3.76
6.30	3.70	1:15:30	3.76
.e: 35	3.70	1:25:10	3.78
ند2: اا	3.70	1:35:25	3 82
ن3: 2ئ	3,70 <i>5</i>	2 · 10 · 33	<b>3</b> , 95
15:27	3.705	2:4=	3.85
/7 · 3c	3.7 <i>cS</i>	3 12	3 93
IS: 22	3.71	3:40	3.86
21 ' Z i	3.7/	411	3 88
25 30	3,75	4:13	3.90
28:50	3.72	4:57	3.88
35.40	3.74	5: 33	3.10
41.50	3.755	6:01	3.92
<b>53</b> :35 ¹	3.75	6:37	3. 94

Well Number:		
Date:	12/18/91	· ·
	All readings are depth to v	vater from top of casing

Time	Reading (feet)	Time	Reading (feet)
7:68	3,94		
7:4k	3,95		
801:20	3,94		
8:04:05	3.90		
508.09	3.88		
- 8:16:30	3.86		
8 24:40	3.84		
§ · 30:50	3,845		
r: 42:37	`3,83		
7:07:30	3.82		
	•		
	•		
* :• • •			

EG&G ROCKY FLATS PLANT

EM/ER GROUNDWATER SOP

Safety Related

Category 1

Manual

2.08, Rev. 0

Procedure No.:

Safety Related

October 29, 1991

Category 1

## AQUIFER PUMPING TEST DATA SHEET

DATE 12 \18 \ 91	PERSON RECORDING	DATA_S.EBNOISM	
WELL # IS HYDROSTRATIGRAPHIC UNI SCREENED INTERVAL		FILL MULLING	
STATIC WATER LEVEL _3.0	ft PUMPING WE	IL ID. 17 in	
DISTANCE TO PUMPING WE	11 5.38 ft (50/44) 1/2/12)		
TEST START TIME 12:4	te : Pumo started 2 min	40 sec offer test start time:	
ELAPSED TIME (Units)	WATER LEVEL (Units)		E McHED HEET(S)
		}	
•			
etc.			

Project: _	ONI BEI HILLSIDE		 	• • • • • • • • • • • • • • • • • • • •
Hydrogeologist: _	S.CENDEAN .	•		
Well Number: _	15	• •		
Date: _	12   18   9			
Static Water Level:	3.6( '/-pc)			

Stickup: 1.01 (maw(d) 1.03 (survey)

All readings are depth to water from top of casing

Time	Reading (feet)	Time	Reading (feet)
34 50 0	3.7a ′	1:01 25	3.82
-lm 35,11	5.40 L	1:15:45	3.84
<u>.5 i.a.</u>	3.75	1:25:30	3. <i>9</i> 3
G' 53	3.75	1:35:4P	3.845
8:52	3745	2 10 s. valueles	3.89
11:30	3.755	2:40	3.27
13:45	3.755	3:13	3,90
15:55	3.77	3: 40	3.94
17:44	3.77	4:12	3.945
14:40	3.80	4:55	395
ا ما	3.f =	5.33	3.96
36:05	3.795	L:61	3.18
42 00	3,80	6:37 30 12/15/41	3.98
54.08.	3.80	7:08	4,02

Well Number: __15

Date: 12/15/1/
All readings are depth to water from top of casing

Time	Reading (feet)	Time	Reading (feet)
7:46	402	·	
8 01:35	4.00		
8:04:05	3.48	·	
5:09:21	3.73		
9:14:55	3.92		
8:25:0+	3.90		
8:31:25	3.10		
8:43:63	3.59		
9:07:45	3.86		
	÷		
	:		
•			
	·		
	·		
			,

EG&G ROCKY FLATS PLANT EM/ER GROUNDWATER SOP

Safety Related Category 1

. Manual

Procedure No.:

Page: Effective Date: Organization:

2.08, Rev. 0 33 of 43

October 29, 1991 ERAWM

## AQUIFER PUMPING TEST DATA SHEET

DATE 12   19   91	PERSON RECORDING	DATA <u>s. comoran</u>	·
WELL #OI HYDROSTRATIGRAPHIC UNI SCREENED INTERVALI.2	T woman crk values	FILL ALLMINA	
STATIC WATER LEVEL 3.2	5 ft PUMPING WE	LL LDi	n
DISTANCE TO PUMPING WE	LL 4.51 ft (survey 1/2/52)	·	
TEST START TIME 12:40 Note: Pum Recov	10:25 up starkel 2 min 40 sec after very starkel 8:00:01 ele	kr test start time psed time into test	
ELAPSED TIME	WATER LEVEL	Q (pumping well)	
(Units)	(Units)	(Units)	SEE
			TLIBHS —
			- >
			_ (
			_ )
		***************************************	-
•			
• •			
etc.			

	,	•	
Hydrogeologist: _	S. CHARRA		•
Well Number: _	01	·•	
Date: _	12/18/91		
Static Water Level:	3.25'(TCC)		
Stickup: _	0177 (messwell)	0.00' (survey)	
	All readings are depth to	water from top of car	sing

Time	Reading	Time (EMPSEP)	Reading
MIA SEC	(feet)	HK MIN SEC	(feet)
1.23 pourre 5. 12/5/14	3.26	01 35 50	3.41
4 55 sec	3.27	02 /0 50	3.43
7 10	3.29	02 40 30	3.45
11 18	3.32	6312 17	3.45
13 50	3, 32	034015	3.48
16. 36	3, 32	4:16	3,50
19 23	3.32	5: 00	3.51
26 40	3.34	5:37	3.54
33 13	3.35	L;07	3.56
45 25	3.36	6: 41	3.55
52 30	3.36	7:12	3.5 <i>6</i>
102 13	3,38	7:5D	3.56
[1 14 36	3.4C	ê: 03	3, 575
CI 25 '3E	3.42	8: 45.	3.55

		•	•	
Well Number:	<b>~</b> .	•		 
444011401140				

Date: 12/11/91 .

All readings are depth to water from top of casing

Time	Reading (feet)	Time	Reading (feet)
8:59:30	3.535		
8:16:53	3.52		1.
9.25.(5	3 51		
8 33.29	3.49	·	
8:44:00	રૂ. પ <i>છ</i>	•	
9: 08: 10	3.47	•	
			/
,			
·			
		,	

EG&G ROCKY FLATS PLANT EM/ER GROUNDWATER SOP Safety Related	Manual Procedure No.: Page: Effective Date: Organization:	2.08, Rev. 0 33 of 43 October 29, 1991 ER&WM
Category 1 AQUIFE	R PUMPING TEST DATA SHEET	
DATE 12 \18 \ 91	PERSON RECORDING DATA_S	CONDRAN
WELL #O2	IT woman cak valley fill all	<u> </u>
STATIC WATER LEVEL _3	. 24 ft PUMPING WELL I.D	inin
DISTANCE TO PUMPING W	FIL 2.25 ft (servey 1/2/52)	
TEST START TIME 12:	Pump started 2mindosec after to Recovery started 8:00:01 elapsed to	st start time ne into test
ELAPSED TIME (Units)	WATER LEVEL Q (Units)	(Units) SEE ATTACHE SHEET (1)
· ·		

etc.

	All readings are depth to	water from top of	casing
Stickup:	0.81 (measured)	0.80 (Survey	)
Static Water Level	3.24' (721)		
Date:	12/15/91		
Weil Number:	02_	.,	
Hydrogeologist:	5.600000		
Project:	DAI SEI HALSIDE	· · · · · · · · · · · · · · · · · · ·	

Time	Reading	Time (ELAPSED)	Reading
Min SEC	(feet)	HR MIN SEC	(feet)
2.35 .min	3.26	01 30 50	3.40
G GC	3.25	02 4 30	3,43
9 10	3.29	02'41 10	3.45
12 07	3.30	03 13 10	3.48
12 45	3,3/	634051	3.49
17 27	3,32	4:15	3,50
20 20	3,30 4	4 39	3.50
27 35	3.32	5: 35	3.52
33 56	3.34	U:05	3.54
44 55	3.375	6:39	3.55
53 19	3,36	7:11	3.56
1:03 04	3.37	7:49	3. <i>5</i> 8
(1 17 34	3.3?	82:55	354
(1 26 47	5.4c	8:06:10	3,50

Well Number:	02

Date: 12/18/41
All readings are depth to water from top of casing

Time	Reading (feet)	Time	Reading (feet)
841:45	3.51		
8:19:00	3.51		
<b>६</b> : २ <b>२</b> :13 :	3,495		
8:33:50	3.46		
1 2:46:00	350		
9:09:46	3.44		
	·		
			·
			· · ·
:			

EG&G ROCKY FLATS PLANT EM/ER GROUNDWATER SOP Safety Related Category 1	Page:	dure No.:	2.08, Rev. 0 33 of 43 October 29, 1991 ER&WM
AQUIF	TER PUMPING TEST	DATA SHEET	
DATE 12 \18 91	PERSON RECORI	DING DATA <u>s co</u> n	VORAN
WELL # 03			
HYDROSTRATIGRAPHIC UN	VIT woman cak valu	EY FILL ALLMIN	•
HYDROSTRATIGRAPHIC UN SCREENED INTERVAL	o_ft to <u>6.0</u> ft		
STATIC WATER LEVEL 3	40 ft PUMPING	WELL LD17	in
DISTANCE TO PUMPING WI	ELLft		
TEST START TIME 12:	46: 25 Pump started 2 min 4 Recovery started 8:00	osci after test s	tent time to test
ELAPSED TIME	WATER LEVEL	Q (pumpin	g well) - SEE
(Units)	(Units)	(Units)	) 366
		<del></del>	- ATTACHE
• •			SHEFT(
<del></del>		***************************************	7
			\ .

etc.

Project:	DUI BUI HILLSID		Con- Tim	€; t=0
• •		•		. 12/5/91 12:46 25
Hydrogeologist:	s. Conpran			
Well Number:	03	• • • • • • • • • • • • • • • • • • • •		•
Date:	12/18/91	· · · · · · · · · · · · · · · · · · ·		·
Static Water Level:	3.40'(TU()			<u> </u>
Stickup:	0.95 (Heoswell) Ui readings are depth 1	p.97 (survey)	asing	

X:

Reading Time Reading Time (feet) (feet) 5E( KIN 3.90 1:27 20 Puno Smalts 2:40 3.905 1:37,54 4. (Y my 3.11 02 12 28 3.75 3.94 02 41 59 3.77 10 30 3.96 031350 034145 3.98 4.00 4:13 3.79 3.80 4.01 4: 58 21 11 4.04 3.82 400. <u>33</u> 5:32 28 3.82 4.035 34 47 6:00 4.06 3.85 6:34 44:02 4.03 7:07 3. 85 <u>54</u> 4.10 7:45 40 3.86 1 03 1:17:43 3.90

Well Number:	03		

Date	9: <u>/2//8/9/</u>				
All readings are depth to water from top of casing					
Time	Reading (feet)	Time	Reading (feet)		
8:00:40	3.78		,		
8:05:55	3.70				
B:06:30	3.70				
8:12:06	3.65				
8:13:00	3.45				
8:14:00 secunt	3.655				
8:18:59	3.655				
8:24:07	3.64				
8:27:03	3.64				
8:29:54	3.64				
834.33	3.62				
8 : 41:33	3.625				
B: 47, 50	3,620				
8153:35	3.62				
8:59:30	3,00 to 1214/1/				
9:07:00	3.40				
9.09.56	3.60				

EG&G ROCKY FLATS PLANT

EM/ER GROUNDWATER SOP

Page:

Safety Related

Category 1

Manual

2.08, Rev. 0

Page:

Structive Date:

October 29, 1991

Cryanization:

ER&WM

DATE 12 \18 \91	PERSON RECORDING	DATA_S CONORAN	
	UNIT womand car valuey	÷	
STATIC WATER LEVEL	3.405 ft PUMPING WE	IL IDin	l
DISTANCE TO PUMPING	WELL 2.53 ft (survey 1/2/12)		
TEST START TIME	te: Pump starkd 2min40sec at Recovery started 8:00:01 c	fler test start time lapsed time into test	
ELAPSED TIME (Units)	WATER LEVEL (Units)	Q (pumping well)(Units)	SEE ATTACHED SHEED)
			- - -
•			-
· · etc.	·		

Well Number:	_ 09		<del></del>
•	•		
	12/18/41		
• .	All readings a	re depth to water from top of	casing

Time	Reading (feet)	Time	Reading (feet)
8:32:30	3,74		
9,:05 :30	5.70		
8:10: 53	3.08		·
8:18:05	3.66		
S:24:10	3.65		
8:32:50	3,66		
\$ : 45 : 67	3.64		
9:08-19	3,61		
	1. 3		
	,		
	·		
,			,
		.	

EG&G ROCKY FLATS PLANT

EM/ER GROUNDWATER SOP

Page:

Safety Related

Category 1

Manual

Procedure No.:

Page:

Signature Social States of the control of t

DATE 12 \18 \91	PERSON RECORDING D	ATA 5 CONDRAN	<del></del>
WELL #05 HYDROSTRATIGRAPHIC UNIT SCREENED INTERVAL1.0	woman cak valley file fi to 6.0 fi	LAULIKA	•
STATIC WATER LEVEL 3.42	_fi PUMPING WELL	LDin	
DISTANCE TO PUMPING WELL	4.99 ft (5-1444 112/52)		
TEST START TIME 12:46 Note: Pun Reco	<b>3</b>	iter test start time pied time into test	
ELAPSED TIME _(Units)	WATER LEVEL _(Units)	Q (pumping well) (Units)	SEE ATTACHED (SHEETE)
tc.		/	/

Project:	DAT EST HILLSIDE		
Hydrogeologist:	S. CLNDRAN		
Well Number:	. ot		
Date:	12/18/91		
Static Water Level	3405 (nc)		
Stickup:	1.0 (measured)	1.0 (Survey)	
•	All readings are depth to	water from top of c	asing

Time	Reading (feet)	Time	Reading (feet)
4:2c	3.50	1:17:30	3 60
6:20	3. ₅ 0	1: 27.00	3.60
8:10	3.50	1:37.30	3.60
II: os	3. SD	1:12:30	3,65
13:07	3.51	J. 42	3.65
15:05	3.5.75	3:14	3.66
1778	3.55	3:42	3.66
19:04	3.505	413	3.70
21:13	3,57/	4:57	3.70
27.40	3.525	5:35	3.72
35:50	3,52	6:04	3.74
43'42	3.56	6:39	374
55'15	3, 60	7:09	3.75
1:03:00	3.52	7:48	3.76

Project: _	DALEST HILL	SIPE	
Hydrogeologist: _	S.ConpRAN		·.
Weil Number: _	05		
Date: _	12/18/41		
Static Water Level:	3.42'(Tec)	· 	
			•

Stickup: 0.41 (mesured) 0.40 (survey)

All readings are depth to water from top of casing

Time	Reading (feet)	Time	Reading (feet)
No /s			3.60
1m 3554	3 46'	1:01:40	·
5:25	3.54	1:16:07	3.60
7:15	3.50	1: 25: 45	3.68
9:20	3.51	1:36:02	3.62
11:52	3.52	2:11	3.63
14:02	<i>3.</i> ≤ 7	2:41	3 (4
16:10	3.55	3: 13	3,66
18:00	3.57	3:41 .	3.70
70:04	3.55	4:12	3.705
26.31	3.55	4:56	3.71
36:24	3,55	5. 34	3.73
42: 30	3, SE	6:02	3.24
54:20	3.575	6:30	3.76
		7: 09	3.77

Well Number: 95

Date: 15/15/41
All readings are depth to water from top of casing

Time	Reading (feet)	Time	Reading (feet)
7:46	3.78		
9.01.50	3.74		
8:04:30	3.72		
8:09:50	3.70		
8.12:10	3.68		
18.25:12	3,67		
.8.32	3.66		
8-43:34	3,45		
9. 28:05	3.63		
·			
	•		,

#### Procedure No.: EM/ER GROUNDWATER SOP 33 of 43 Page: October 29, 1991 Effective Date: **ER&WM** Safety Related Organization: Category 1 AQUIFER PUMPING TEST DATA SHEET PERSON RECORDING DATA S. CONDRAN DATE 12 \18 \ 91 El WELL #_ HYDROSTRATIGRAPHIC UNIT woman car valley fill allemun SCREENED INTERVAL STATIC WATER LEVEL PUMPING WELL I.D. 17 DISTANCE TO PUMPING WELL_ 5.33 ft (Survey 1/2/92) TEST START TIME 12: 46:25 Note: Pump started 2 mindosec after tost start time Recovery starked 8:00:01 elapsed time into test Q (pumping well) WATER LEVEL **ELAPSED TIME** SEF (Units) (Units) (Units) ATTACHED SHEET (1)

Manual

2.08, Rev. 0

etc.

EG&G ROCKY FLATS PLANT

	1.10 (messwell) All readings are depth	1.10 (Survey)	
Stickup:			
Static Water Leve	3.301 (720)		
Date:	12/18/91		
Well Number:	_2	•••	
Hydrogeologist:	S. CENDRAN		
Project:	ים ביו אונינים בי	•	

Time	Reading	Time (ELAPSED)	Reading
MIN SEC	(feet)	HR MIN SEC	(feet)
1. 45 min	3.3C	01 36 09	3.45
5 17	3.33	02 10 51	3.46
7 30	3.34	0240 40	3,49
// 33	3.35	0312 40	3,50
14 05	3.36	0340 30	3.52
16 50	3.37	4:16	3,55
19 40	3.37	5:00	3.55
26 52	3.57	5:31	3.60
33 26	3.38	6:08	3.60
45: 30	3.41	6:41	3.59
52 46	3.41	7:12	Z.605
1 02 27	3.41	7: <i>5</i> V	3.62
(1 16 57	3.44	8:02	3.61
01 15 57		용: 6년	3.60

Well Number: EI	
-----------------	--

Date: 12/15/11
All readings are depth to water from top of casing

Time	Reading (feet)	Time	Reading (feet)
8.08:45	3.59		
8 16:21	3.56		
8:24:46	<i>3</i> 55	·	
8:32:4B	3.54		
· 8:47.10	3. 51	•	
9: 07: 32	3. 50	·	
		·	
	-		
1.11			

## EG&G ROCKY FLATS PLANT EM/ER GROUNDWATER SOP Safety Related Category 1 Manual Procedure No.: Page: Safety Related Organization: 2.08, Rev. 0 33 of 43 Page: October 29, 1991 ER&WM

DATE 12 18 91	PERSON RECORDING DA	TA_S CONORAN	
WELL #E2_ HYDROSTRATIGRAPHIC UNIT SCREENED INTERVAL			
STATIC WATER LEVEL 3.09		Din	
DISTANCE TO PUMPING WELL	3.47 ft (Survey 1/2/92)		
TEST START TIME 12: 46	: 25 Pump started 2 min 40 sec Receiving started 8:00:01	c after test start t elapsed time into tes	t t
ELAPSED TIME	WATER LEVEL	Q (pumping well)	
(Units)	(Units)	(Units)	SEE
			SHEETIG)
	4		
•			
•			
etc.			/

Project:	סמי שבו מונגנוטנ				
Hydrogeologist:	s. cowanad				
Well Number:	E.L.	٠,			
Date:	12/18/91				
Static Water Level <u>:</u>	3.01'(00)		·		
Stickup:	0.96 (maswed) All readings are depth to	1.00 (S.Z.	ယှ ) ၁ of casir		
	Wii tegaliilas siie aebii i c	Merel House		•	

Time (ELAPSED) MIN SEC	Reading (feet)	TIME (ELAPSED) NR MIN SEC	Reading (feet)
2.16 min	3.10	CI 36 34	3.17
5 KC	3.14	02 11 14	3, 29
T 52	3.15	62 40 58	3.30
11 50	3.16	03 12 55	3.33
14 24	3.16	03 40 50	3.34
17 10	3.17	4: 15	3.37
19 57	3.18	4:54	3.34
27 10	3.19	5:35	3.38
33 4v	3.20	6:04	3,40
45: 20	3,24	6:07	3.54 5012/12/41
33 C3	3.22	6:39	3:42
1 02 49	3.23	7:10	3.42
01 17 19	3.26	7:49	3.44
01 26 25		8:02:55	3.38

AAT MAA		 	 
Well Number:	_		
AAAN HONINGI.	- <i>5</i> 2		
•			

•	All readings are de	pth to water from to	op of casing
. Time	Reading (feet)	Time	Reading (feet)
8:00:00	3.36		(icel)
8:11:28	3.36		
8:18:40	3,34		·
8:20:40	3.33		
8:35:30	3.34	•	
6:46:00	<b>3</b> .3Y		
9.09.25	3.29		
•			

. Manual EG&G ROCKY FLATS PLANT 2.08, Rev. 0 Procedure No.: EM/ER GROUNDWATER SOP 33 of 43 Page: October 29, 1991 Effective Date: Safety Related ER&WM Organization: Category 1 AQUIFER PUMPING TEST DATA SHEET PERSON RECORDING DATA 5 CONORAN DATE 12 \18 \91 WELL#__ E3 HYDROSTRATIGRAPHIC UNIT WOMEN CAK VALLEY FILL MULLIN SCREENED INTERVAL 1.1 ft to <u>L.1</u>ft STATIC WATER LEVEL PUMPING WELL LD. __ 17 3.44 ft (survey 1/2/92) DISTANCE TO PUMPING WELL TEST START TIME 12:46:25 Note: Pump started 2 min 40 sec after test start time Recovery started 8:00:01 elapsed time into test Q (pumping well) WATER LEVEL **ELAPSED TIME** SEE (Units) (Units) (Units) ATTACHED SHEFT (S)

etc.

Project:	ON1 831 MILLSID	<u> </u>	
Hydrogeologist:	S. CUNDEAN		
Well Number:	_E3	.,	
Date:	12/18/51		
Static Water Leve	326 (mc)		
Stickup:	0.90 (measured)	0.90 (sweey)	
	All readings are depth to	water from top o	of casing

Time	Reading (feet)	Time	Reading (feet)
10:30	₹.37	2.12	<b>₹</b> 3.50
12:42	3.¢ù	2 42	3.50
14:50	337	3 · 14	3.53
16.20	3,40	3.42	3.54
18:45	3.40	4.14	3.55
20 · 52	3. ∠∂	4:58	3.56
27:25	3.40	5:35	3,60
35:07	3.39	6:04	3,40
43: 10	3,425	6:39	3.60
54 37	3,40	7:10	3.62
1:02:30	3.45	7:48	3.64
1:17.05	3.45	ජ ආ:30	3.78
1: 24: 30	3 .46	B:05:45	3.576
1:37:13	3.5÷		

Well Number:	E3	
Detail		

Jule.	All readings are depth to water from top of casing			
Time	Reading (Teet)	Time	Reading	
8:11:12	3.52		(feet)	
8:18:25	3.51			
8:20:24	3.50			
B:33: 13	<i>3,5</i> 0			
8:45:44	3.51			
9:09:06	3.46			
· ·				

# EG&G ROCKY FLATS PLANT EM/ER GROUNDWATER SOP Safety Related Category 1 Manual Procedure No.: Procedure No.: Page: Category 1 Manual Procedure No.: Page: October 29, 1991 ER&WM

DATE 12 \18 \ 91	PERSON RECORDING DA	TA <u>s. co noran</u>	
WELL #		<u>num</u> u~	
STATIC WATER LEVEL 3.465	_ft PUMPING WELL I	Din	-
DISTANCE TO PUMPING WELL	(Survey 1/2/2)	,	
TEST START TIME 12:41	: 75 : Pump started 2 min 40 sec Recovery started 8:00:0	1 0 1	+
ELAPSED TIME	WATER LEVEL	Q (pumping well)	SEE
(Units)	(Units)	(Units)	SHEET (5)
• •			
			. (
			. \
			. ]
. •			`/
•			•
etc.	.•		
· ·			

Project:	חמו שבו אונגאומי	<i>T</i>	· · · · · · · · · · · · · · · · · · ·
Hydrogeologist:	5.6007KBN	•	
Well Number:	E4	.,	
Date:	12/18/41		
Static Water Level:			
Chielman			

All readings are depth to water from top of casing

Time	Reading	Time	Reading
mm/s	(feet)	m/= 13	(feet)
3min 3csec	3,55'	1'02'15	3.63
<b>6</b> .50	3.55	1 16:45	3.65
7:53	3.55	1;26.20	.3.645
10:05	3 55	1936-155	3.66
12:25	7ک.3	2:12	3.68
14:30	3.58	2: 42	3.70
16:40	3,60	3: 14	3,705
در: <i>18</i> :	3.5°C	3:41	3.725
Zu: 40	3.60	4: i2=	3-75
27 ! र्ज	3.60	4:57	3.76
35. 24	3.58	5:39	3.20
43:10	3.605	6:03	3.18
5534	3.65	V:38	3. EO
× 12/16/4]	6-12/18/41	7:09.	3.81

Well Number:	E #	

Date: 12/18/41
All readings are depth to water from top of casing

Time	Reading (feet)	Time	Reading (feet)
7:45	3.63		
8:02:15	3.78		
8:05	3.75		
\$ 10:35	3.75		
8-17:50	3.72		
8: 15:56	3.71		
B.32: 3B	5.72		
8:44:38	3.70		
308:57	3.67		
·			
	•		
i ja 🕡 🔹			

EG&G ROCKY FLATS PLANT Procedure No.: 2.08, Rev. 0

EM/ER GROUNDWATER SOP Page: October 29, 1991

Effective Date: ER&WM

Category 1

DATE 12 \ 1P \ 91 PERSON RECORDING DATA S CONORAN	
WELL # _E5  HYDROSTRATIGRAPHIC UNIT	
STATIC WATER LEVEL 8.35 ft PUMPING WELL LD. 17 in	1
DISTANCE TO PUMPING WELL 5.51 ft (Survey 1/2/92)	
TEST START TIME 12:46:25  Note: Pump started 2 mintuses after test start time  Recovery started 8:00:01 elepsed time into test  Recovery started 8:00:01 elepsed time into test  Q (pumping well)  Q (Units)  SEE  (Units)  ATTACHED  SHEET (1)	
etc.	

Project: _	Out BEI HILLSIDE		
Hydrogeologist: _	5. cumorar		
Well Number: _	ES		
Date: _	12/18/91	»:	
Static Water Level:	3.35' (nc)		
Stickup:	0.85 (messweet)	0.75 (5224)	

Time	Reading (feet)	Time	Reading (feet)
2 min Macc	3.4¢′	1:e2:00	3.50
۶۰ <b>۵</b> 7	3.44	1:16:26	3.50
7:34	3. 45-	1. 26:05	3.52
લ : ચલ	3.43	1:36:40	3,56
12:12	3.45	2:11:30	3.57
14:18	3.45	2:41	3.57
4:20	340:-	3: 13	3.60

	1	,	1 .
18:15	3.445	3:41	3.605
20.23	3.50	4:12	3.62
26: 47	3.45	4:56	3,63
36:46	3.46	5:34	3.64
42: 🕫	s.48	61.03	3.66
54:35	350	6.34	3.68
		7:09	3.68
L		2./4	. 3. 9.2.

7:47 . 3.73

Well Number:	E5		
Date:	12/18/61	•	,-

All readings are depth to water from top of casing

Time	Reading (feet)	Time	Reading (feet)
8 32:32	3.66		
9:04:30	3.64		·
T:10:18	3.62		
8:17:25	3.60		
8: 25:39	7.60		
8:32:20	3.59		
.8 : 44:05	3.56		
9:08:35	3-55		
•			
	·		
,			

### BOREHOLE ABANDONMENT FIELD ACTIVITIES REPORT

PROJECT NUMBER	ous	DATE 1-29-92
PROJECT NAME	881 Hillsid	<u>e</u>
BOREHOLE IDENTIFICATION	39891 (D	rive Point Hole)
COORDINATES	Norti	East
WEATHER CONDITIONS	- Partly cloudy	pleasant 50° F
RIG TYPE	•	
DRILLING COMPANY/DRILLER	Boyles Bros	10. Schroer
GEOLOGIST/ENGINEER	C.Bieniulis	
CREW MEMBERS		
WATER LEVEL/TIME		
TOTAL DEPTH/DIAMETER	6.0'/~6"	Diam.
ENVIRONMENTAL MATERIALS TYPES, VOLUMES, AND DRUMS USED		·
TREMIE AND PUMPING EQUIPMENT	, ,	ront plant
GROUT VOLUME PLACED TYPE/LENGTH/DIAMETER OF	1.0 Ct3	
CASING REMOVED	Drive Point: 5' ss	s screen (1.7 ID) blank (1.5 ID) (1' stick-up)
TYPE/LENGTH/DIAMETER OF CASING LEFT IN PLACE	2' SS	- blank 1(1.5"ID) (1' stick-up)
END-OF-DAY STATUS	Gronted 3.0'- 6	. 0' Cement 0.0'-3.0'
CHRONOLOGICAL RECORD OF ACTIVITIES	1200 borehole gr	drive pt. from 39891
	and comen	Lel from 0.0'- 3.0'
COMMENTS		
		MW 10.2 ppg
		•

## BOREHOLE ABANDONMENT FIELD ACTIVITIES REPORT

PROJECT NUMBER	OUA DATE 1-29-92
PROJECT NAME	881 Hillside
BOREHOLE IDENTIFICATION	Site #1 15 Well Point Grid (I1 to E5)
COORDINATES	NorthEast
WEATHER CONDITIONS	partly cloudy pleasant 50°F
RIG TYPE	
DRILLING COMPANY/DRILLER	Boyles Bros. / D. Schroer
GEOLOGIST/ENGINEER	C. Bieniulis
CREW MEMBERS	
WATER LEVEL/TIME	· · · · · · · · · · · · · · · · · · ·
TOTAL DEPTH/DIAMETER	(.0 / ~ 4.5" Diam.
ENVIRONMENTAL MATERIALS TYPES, VOLUMES, AND DRUMS USED	
TREMIE AND PUMPING EQUIPMENT	i" hose u/ grout plant
GROUT VOLUME PLACED TYPE/LENGTH/DIAMETER OF	1.0 ft3
CASING REMOVED	Well Points: 5'SS screen (1.7" ID) Z'SS blank (1.5" ID) (1' stick-up)
TYPE/LENGTH/DIAMETER OF CASING LEFT IN PLACE	Z' SS blank (1.5"ID) (1' stick-up)
END-OF-DAY STATUS	Granted 3.0'- 6.0' Cement 0.0'-3.0'
CHRONOLOGICAL RECORD OF ACTIVITIES	1200 boreholes granted from 3.0'-6.0'
COMMENTS	mw 10.2 ppg

Attachment B2-7
Multiple-Well Pumping Test
Time-Drawdown Data and
Graphical Solutions

Phase III RFI/RI Report

Table 1. Multiple-Well Pumping Test Time-Drawdown Data

¥	8	Ξ	-0.003	9000	0.003	6.00	6.00	0.003	0.00	90.0	0.00	-0.00	0.00	900	0.003	<del>.</del> 0.00	6.0	6.00	6.00	900	9.00	<del>0</del> .00	0.00	9000	6.00	90.0	6.00 1	<del>0</del> .000	9000	<b>9</b> 000	900	9000	90.9	90.0	900	9.00	9000	0.00	9.00	-0.00G	<del>0</del> .00	<b>6</b> .001	<del>0</del> .00
Wei	Z	ξ	0.000	0.003	0.003	•	•	•	•	•	0.003	•	•	•	•	0	•	0.00	0.003	•	0	0.003	•	0.003	•	0	•	•	•	•	•	•	•	-0.00g	•	•	•	0.00	•	0.00	0.003	0.003	0.000
Neil Neil	ស	£	0	•	•	•	•	0	0	0	٥	•	•	0	0	0	•	0,000	0	•	•	•	0	•	٥	0	0	0	9000	0	0.003	0	•	•	•	0	•	•	0	0	0	0	•
7	23	E	0.000	0	•	٥	0.003	0	•	0	0.000	•	•	0.003	•	0.000	•	•	•	0.003	0.00	0.00	0.003	0.003	0	0.003	0	0.003	•	0	0.00	0.003	•	0.003	0.003	0.003	0.000	0.003	0.003	0.00	0.00	0.003	0.003
¥.	ē	ε	•	0.003	•	0.003	•	0	0.003	0.003	0.003	0	0.003	0.003	0.003	0.003	0.003	0.003	0.003	•	0.00	0.00	0	0.00	0.003	0.00	•	0.00	0.000	•	0.00	0.00	0.003	0.00	0.00	•	0.003	•	0.003	0	0.003	0.016	•
¥	8	Ę	0	90.0	0.003	9000	-0.003	-0.008	0.00	<del>0</del> .000	90.0	9000	0.00	9000	900	9000	9000	0	9000	0.045	<del>.0</del> .00	9000	0.003	<b>9000</b>	9000	9000	9000	<b>9</b> 000	6.012	0.016	<b>-0.019</b>	0.000	0.022	98.0	9000	-0.003	9000	0.003	0.00	0	9000	•	90.0
Wei	8	ε	-0.003	0	0	0	•	0	•	0	•	•	0	•	•	•	•	•	•	9000	0	0	0	0	0.000	<b>9</b> 000	9000	0	-0.003	•	•	•	0	0.003	٥	-0.003	-0.003	•	0.003	0	0	0	0
×	8	ε	0.003	٥	0	0	0	0	0.003	0	-0.003	0	•	0	0.003	0.012	0.00	0.003		0	0.003	-0.000	0.000	9000	9000	9000	9000	-0.003	-0.003	<b>9</b> 000	<b>9</b> 000	9000	900	9000	-0.009	-0.003	0	•	0.003	•	0.003	900.0	-0.003
<b>1</b> 8	8	£	0	0	6	9.00	9000	0	0	9.000	-0.003	•	0	0	•	٥	0	•	0	0	•	•	•	0	•	0	•	•	0	-0.003	0.00	•	0	0	0	-0.003	0	•	0	0	•	•	•
Ne.	δ	ε	•	٥	0.003	0	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.00	0.003	0.003	0.000	0.00	0.003	0.003	0.003	0.003	0.000	0.003	0	0	•	0.003	0	0	0.003	•	0.003	0.003	0.003	0.00	0.00	0.003	0.003
*	₩.	3	-0.001	0.00	0.00	0.00	90.0	0	0.00	•	0	0.00	0.00	0.00	0.00	-0.00	0	0.001	0.00	0.003	-0.001	-0.00	-0.001	-0.001	0.00	9.003	0.001	0.001	0.001	0.003	0	0.007	-0.00	0	0.004	0.00	-0.001	0.00	0.00	0.00	9.0	0	0.001
Wei	<b>-</b>	(E)	-0.003	0	0	0	0	0	-0.003	0	•	0.003	0	٥	0	0	•	0	0	•	0	•	•	•	•	•	0	0	•	•	0	•	•	•	0	0	-0.003	0	0	•	0	0	0
<b>**</b>	Ð	Œ	0	•	0	0	0	•	•	0	•	•	0	0	0	0	0	0	٥	0	•	0	•	0	0	•	0	0	0	•	•	•	•	•	0	0	0	0	0	0	•	0	0
Veli	Q	Œ	0.003	0.00	-0.003	0	-0.003	0	٥	-0.003	0	0	-0.003	0	0.003	9.000	9000	9000	•	•	0	0	0	0	0	•	0	0	0.003	•	0	0	0	0	0	-0.003	-0.003	•	-0.003	9000	0.003	٥	-0.003
<b>19 X</b>	=	ε	o	0.00	•	•	•	0	0.00	•	0.00	0.00	0	0.00	•	0	0.001	0	0	0.001	•	0	•	0,00	0.00	0.003	0.001	0.00	9000	-0.023	0.027	0.00	-0.007	0.011	0.000	0	0	0	0	0	9.00	•	•
Corrected	The	(minutes)	-2.60067	-2.65637	-2.65007	-2.64167	-2.63337	-2.62507	-2.61667	-2.60837	-2.60007	-2.50167	-2.58337	-2.56667	-2.56007	-2.63337	-2.51067	-2.50007	-2.46337	-2.40007	-2.45007	-2.43337	-2.41067	-2.40007	-8.38337	-2.30067	-2.35007	-2.33337	-2.25007	-2.10067	-2.08337	-2.00007	1.91667	-1.83337	-1.75007	-1.66667	-1.58337	-1.50007	-1.41067	-1.33337	-1.25007	-1.16067	1.06337
Uncorrected		(minutes)	c	0.0063	0.0100	0.026	0.0333	0.0416	90.0	0.0583	0.0000	0.075	0.0633	0.1	0.1166	0.1333	0.15	0.1998	0.1633	0.2	0.2100	0.2333	0.26	0.2006	0.2833	0.3	0.3100	0.3333	0.4166	0.5	0.5833	0.6666	6.76	0.8333	0.9166	-	1.0633	1,1666	1.28	1.3333	1.4100	40.	1.5833

Table 1. Multiple-Well Pumping Test Time-Drawdown Data

Uncorrected	Corrected	New .	Wei	<b>S</b>	Well	15 X	N N	<b>S</b>	¥ New Y	Well	Well	Wei	Wei	Wei	X T	×
-E	Ě	=	<b>2</b>	<b>1</b> 2	Z i	Ð.	5	8	8	8	8	<b>.</b>	ជា :	<b>8</b>	<b>.</b>	<b>S</b>
(minutes)	(minutes)	€	E	E	€	Ξ	ε	ε	E	ε	٤	٤	ε	E	E	£
1,666	-1.00007	0	0	0	•	-0.00	•	0	-0.003	0	9000	0.000	0.00	0	0	90.0
5.	-0.91007	•	-0.00	0	0	-0.00	0	0	9000	0	-0.006	0.003	0.003	0	0.003	-0.003
1.6333	-0.83337	•	-0.003	0	0	-0.001	•	0	-0.003	0.003	900.0	0	0.00	0	0.000	-0.003
1.9166	-0.75007	-0.001	0.000	•	0	0.00	0	0	0.003	0	900.0	•	900.0	0	•	-0.011
~	-0.00007	•	0.00	0	0	-0.00	•	0	9000	0	-0.012	0.003	0.012	0	0	0.00
2.5	-0.10067	•	-0.003	0	•	-0.003	•	0.00	9000	9000	-0.016	•	0.00		0	0.00
•	0.33333	0.007	<b>9</b> 000	0.022	0.015	0.022	0.012	0.021	0.327	0.022	0.012	0.019	0.028	0.034	0.016	0.012
3.6	0.63333	0.014	0.015	0.036	0.028	0.001	0.010	0.025	0.336	0.031	0	0.022	0.041	0.04	0.031	0.022
•	1.33333	0.015	0.015	0.036	0.034	0.036	0.022	0.001	0.343	0.022	-0.016	0.025	0.046	90.0	0.037	0.027
4.6	1.63338	0.03	0.019	9.04	0.025	0.041	0.025	0.034	0.336	0.041	0.041	0.028	0.048	90.0	0.044	0.033
*0	2.33333	0.02	0.022	0.044	0.041	0.04	0.031	0.034	0.336	0.047	0.00	0.031	0.064	0.067	0.044	0.036
<b>8</b>	2.63333	0.022	0.025	0.047	0.04	0.047	0.028	0.037	0.340	0.047	0.038	0.031	0.061	0.067	90.0	0.036
•	3.33333	0.025	0.028	90.0	0.047	90.0	0.031	0.043	0.340	90.0	0.022	0.034	0.061	90.0	90.0	9.0
9.5	3.83333	0.027	0.031	0.036	0.038	0.052	0.035	9.0	0.343	0.063	780	90.0	90.0	0.063	0.065	0.042
~	4.33333	0.026	0.031	0.063	0.063	0.056	0.038	0.043	0.333	0.063	0.025	9000	0.067	0.063	0.063	0.046
7.8	4.83333	0.03	0.031	0.063	0.063	990.0	0.036	0.043	0.356	0.056	0.016	0.0 <u>4</u>	0.067	0.000	0.063	<b>7</b> 00
•	6.33333	0.081	0.00 A00.0	0.063	0.067	0.068	0.028	0.046	0.362	0.056	970	0.041	0.07	0.088	0.056	0.048
9.6	6.63333	0.031	0.034	0.067	0.047	0.056	0.041	0.040	0.340	<b>9</b> 0.0	0.01	0.04	0.074	0.0	0.066	0.08
•	6.33333	0.033	0.036	0.067	0.0	0.061	0.0	900	0.356	0.00	0.015	0.044	80.0	0.0	900	0.061
9.6	0.83333	9000	0.026	0.0	0.0	0.061	0.044	0.08	0.349	0.00	0.031	0.044	<b>9</b> 0.0	0.073	0.063	0.063
2	7.33330	0.036	0.0 F	0.000	0.063	0.063	0.0	0.063	0.362	0.000	0.038	0.047	0.063	C.03	0.063	90.0
42	9.53333	0.041	0.047	0.00	0.0	0.00	8	90.0	0.366	0.078	0.044	0.063	0.00	0.082	0.072	0.061
ī	11.33333	0.046	0.063	0.078	0.076	0.074	0.067	0.050	0.308	0.082	0.044	0.067	0.108	0.066	0.078	900
₽	13,33333	0.051	0.057	0.079	0.062	0.070	90.0	0.065	0.377	0.066	0.063	0,063	0.116	0.002	0.07	0.086
•	16,33333	0.054	0.063	0.065	0.085	0.082	0.063	0.00	0.366	0.0	0.04	0.063	0.122	9000	0.086	0.071
8	17,33333	0.057	0.063	0.086	0.088	0.083	0.00	0.075	0.374	0.00	0.047	0.000	0.136	0.101	9000	0.078
8	19.33333	0.058	0.066	0.088	0.088	0.096	0.07	0.078	0.393	0.101	0.047	6.073	0.14	0.101	0.0	0.07
2	21.33333	0.062	0.000	0.088	0.091	0.001	0.073	0.078	0.36	9. 2	0.067	0.073	0.148	9.0	90.0	0.062
8	29,33333	0.051	0.072	0.00%	0.095	0.083	0.076	0.081	0.300	0.107	0.0	0.070	0.156	0.107	9000	0.065
8	25.33333	0.088	0.076	0.006	0.066	0.000	0.070	0.064	0.30	0.1	0.000	0.070	<u>.</u>	0.107	9000	0.087
8	27.33333	0.088	0.072	0.096	0.008	0.00	0.070	0.064	0.398	0.1	0.041	0.082	0.17	0.11	9000	0.087
32	29.33333	0.071	0.076	0.101	0.101	0.102	0.062	0.087	0.406	0.1	0.044	0.085	0.174	0.114	9.10	0.002
8	31,33333	0.074	0.082	0.10	0.104	0.105	0.086	0.003	0.406	0.11	90.0	0.088	0.17	0.117	0.107	0.003
8	30,33333	0.078	0.085	0.107	0.107	0.100	0.000	0.003	0.400	0.110	0.044	0.066	0.183	0.12	0.1	0.096
8	35,33333	0.061	0.085	0.111	0.117	0.1	0.002	0.000	0.396	0.116	0.044	0.092	0.18 81	0.123 23	0.1	0.7
<b>.</b>	37,33333	0.061	0.065	0.11	0.117	0.11	0.092	0.096	0.30	0.116	0.09	0.005	0.163	0.123	0.113	0.101
42	39,33333	0.082	0.001	0.114	0.129	0.115	0.005	 	0.418	0.118	0.000	9000	0.186	0.126	0.117	<b>0</b> .101
3	41.33333	0.000	0.001	0.117	0.123	0.115	0.096	0.100	0.400	0.113	0.00	9000	0.198	0.13	0.113	0.103
4	43,33333	0.087	0.001	0.117	0. 10	0.117	0.086	0.103	0.421	0.1	0.067	<b>0</b> .10	0.198	0.13	0.12	0.108
4	45,33333	0.060	0.001	0.12	0.120	0.12	0.006	0.100	0.431	0. 1	0.005	9.10	0.196	0.13	0.123	0.10
8	47,33333	0.0	0.006	0.123	0.120	0.121	0.101	0.100	0.400	0.107	0.070	0.104	0. 100	0.133	0. 2. 8.	0.10
															-	

Table 1. Multiple-Well Pumping Test Time-Drawdown Data

Uncorrected	Corrected	Veil	Wei	*	¥	Ne.	Nell I	Wei	Wei	×	Neil Neil	Ne.	Well	. Nell	Wei	Wal
Time	Tra.	=	<b>T</b>	2	<b>I</b>	<b>£</b>	δ	8	8	8	8	<u>.</u>	<b>2</b>	<b>&amp;</b> :	<b>Z</b>	<b>1</b>
(minutes)	(minutes)	E	E	Ę	Ξ	ξ	Ē	£	E	Ε	ξ	Ε	E	E	E	Ε
25	49.33333	0.00	0.00	0.123	0.130	0.124	0.106	0.10	0.431	0.107	90.0	9.104	0.196	0.130	0.126	0.11
2	61.33333	0.00	0.101	0.13	0.133	0.126	0.106	0.112	0.431	0.107	0.065	0.107	0.183	0.142	0.126	0.113
\$	63,33333	0.007	0.101	0.13	0.120	0.120	901.0	0.115	0.434	0.107	0.002	0.111	0.183	0.142	0.120	0.114
2	65,33333	0.006	9.10	0.13	0.133	0.131	0.111	0.115	0.443	0.107	0.073	0.114	0.1 88	0.1	0.132	0.117
8	67,33333	0.102	0.107	0.133	0.130	0.132	0.114	0.118	0.434	0.10	0.10	0.114	0.183	0.148	0.136	0.110
95	50.33333	0.100	0.111	0.136	0.130	0.136	0.124	0.121	0.437	0.107	9.0	0.117	0.150	0.140	0.130	0.124
2	61.33333	0.106	0.11	0.130	0.130	0.130	0.117	0.121	0.453	0.113	0.00	0.12	0.196	0.1 <b>8</b>	0.142	0.126
8	63,33333	0.106	0.111	0.130	0.142	0.130	0.117	0.125	0.453	0.113	9000	0.12	0.19	0.152	0.142	0.127
8	66.33339	0.10	0.114	0.142	0.142	0.1	0.12	0.125	0.440	0.116	0.101	0.12	0. 8	0.1	0.145	0.127
2	67,33333	0.11	0.114	0.142	0.142	0.142	0.12	0.125	0.443	0.116	0.104	0.123	0.180	0.152	0.142	0.127
2	60.33333	0.113	0.117	0.142	0.145	0.143	0.124	0.128	0.463	0.110	0. 20.	0.123	0. 8	0.186	0.142	0.13
2	71.33333	0.113	0.117	0.145	0.148	0.147	0.127	0.131	0.408	0.116	0.114	0.120	0. 50 50	0.156	0,148	0.132
2	73,33333	0.129	0.117	0.140	0.152	0.148	0.13	0.131	0.406	0.110	0.11	0.13	0.19	9.188	0.148	0.134
2	75.33333	0.110	0.11	0.152	0.152	0.16	0.133	0.134	0.450	0.116	0.107	0.13	9.0	0.156	0.151	0.138
2	77,33333	0.117	0.123	0.152	0.156	0.181	0.133	0.137	0.450	0.116	0.107	0.13	0.18 8	0.106	0.156	0.137
82	79.33333	0.121	0.123	0.166	0.156	0.168	0.133	0.137	0.478	0.12	0.008	0.133	8	0.10	0.156	0.138
2	81,33339	0.121	0.126	0.152	0.158	0.166	0.136	0.137	0.462	0.12	0.12	0.133	0.19	0.161	0.156	0.1
28	69,33333	0.124	0.126	0.156	0.156	0.158	0.136	0.14	0.472	0.123	0.111	0.136	0. 8	0.186	0.161	0.7
28	85.33333	0.126	0.13	0.158	0.161	0.150	0.14	0.143	0.484	0.126	0.101	0.130	8.0	0.171	9.0	0.145
8	67.33333	0.127	0.133	0.156	0.104	0.101	0.143	0.143	0.468	0.128	0.13	0.130	0.203	0.17 L	9.0	0.147
2	69.33333	0.129	0.133	0.161	0.18	0.162	0.143	0.146	0.478	0.120	0.117	0.142	0.203	0.174	0.167	0.146
2	91,33333	0.13	0.136	0.104	0.104	0.18	0.146	0.146	0.472	0.132	0.13	0.142	0.200	0.174	0.167	0.15
8	63,33333	0.132	0.136	0.16	0.167	0.167	0.146	0.18	0.481	0.135	0.123 23	0.142	0.203	0.174	0.167	0.151
8	95,33333	0.133	0.130	0.108	0.171	0.18	0.140	0.16	0.484	0.130	0.1	0.140	0.200	0.188	0.17	0.156
001	97.33333	0.135	0.130	0.108	0.171	0.17	0.140	0.153	0.40	0.130	0.136	0.140	0.208	0.17	0.174	0.156
110	107,33333	0.141	0.145	0.174	0.177	0.178	0.150	0.150	0.494	25.	0.142	0.166	0.222	2	0.1 8	0.183
120	117,33339	0.140	0.152	0.184	0.186	0.183	0.166	0.166	9.0	0.161	0.130	0.161	0.236	0.183	0. 8	0.17
130	127.33333	0.156	0.158	0.10	0.193	0.180	0.171	0.17	0.603	0.167	0.136 8	0.17	0.241	0.190	0.196	0.17
140	137,33333	0.162	0.166	0.183	0.19	0.188 8	0.178	0.178	0.603	0.17	0.156	0.174	0.251	0.20	0.202	0. 6
150	147,33339	0.100	0.174	0.203	0.208	0.202	0.184	0.18 181	0.512	0.17	0.162	2.0	0.261	0.216	0.20	0.197
5	167,33333	0.173	0.18	0.200	0.216	0.21	0.10	0 10	0.526	0.17	0.171	0.167	0.248	0.219	0.212	0.202
5	167,33333	0.18	0.187	0.216	0.224	0.216	0.107	9.19	0.622	0.17	0.155	0.183	0.236	0.225	0.218	0.20
5	177.33339	0.186	0.10	0.218	0.228	0.219	0.203	0.203	0.541	5.0	0.18	0.10	0.222	0.234	0.224	0.211
<u>\$</u>	187.33339	0.101	0.196	0.228	0.234	0.226	0.208	0.200	0.544	0.18	0.166	0.20	0.200	0.234	0. 23.	0.218
200	197.33333	0.196	0.100	0.231	0.237	0.232	0.213	0.212	0.567	0.188	0.200	0.20	0.10	0.244	0.237	0.221
210	207.33333	0.2	0.20	0.234	0.24	0.237	0.216	0.216	0.563	0.180	0.200	0.216	0.183	0.244	0.243	0.227
220	217.33333	0.202	0.200	0.237	0.25	0.241	0.219	0.221	0.56	0.196	0.188	0.222	0.174	0.253	0.246	0.23
230	227.33333	0.212	0.215	0.247	0.253	0.246	0.226	0.228	0.570	0.190	0.190	0.225	0.17	0.25	0.263	0.230
240	237.33333	0.216	0.222	0.253	0.250	0.251	0.232	0.23	0.579	0.202	0.100	0.231	0.10	0.263	0.250	0.242
250	247,33333	0.221	0.225	0.256	0.283	0.257	0.235	0.237	0.570	0.20	0.187	0.234	0.151	0.200	0.262	0.247
260	257,33333	0.226	0.228	0.20	0.200	0.262	0.241	0.24	0.565	0.221	0.220	0.238	0.1 7	0.272	0.30	0.253
															A-1	

Table 1. Multiple-Well Pumping Test Time-Drawdown Data

2 2 E	0.256	0.263	0.200	0.271	0.274	0.277	0.284	0.280	0.20	0.206	0.3	0.303	0.307	0.307	0.313	0.316	0.318	0.324	0.324	0.326	0.334	0.336	
2 2 E	0.272	0.278	0.261	0.264	0.201	0.204	8.0	0,303	0.308	0.313	0.316	0.319	0.326	0.326	0.332	0.336	0.336	0.341	0.344	0.361	0.367	0.364	
3 8 §	0.279	0.262	0.266	0.296	0.296	0.301	0.301	0.304	0.311	0.32	0.32	0.323	0.33	0.38	0.336	0.342	0.330	0.340	0.340	0.356	0.356	0.361	
Wei 3 E2 ii	0.146	0.148	0.145	0.138	0.132	0.10	0.00	0.0	0.067	0.051	0.04	0.036	0.026	0.00	900	0.0	0.022	0.010	0.010	-0.022	-0.022	-0.019	
Vel (t)	0.244	0.247	0.263	0.257	9.3	0.263	0.200	0.272	0.276	0.282	0.265	0.288	0.202	0.296	0.236	0.301	0.304	0.307	0.311	0.314	0.917	0.32	
¥ 8 E	0.231	0.236	0.247	0.234	0.247	0.247	0.236	0.200	0.28	0.276	0.200	0.206	0.200	0.270	0.292	0.282	0.206	0.296	0.20	0.206	0.307	0.304	
\$ 9 E	0.224	0.23	0.23	8.0	0.233	0.224	0.233	0.243	0.24	0.246	0.249	0.262	0.206	0.275	0.275	0.278	0.28	0.207	0.204	0.207	0.308	0.313	
₹ 8 E	0.679	0.607	0.613	0.607	0.626	0.616	0.623	0.623	0.648	0.626	0.642	0.061	0.642	0.646	0.07	0.679	0.662	0.0	0.00	0.082	0.666	0.601	
Well 02 (ft)	0,248	0,263	0.256	0.250	0.262	0.208	0.275	0.275	0.261	0.284	0.267	0.283	0.283	0.303	0.3	0.308	0.300	0.312	0.316	0.318	0.321	0.326	
¥ 0 €	0.248	0.251	0.254	0.261	0.267	0.267	0.27	0.273	0.276	0.28	0.200	0.200	0.202	0.200	0.296	0.305	0.308	0.312	0.312	0.316	0.321	0.321	
W of (I)	0.265	0.27	0.275	0.270	0.263	0.287	0.202	0.205	0.208	0.308	0.308	0.311	0.316	0.310	0.321	0.325	0.326	0.333	0.336	0.34	0.343	77.0	<u>.</u>
N Z E	0.269	0.275	0.276	0.285	0.285	0.291	0.294	0.297	0.304	0.307	0.31	0.310	0.316	0.320	0.332	0.33	0.342	0.345	0.345	0.348	0.354	386	
Well t3	0.263	0.260	0.272	0.270	0.270	0.288	0.291	0.295	0.30	0.301	0.307	0.31	0.314	0.317	0.32	0.323	0.320	0.320	0.333	0.336	0.330	2	
\$ 2 E	0.231	0.237	0.241	0.244	0.247	0.253	0.256	<b>8</b> .0	0.263	0.200	0.272	0.275	0.270	0.262	0.262	0.286	0.20	20.20	0.298	0.301	0.30	0 307	Š
Well 11 (T)	0.231	0.236	0.23	0.243	0.247	0.25	0.256	0.250	0.263	0.267	0.272	0.275	0.279	0.262	0.265	0.20	0.20	0.20	0.208	1000	9	400	
Corrected Time (minutes)	207.33333	277,33533	287,33333	207,33333	307.33333	317,33333	327.33333	337,33333	347,33333	357,33333	367,33333	377.33333	367,33333	307,33333	407,33333	417,33333	427.33333	437,33333	447.33339	457 33339	467 53339	477 93939	4/1.35555
Uncorrected Time (minutes)	٥			008	310	320	330	98	098	8	26	980	9	8	410	8	95	3	\$	Ş	<b>\$</b>	? \$	₹

Table 2. Multiple-Well Pumping Test Recovery Data

Part   Part	Uncorrected	Corrected	¥	<u> </u>	¥el	3	×	Wed	Xe.	X.	ĭe A	×	E A	ž	Wei	<b>*</b>	*
	Time	-mI	=	22	Ω	<b>1</b>	£	δ	8	8	8	8	ѿ	2	ន	<u>.</u>	2
0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050         0.00050 <t< th=""><th>(minutes)</th><th>(minutes)</th><th>(E)</th><th>€</th><th>Œ</th><th>ε</th><th>ε</th><th>ε</th><th>£</th><th>£</th><th>ε</th><th>£</th><th>٤</th><th>ε</th><th>ε</th><th>æ</th><th>Ξ</th></t<>	(minutes)	(minutes)	(E)	€	Œ	ε	ε	ε	£	£	ε	£	٤	ε	ε	æ	Ξ
0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 <th< td=""><td></td><td></td><td>0.907</td><td>0.907</td><td>0.342</td><td>0.354</td><td>776.0</td><td>0.321</td><td>0.326</td><td>1000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>			0.907	0.907	0.342	0.354	776.0	0.321	0.326	1000							
0.0083         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804         0.804 <t< td=""><td>•</td><td>90.0</td><td>0.302</td><td>800</td><td>0.333</td><td>0.354</td><td>0.336</td><td>0.316</td><td>0.308</td><td>0.336</td><td>0.313</td><td>0.330</td><td>0.314</td><td>0.020</td><td>0.356</td><td>0.367</td><td>0.336</td></t<>	•	90.0	0.302	800	0.333	0.354	0.336	0.316	0.308	0.336	0.313	0.330	0.314	0.020	0.356	0.367	0.336
0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000<	0.0083	0.0563	0.302	0.304	0.333	0.354	0.336	0.315	0.300	0.336	0.316	0.330	0.314	-0.028	0.358	0,364	0.338
0.077         0.027         0.027         0.029         0.036         0.036         0.036         0.036         0.036         0.036         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.034         0.034         0.036         0.034         0.036         0.034         0.039         0.034         0.039         0.034         0.039         0.034         0.039         0.034         0.039         0.034         0.039         0.034         0.039         0.034         0.039         0.034         0.039         0.034         0.039         0.034         0.039         0.034         0.039         0.034         0.039         0.034         0.039         0.034         0.039         0.034         0.039         0.034         0.039         0.034         0.039         0.034         0.039         0.034         0.039         0.034         0.039         0.034         0.039         0.034         0.039         0.034         0.039         0.034         0.039         0.034         0.034         0.039         0.034         0.039         0.034         0.039         0.034         0.034         0.034         0.034         0.034         0.034         0.034         0.034 <th< td=""><td>0.0100</td><td>0.0000</td><td>0.302</td><td>0.304</td><td>0.333</td><td>0.354</td><td>0.336</td><td>0.315</td><td>0.300</td><td>0.333</td><td>0.313</td><td>0.342</td><td>0.314</td><td>0.020</td><td>0.366</td><td>0.364</td><td>0.336</td></th<>	0.0100	0.0000	0.302	0.304	0.333	0.354	0.336	0.315	0.300	0.333	0.313	0.342	0.314	0.020	0.366	0.364	0.336
0.0041         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042         0.0042<	0.025	0.075	0.302	0.301	0.333	0.354	0.336	0.318	0.300	0.336	0.313	0.330	0.314	0.020	0.355	0.354	0.336
0.10         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20 <th< td=""><td>0.033</td><td>0.0633</td><td>0.302</td><td>0.304</td><td>0.333</td><td>0.354</td><td>0.336</td><td>0.315</td><td>0.308</td><td>0.333</td><td>0.313</td><td>0.330</td><td>0.311</td><td>-0.032</td><td>0.352</td><td>0.364</td><td>0.334</td></th<>	0.033	0.0633	0.302	0.304	0.333	0.354	0.336	0.315	0.308	0.333	0.313	0.330	0.311	-0.032	0.352	0.364	0.334
0.1         6.001         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6.004         6	0.0416	0.0016	0.302	0.301	0.329	0.354	0.335	0.315	0.306	0.336	0.913	0.330	0.314	-0.032	0.352	0.354	0.334
0.1163         0.201         0.201         0.202         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203 <t< td=""><td>90.0</td><td>0.1</td><td>0.301</td><td>0.304</td><td>0.329</td><td>0.354</td><td>0.336</td><td>0.315</td><td>0.306</td><td>0.333</td><td>0.300</td><td>0.336</td><td>0.311</td><td>0.032</td><td>0.352</td><td>0.364</td><td>0.334</td></t<>	90.0	0.1	0.301	0.304	0.329	0.354	0.336	0.315	0.306	0.333	0.300	0.336	0.311	0.032	0.352	0.364	0.334
0.1166         0.2061         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369         0.2369<	0.0583	0.1083	0.301	0.301	0.329	0.351	0.335	0.315	0.306	0.33	0.313	0.330	0.311	-0.032	0.340	0.361	0.334
0.1155         0.2361         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362         0.2362<	0.0996	0.1186	0.301	0.301	0.320	0.361	0.336	0.318	0.30	0.83	0.30	0.336	0.311	-0.038	0,340	0.36	0.334
0,183         0,301         0,301         0,304         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326         0,326 <th< td=""><td>0.075</td><td>0.125</td><td>0.301</td><td>0.301</td><td>0.329</td><td>0.354</td><td>0.333</td><td>0.316</td><td>908.0</td><td>0.333</td><td>0.30</td><td>0.336</td><td>0.911</td><td>9000</td><td>0.346</td><td>0.961</td><td>0.334</td></th<>	0.075	0.125	0.301	0.301	0.329	0.354	0.333	0.316	908.0	0.333	0.30	0.336	0.911	9000	0.346	0.961	0.334
0.15         0.301         0.301         0.304         0.302         0.302         0.303         0.303         0.303         0.304         0.303         0.304         0.303         0.304         0.303         0.304         0.303         0.304         0.303         0.304         0.303         0.304         0.303         0.304         0.303         0.304         0.303         0.304         0.303         0.304         0.303         0.304         0.303         0.304         0.303         0.304         0.303         0.304         0.303         0.304         0.303         0.304         0.303         0.304         0.303         0.304         0.303         0.304         0.303         0.304         0.303         0.304         0.303         0.304         0.303         0.304         0.303         0.304         0.303         0.304         0.303         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304	0.0633	0.1333	0.301	0.301	0.326	0.354	0.333	0.312	0.308	0.333	0.300	0.336	0.311	-0.036	0.346	0.361	0.334
0.1660         0.2861         0.2861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861         0.3861<	0.0	0.16	0.301	0.301	0.320	0.351	0.333	0.312	0.303	0.33	0.300	0.336	0.307	-0.036	0.346	0.35	0.332
0.2500         0.301         0.3240         0.321         0.3240         0.321         0.320         0.321         0.320         0.321         0.320         0.321         0.320         0.321         0.320         0.321         0.320         0.321         0.320         0.321         0.320         0.321         0.320         0.321         0.320         0.321         0.320         0.321         0.320         0.321         0.320         0.321         0.321         0.320         0.321         0.320         0.321         0.320         0.321         0.320         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321         0.321	0.1198	0.1686	0.290	0.301	0.326	0.351	0.332	0.312	0.303	0.33	0.300	0.336	0.307	-0.038	0.342	0.346	0.301
0.2         0.200         0.301         0.322         0.341         0.302         0.341         0.302         0.341         0.300         0.342         0.300         0.342         0.300         0.302         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0	0.1333		0.200	0.301	0.326	0.351	0.332	0.312	0.303	0.327	0.308	0.353	0.307	-0.036	0.330	0.346	0.351
0.27109         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500         0.2500	0.15	0.2	0.290	0.301	0.323	0.351	0.33	0.312	0.303	0.327	0.30	0.353	0.307	90.0	0.330	0.346	0.329
0.2533         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269         0.269 <t< td=""><td>0.1666</td><td></td><td>0.290</td><td>0.296</td><td>0.323</td><td>0.351</td><td>0.33</td><td>0.306</td><td>0.303</td><td>0.327</td><td>0.300</td><td>0.333</td><td>0.307</td><td>9.0</td><td>0.336</td><td>0.346</td><td>0.328</td></t<>	0.1666		0.290	0.296	0.323	0.351	0.33	0.306	0.303	0.327	0.300	0.333	0.307	9.0	0.336	0.346	0.328
0.25         0.260         0.260         0.260         0.264         0.364         0.365         0.365         0.365         0.366         0.365         0.366         0.366         0.366         0.366         0.366         0.366         0.366         0.366         0.366         0.366         0.366         0.366         0.366         0.366         0.367         0.369         0.367         0.367         0.369         0.367         0.367         0.369         0.367         0.369         0.367         0.369         0.367         0.369         0.367         0.369         0.367         0.369         0.369         0.367         0.369         0.369         0.367         0.369         0.367         0.369         0.369         0.369         0.367         0.369         0.369         0.369         0.369         0.369         0.369         0.369         0.369         0.369         0.369         0.369         0.369         0.369         0.369         0.369         0.369         0.369         0.369         0.369         0.369         0.369         0.369         0.369         0.369         0.369         0.369         0.369         0.369         0.369         0.369         0.369         0.369         0.369         0.369	0.1633		0.280	0.301	0.323	0.351	0.328	0.306	0.3	0.324	0.306	8,0	0.304	6.0 <u>4</u>	0.336	9.	0.320
0.2000         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200         0.200 <t< td=""><td>0.2</td><td></td><td>0.290</td><td>0.296</td><td>0.323</td><td>0.351</td><td>0.328</td><td>0.308</td><td>0.3</td><td>0.324</td><td>0.300</td><td>0.33</td><td>0.304</td><td>0.048</td><td>0.333</td><td>0.34</td><td>0.326</td></t<>	0.2		0.290	0.296	0.323	0.351	0.328	0.308	0.3	0.324	0.300	0.33	0.304	0.048	0.333	0.34	0.326
0.2863         0.286         0.286         0.286         0.387         0.387         0.387         0.389         0.387         0.389         0.387         0.389         0.387         0.389         0.387         0.389         0.387         0.389         0.387         0.389         0.387         0.389         0.387         0.389         0.387         0.389         0.389         0.387         0.389         0.389         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384         0.384 <t< td=""><td>0.2100</td><td></td><td>0.296</td><td>0.296</td><td>0.32</td><td>0.351</td><td>0.326</td><td>0.308</td><td>0.3</td><td>0.327</td><td>0.300</td><td>8.0</td><td>0.304</td><td>90.0</td><td>0.333</td><td>0.944</td><td>0.326</td></t<>	0.2100		0.296	0.296	0.32	0.351	0.326	0.308	0.3	0.327	0.300	8.0	0.304	90.0	0.333	0.944	0.326
0.3         0.286         0.286         0.286         0.327         0.309         0.327         0.307         0.327         0.309         0.327         0.309         0.327         0.309         0.327         0.309         0.327         0.309         0.327         0.309         0.327         0.309         0.327         0.309         0.327         0.309         0.327         0.309         0.327         0.309         0.327         0.327         0.309         0.327         0.327         0.329         0.327         0.309         0.327         0.329         0.327         0.309         0.327         0.329         0.327         0.309         0.327         0.329         0.327         0.329         0.327         0.329         0.327         0.329         0.327         0.329         0.329         0.329         0.329         0.329         0.329         0.329         0.329         0.329         0.329         0.329         0.329         0.329         0.329         0.329         0.329         0.329         0.329         0.329         0.329         0.329         0.329         0.329         0.329         0.329         0.329         0.329         0.329         0.329         0.329         0.329         0.329         0.329         0	0.2333		0.206	0.296	0.32	0.351	0.327	0.308	0.9	0.327	0.303	8.0	0.304	0.046	8,0	0.84	0.326
0.3549         0.2696         0.2896         0.2896         0.2896         0.2896         0.384         0.384         0.3896         0.3894         0.384         0.3896         0.3894         0.3894         0.3894         0.3894         0.3894         0.3894         0.3894         0.3894         0.3894         0.3894         0.3894         0.3894         0.3894         0.3894         0.3894         0.3894         0.3894         0.3894         0.3894         0.3894         0.3894         0.3894         0.3894         0.3894         0.3894         0.3894         0.3894         0.3894         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994         0.3994 <td>0.25</td> <td></td> <td>0.296</td> <td>0.296</td> <td>0.32</td> <td>0.351</td> <td>0.327</td> <td>0.308</td> <td>0.3</td> <td>0.327</td> <td>0.303</td> <td><b>8</b>.0</td> <td>0.304</td> <td>0.0</td> <td><b>0</b></td> <td>0.<b>X</b></td> <td>0.326</td>	0.25		0.296	0.296	0.32	0.351	0.327	0.308	0.3	0.327	0.303	<b>8</b> .0	0.304	0.0	<b>0</b>	0. <b>X</b>	0.326
0.3353         0.286         0.286         0.286         0.324         0.324         0.324         0.324         0.324         0.324         0.324         0.324         0.324         0.324         0.324         0.324         0.324         0.324         0.324         0.324         0.324         0.324         0.324         0.324         0.324         0.324         0.324         0.324         0.324         0.324         0.326         0.324         0.324         0.326         0.324         0.324         0.326         0.324         0.326         0.324         0.324         0.326         0.324         0.326         0.324         0.326         0.326         0.327         0.326         0.327         0.326         0.327         0.326         0.327         0.326         0.327         0.326         0.327         0.326         0.327         0.326         0.327         0.326         0.327         0.326         0.327         0.326         0.327         0.326         0.327         0.326         0.327         0.326         0.327         0.326         0.327         0.326         0.327         0.326         0.327         0.326         0.327         0.326         0.327         0.326         0.327         0.326         0.327 <t< td=""><td>0.2008</td><td></td><td>0.296</td><td>0.20</td><td>0.32</td><td>0.351</td><td>0.326</td><td>908'0</td><td>0.3</td><td>0.321</td><td>0.303</td><td>0.320</td><td>0.304</td><td>90.0</td><td>0.33</td><td>0.34</td><td>0.326</td></t<>	0.2008		0.296	0.20	0.32	0.351	0.326	908'0	0.3	0.321	0.303	0.320	0.304	90.0	0.33	0.34	0.326
0.36         0.266         0.266         0.266         0.266         0.267         0.266         0.317         0.346         0.324         0.306         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.326         0.327         0.326         0.326         0.327         0.326         0.326         0.327         0.326         0.326         0.327         0.326         0.326         0.317         0.226         0.327         0.326         0.326         0.327         0.326         0.326         0.327         0.326         0.326         0.326         0.326         0.326         0.326         0.326	0.2633	,	0.206	0.296	0.32	0.351	0.325	0.306	0.9	0.324	0.207	0.326	0.304	0.0	0.326	0.34	0.324
0.306         0.206         0.206         0.206         0.324         0.206         0.206         0.224         0.206         0.206         0.224         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206         0.206 <th< td=""><td>0.3</td><td></td><td>0.296</td><td>0.208</td><td>0.317</td><td>0.348</td><td>0.324</td><td>0.308</td><td>0.3</td><td>0.321</td><td>0.3</td><td>0.326</td><td>0.301</td><td>0.0</td><td>0.326</td><td>0.34</td><td>0.324</td></th<>	0.3		0.296	0.208	0.317	0.348	0.324	0.308	0.3	0.321	0.3	0.326	0.301	0.0	0.326	0.34	0.324
0.3833         0.2864         0.286         0.324         0.324         0.284         0.284         0.324         0.284         0.284         0.384         0.384         0.306         0.286         0.289         0.289         0.289         0.289         0.284         0.085         0.081         0.084         0.081         0.084         0.081         0.084         0.081         0.084         0.081         0.084         0.081         0.084         0.081         0.084         0.081         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         <	0.3166		0.296	0.206	0.317	0.348	0.324	0.308	0.200	0.321	0.3	0.326	0.301	90.0	0.326	0.336	0.323
0.666         0.284         0.284         0.314         0.306         0.296         0.306         0.296         0.307         0.296         0.307         0.296         0.307         0.296         0.317         0.296         0.307         0.296         0.317         0.296         0.317         0.296         0.317         0.296         0.317         0.296         0.317         0.296         0.317         0.296         0.317         0.296         0.317         0.296         0.317         0.296         0.317         0.296         0.317         0.296         0.317         0.296         0.317         0.296         0.317         0.296         0.317         0.296         0.317         0.296         0.317         0.296         0.317         0.296         0.317         0.296         0.317         0.296         0.317         0.296         0.317         0.296         0.317         0.296         0.317         0.296         0.317         0.296         0.317         0.296         0.317         0.296         0.317         0.296         0.317         0.296         0.317         0.296         0.317         0.296         0.317         0.296         0.317         0.296         0.317         0.296         0.317         0.296 <th< td=""><td>0.3333</td><td></td><td>0.296</td><td>0.296</td><td>0.317</td><td>0.35</td><td>0.354</td><td>0.308</td><td>0.296</td><td>0.324</td><td>0.297</td><td>0.326</td><td>0.304</td><td>0.061</td><td>0.326</td><td>0.33</td><td>0.323</td></th<>	0.3333		0.296	0.296	0.317	0.35	0.354	0.308	0.296	0.324	0.297	0.326	0.304	0.061	0.326	0.33	0.323
0.65         0.280         0.280         0.314         0.202         0.314         0.202         0.317         0.202         0.317         0.202         0.317         0.202         0.317         0.202         0.317         0.202         0.317         0.203         0.317         0.203         0.317         0.203         0.317         0.204         0.317         0.204         0.317         0.204         0.317         0.204         0.317         0.204         0.317         0.204         0.317         0.204         0.317         0.204         0.317         0.204         0.317         0.204         0.317         0.204         0.317         0.204         0.317         0.204         0.317         0.204         0.317         0.204         0.317         0.204         0.317         0.204         0.317         0.204         0.317         0.204         0.317         0.204         0.317         0.204         0.317         0.204         0.317         0.204         0.317         0.204         0.317         0.204         0.317         0.204         0.317         0.204         0.317         0.204         0.317         0.204         0.317         0.204         0.317         0.204         0.317         0.204         0.317	0.4100		0.294	0.294	0.314	0.348	0.319	0.306	0.296	0.30	<b>8</b> .0	0.323	0.296	0.08	0.32	908'0	0.318
0.6833         0.284         0.245         0.345         0.346         0.347         0.369         0.317         0.269         0.317         0.294         0.317         0.294         0.317         0.294         0.317         0.294         0.317         0.294         0.317         0.294         0.314         0.294         0.314         0.294         0.314         0.294         0.314         0.294         0.314         0.294         0.314         0.294         0.314         0.294         0.314         0.294         0.314         0.294         0.314         0.294         0.314         0.294         0.314         0.294         0.314         0.294         0.314         0.294         0.314         0.294         0.314         0.294         0.314         0.294         0.314         0.294         0.314         0.294         0.314         0.294         0.314         0.294         0.314         0.294         0.314         0.314         0.314         0.314         0.314         0.314         0.314         0.314         0.314         0.314         0.314         0.314         0.314         0.314         0.314         0.314         0.314         0.314         0.314         0.314         0.314         0.314         0.314 <t< td=""><td>0.6</td><td></td><td>0.293</td><td>0.291</td><td>0.31</td><td>0.348</td><td>0.317</td><td>0.302</td><td>0.283</td><td>0.314</td><td>0.20</td><td>0.317</td><td>0.206</td><td>-0.05 -0.05 -0.05</td><td>0.317</td><td>0.336</td><td>0.310</td></t<>	0.6		0.293	0.291	0.31	0.348	0.317	0.302	0.283	0.314	0.20	0.317	0.206	-0.05 -0.05 -0.05	0.317	0.336	0.310
0.7166         0.284         0.284         0.342         0.342         0.349         0.289         0.327         0.284         0.314         0.286         0.314         0.289         0.327         0.284         0.314         0.289         0.314         0.284         0.314         0.289         0.311         0.284         0.311         0.284         0.311         0.284         0.311         0.284         0.311         0.284         0.311         0.284         0.311         0.284         0.311         0.284         0.311         0.284         0.311         0.284         0.311         0.284         0.311         0.284         0.311         0.284         0.311         0.284         0.311         0.284         0.311         0.284         0.311         0.284         0.311         0.284         0.301         0.301         0.301         0.301         0.302         0.302         0.302         0.302         0.302         0.302         0.302         0.302         0.302         0.302         0.302         0.302         0.302         0.302         0.302         0.302         0.302         0.302         0.302         0.302         0.302         0.302         0.302         0.302         0.302         0.302         0.302 <t< td=""><td>0.5833</td><td></td><td>0.293</td><td>0.291</td><td>0.31</td><td>0.345</td><td>0.316</td><td>0.305</td><td>0.203</td><td>0.317</td><td>0.29</td><td>0.317</td><td>0.205</td><td>-0.058</td><td>0.317</td><td>0.332</td><td>0.315</td></t<>	0.5833		0.293	0.291	0.31	0.345	0.316	0.305	0.203	0.317	0.29	0.317	0.205	-0.058	0.317	0.332	0.315
0.8         0.289         0.289         0.311         0.284         0.311         0.284         0.311         0.289         0.311         0.284         0.311         0.289         0.311         0.289         0.311         0.284         0.311         0.289         0.311         0.284         0.311         0.289         0.311         0.281         0.311         0.289         0.081         0.311         0.281         0.311         0.281         0.311         0.281         0.307         0.281         0.081         0.307         0.289         0.081         0.311         0.287         0.307         0.289         0.081         0.311         0.287         0.307         0.289         0.081         0.311         0.289         0.307         0.307         0.084         0.307         0.307         0.084         0.307         0.304         0.307         0.304         0.307         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0	0.0668		0.291	0.201	0.307	0.342	0.313	0.200	0.283	0.327	0.264	0.314	0.206	0.050	0.314	0.320	0.311
0.0843         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289         0.289 <t< td=""><td>0.75</td><td></td><td>0.29</td><td>0.266</td><td>0.307</td><td>0.342</td><td>0.313</td><td>0.208</td><td>0.58</td><td>0.311</td><td>0.284</td><td>0.311</td><td>0.20</td><td>-0.058</td><td>0.311</td><td>0.329</td><td>0.31</td></t<>	0.75		0.29	0.266	0.307	0.342	0.313	0.208	0.58	0.311	0.284	0.311	0.20	-0.058	0.311	0.329	0.31
0.0666         0.29         0.286         0.29         0.29         0.281         0.281         0.281         0.281         0.281         0.281         0.281         0.281         0.281         0.281         0.281         0.281         0.281         0.281         0.281         0.281         0.281         0.282         0.084         0.307         0.282         0.084         0.307         0.282         0.084         0.307         0.282         0.084         0.307         0.282         0.084         0.307         0.282         0.084         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0.304         0	0.6333		0.20	0.288	0.304	0.342	0.31	0.299	0.20	0.308	0.281	0.311	0.295	0.081	0.311	0.326	0.308
1,05 0.288 0.286 0.304 0.335 0.306 0.289 0.381 0.278 0.307 0.292 -0.004 0.307 0.202 1.303 0.288 0.289 0.304 0.307 0.292 -0.004 0.307 0.202 1.303 0.288 0.289 0.303 0.289 0.304 0.304 0.304 0.304 0.304 1.3168 0.287 0.288 0.301 0.332 0.392 0.309 0.305 0.275 0.305 0.276 0.304 0.304 0.304 0.304 1.3833 0.287 0.282 0.382 0.392 0.392 0.392 0.392 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.395 0.397 0.399 0.391 0.398 0.397 0.399 0.391 0.392 0.392 0.392 0.392 0.392 0.397 0.392 0.397 0.397 0.391 0.399	0.9166		0.20	0.288	0.307	0.330	0.308	0.200	0.20	0.311	0.261	0.307	0.295	-0.061	0.307	0.322	0.307
1.1353 0.266 0.266 0.301 0.332 0.306 0.206 0.267 0.308 0.276 0.304 0.292 -0.004 0.304 1.2106 0.265 0.265 0.301 0.329 0.303 0.206 0.206 0.305 0.275 0.301 0.268 -0.004 0.304 0.304 1.3 0.267 0.285 0.301 0.332 0.302 0.206 0.305 0.275 0.304 0.304 0.304 0.304 1.3633 0.267 0.302 0.322 0.322 0.322 0.202 0.205 0.305 0.276 0.301 0.208 0.304 0.304 1.4066 0.285 0.285 0.285 0.382 0.392 0.392 0.302 0.202 0.207 0.301 0.301 0.302 0.202 0.207 0.301 0.301	•	£.	0.288	0.265	0.304	0.335	0.30	0.296	0.20	0.311	0.278	0.307	0.292	-0.084	0.307	0.322	0.306
1,2166 0,267 0,286 0,301 0,339 0,303 0,286 0,287 0,305 0,275 0,301 0,288 -0,084 0,304 ( 1,3 0,287 0,286 0,301 0,332 0,332 0,286 0,287 0,305 0,276 0,304 0,204 0,304 ( 1,3833 0,287 0,282 0,288 0,332 0,311 0,292 0,284 0,302 0,271 0,288 0,292 0,301 ( 1,4866 0,285 0,282 0,283 0,332 0,311 0,292 0,294 0,302 0,271 0,289 0,292 0,301 (	1.0633		0.288	0.266	0.301	0.332	0.308	0.296	0.267	0.308	0.275	0.30	0.292	0.064	0.304	0.322	0.303
1.3 0.267 0.286 0.301 0.332 0.392 0.296 0.267 0.305 0.276 0.304 0.202 -0.064 0.304 ( 1.3833 0.267 0.282 0.282 0.332 0.302 0.292 0.267 0.305 0.275 0.301 0.288 -0.067 0.301 ( 1.4866 0.285 0.282 0.289 0.332 0.311 0.292 0.204 0.302 0.271 0.298 0.292 -0.067 0.301 (	1.1666		0.287	0.285	0.301	0.339	0.303	0.296	0.267	0.30%	0.275	0.301	0.288	0.0	0.304	0.319	0.305
1,3833 0,267 0,282 0,286 0,332 0,302 0,292 0,267 0,305 0,276 0,301 0,288 -0,067 0,301 ( 1,486 0,285 0,282 0,289 0,332 0,311 0,292 0,284 0,302 0,271 0,298 0,292 -0,067 0,301 (	1.25		0.287	0.285	0.301	0.332	0.332	0.296	0.267	0.305	0.275	0.30	0.292	90.0	0.304	0.310	0.302
1,4966 0,285 0,282 0,289 0,332 0,311 0,292 0,264 0,302 0,271 0,296 0,292 0,007 0,301 (	1.3333		0.287	0.282	0.296	0.332	0.302	0.292	0.267	0.305	0.275	0.301	0.288	-0.067	0.301	0.316	0.3
	1,4166		0.285	0.282	0.298	0.332	0.311	0.292	0.264	0.302	0.271	0.296	0.282	-0.067	0.301	0.316	0.296

Table 2. Multiple-Well Pumping Test Recovery Data

Uncorrected	Corrected	Ne.	¥ E	Well	Well	Wal	Well	Nel .	×	×	Well	Wali	Wei	¥	Wei	Wei
Thme	Time	E	2	23	I	<b>3</b> 2	ō	8	8	8	8	ũ	23	ន	2	8
(minutes)	(minutes)	€	ε	£	ε	ε	ε	(¥)	ε	(£)	£	Ξ	Œ	Œ	Œ	ε
1.5	1.55	0.286	0.282	0.296	0.320	0.302	0.282	0.284	0.302	0.271	0.296	0.286	-0.067	0.301	0.316	0.298
1.5833	1.6339	0.263	0.282	0.295	0.326	0.298	0.292	0.284	0.305	0.271	0.301	0.288	-0.067	0.20	0.316	0.207
1.6686	1,7166	0.263	0.279	0.295	0.328	0.296	0.202	0.284	0.302	0.268	0.205	0.286	-0.067	0.206	0.913	0.297
1.76	1.8	0.283	0.279	0.291	0.328	0.207	0.282	0.284	0.302	0.271	0.295	0.285	-0.07	0.206	0.313	0.207
1.8333	1.0633	0.282	0.270	0.201	0.323	0.297	0.289	0.281	0.302	0.266	0.295	0.276	-0.07	0.296	0.913	0.294
1.9166	1,9000	0.262	0.279	0.291	0.323	0.297	0.280	0.281	0.298	0.208	0.296	0.265	-0.07	0.296	0.31	0.20
æ	2.05	0.28	0.270	0.291	0.323	0.295	0.292	0.281	0.296	0.265	0.205	0.286	40.07	0.295	0.31	0.200
2.6	2.56	0.276	0.275	0.286	0.316	0.201	0.280	0.278	0.295	0.262	0.292	0.262	-0.074	0.202	0.303	0.200
•	3.06	0.272	0.200	0.285	0.31	0.287	0.283	0.278	0.292	0.250	0.265	0.270	0.074	0.200	0.303	0.200
9.0	3.56	0.274	0.272	0.282	0.307	0.280	0.26	0.276	0.282	0.220	0.285	0.278	0.077	0.286	0.3	0.282
₹	8.9	0.272	0.288	0.282	0.307	0.263	0.276	0.271	0.206	0.256	0.282	0.278	90.0	0.262	0.297	0.261
4.6	4.86	0.200	0.283	0.279	0.301	0.270	0.276	0.206	0.200	0.262	0.282	0.272	0.065	0.278	0.20	0.277
6	9.08	0.30	0.263	0.276	0.207	0.278	0.28	0.266	0.263	0.252	0.276	0.272	0.083	0.276	0.291	0.278
9.6	9.50	0.36	0.263	0.278	0.207	0.278	0.273	0.266	0.263	0.246	0.278	0.200	-0.087	0.276	0.201	0.274
•	9.00	0.200	<b>8</b> .0	0.272	0.254	0.276	0.27	0.253	0.28	0.240	0.273	0.200	<b>9</b> 0.0	0.278	0.287	0.271
9.6	9:39	0.204	0.263	0.272	0.201	0.272	0.27	0.262	0.276	0.246	0.273	0.200	90.0	0.272	0.267	0.200
•	7.08	0.263	8.0	0.200	0.20	0.27	0.267	0.262	0.273	0.243	0.288	0.200	<b>8</b>	0.272	0.264	0.208
7.6	7.56	0.261	0.256	0.200	0.288	0.268	0.264	0.250	0.278	0.246	0.273	0.263	8	0.260	0.284	0.200
•	90.9	0.250	0.263	0.20	0.285	0.208	0.264	0.250	0.273	0.243	0.260	9. 9.	0.000	0.296	0.261	0.265
9.6	6.65	0.250	0.253	0.253	0.285	0.266	0.264	0.250	0.27	0.24	0.208	0.200	9000	0.200	0.281	0.263
•	9.00	0.256	0.250	0.50	0.285	0.266	0.251	0.256	0.27	0.24	0.206	<b>8</b> .0	<b>9</b> 000	0.200	0.28	0.263
<b>3</b> 0.	9.56	0.258	0.26	0.263	0.282	0.204	0.204	0.256	0.27	0.24	0.286	9.30	900.0	0.263	0.278	0.3
<b>•</b>	10.05	0.256	0.28	0.263	0.282	0.20	0.20	0.256	0.27	0.24	0.200	9.0	9000	0.283	0.278	0.252
2	12.05	0.251	0.247	0.26	0.275	0.257	0.257	0.25	0.264	0.233	0.263	0.257	0.00	8.0	0.275	0.256
7	14.06	0.247	0.241	0.256	0.272	0.254	0.251	0.240	0.261	0.23	0.257	0.28	6.18	0.253	0.208	0.252
9	16.05	0.245	0.237	0.237	0.206	0.240	0.248	0.243	0.254	0.23	0.253	0.257	6.108 80.108	0.253	0.500	8
5	18.06	0.242	0.234	0.25	0.200	0.246	0.248	0.24	0.254	0.23	0.25	0.247	6.10 80	0.247	0.262	0.247
8	20.08	0.230	0.234	0.247	0.263	0.243	0.245	0.237	0.251	0.221	0.247	0.241	0. 108	0.247	0.250	0.242
22	22.08	0.235	0.228	0.241	0.256	0.24	0.236	0.234	0.245	0.221	0.244	0.241	6. 6.	0.244	0.256	0.230
2	24.06	0.232	0.226	0.241	0.256	0.238	0.236	0.23	0.245	0.221	0.241	0.236	0.100	0.236	0.263	0.236
8	<b>29</b> .08	0.231	0.226	0.237	0.253	0.235	0.236	0.228	0.230	0.216	0.236	0.234	0.12	0.236	0.240	0.232
28	28.05	0.258	0.222	0.234	0.247	0.232	0.232	0.225	0.242	0.211	0.236	0.231	6.12	0.234	0.240	0.220
8	30.05	0.220	0.222	0.234	0.247	0.229	0.232	0.225	0.236	0.20	0.23	0.228	6.1 0.1	0.23	0.243	0.227
35	32.05	0.224	0.218	0.231	0.243	0.227	0.229	0.221	0.232	0.205	0.228	0.228	0.122	0.228	0.243	0.224
<b>3</b>	<b>34.05</b>	0.221	0.218	0.228	0.24	0.226	0.220	0.218	0.232	0.202	0.225	0.225	97.7	0.226	0.24	0.223
8	36.05	0.22	0.212	0.225	0.237	0.223	0.222	0.216	0.220	0.202	0.225	0.225	O.126	0.226	0.237	0.221
88	30.05	0.216	0.212	0.225	0.237	0.221	0.222	0.215	0.226	0.202	0.222	0.222	<b>-0.126</b>	0.225	0.27	0.218
9	<b>4</b> 0.0 <b>5</b>	0.215	0.200	0.222	0.234	0.218	0.219	0.212	0.220	0.190	0.222	0.210	0.125	0.222	0.234	0.218
42	42.05	0.213	0.20	0.222	0.231	0.216	0.218	0.208	0.220	0.199	0.222	0.219	97.0	0.219	2.0	0.214
7	4.08	0.212	0.206	0.215	0.228	0.215	0.216	0.200	0.223	0.199	0.212	0.215	-0.122	0.210	0.23	0.213

Table 2. Multiple-Well Pumping Test Recovery Data

Uncorrected	Corrected	¥	Veli	Vel	¥e∐	i v	Well	Welf	Well	No.	Wei	*	E A	N.	7	3
Time	Time	=	22	₽2	3	Ð	ō	8	8	8	8	<u></u>	2	8	ī	<b>S</b>
(minutes)	(minutes)	E	Œ	£	£	£	£	ε	ε	Ξ	Ê	ε	ξ	ε	٤	Ε
!								8	976	5		410	5	4,60	680	
<b>2</b> :	40.00	0.21	9.50	0.213	0.428	0.618	0.416	200	22.0		0.50					
<b>?</b> S	<b>3</b> 5		9.50	0.2.0	93.0	18.0	2.40			9 6	0.20	0.212	2 4	9 000	0.22	020
3 2	50 CS		0.19	0.200	0.218	0.207	0.20	0.2	0.214	0.192	0.203	0.00	82.0	0.30	0.216	0.208
2	8	0.206	0.202	0.212	0.221	0.207	0.21	0.203	0.217	0.192	0.203	0.206	-0.126	0.206	0.218	0.208
8	8	0.203	0.198	0.20	0.218	9.30	0.203	0.2	0.21	0.169	0.100	0.200	0.125	0.208	0.216	0.203
8	99.09	0.0	0.183	0.203	0.216	0.202	0.2	0.196	0.207	0.160	0.188	0.200	6.125	0.203	0.215	0.202
8	90.09	0.100	0.188	0.203	0.212	0.2	0.2	0.183	0.21	0.189	0.196	0.200	0.122	0.203	0.218	6.2
95	62.05	0.197	0.183	0.303	0.212	0.0	0.5	0.188	0.21	0.180	0.190	0.208	<b>0.122</b>	0.200	0.212	0.198
3	87.08	0.190	0.10	0.19 6	0.200	0.190	0.203	0.183	0.2	0.166	0.183	0.188	6.128	0.190	0.208	0.166
	90:00	9.0	0.187	0.190	0.200	0.196	0.107	0.10	0.20	0.180	0.1 8	0.190	ð.110	0.18 8	0.20	0.18
8	60.05	<u>o</u>	0.187	0.196	0.200	0.196	0.5	0.10	0.201	0.186	0.163	0.188	-0.110	0.1 8	0.20	0.186
2	20.05	0.192	0.10	9.1	0.200	0.1 <b>2</b>	0.197	0.10	0.201	0.186	0.180	0. 186	0.110	0. 9	0.206	0. 28
2	72.08	0.191	0.187	0.198	0.20	0.102	0.194	0.167	0.201	0. 186	0.40	0.188	6.110	0.183	0.206	0.192
72	74.06	0.180	0.187	0.163	0.202	0.191	9.0	0.187	0.5 <b>8</b>	0.163	0.187	0. 28	0.11	0.183	0.202	0.186
2	76.06	0.180	0.163	0.183	0.202	0.100	0.191	0.1 <b>6</b>	0.198	0.183	0.187	8	6.112	0.10	0.202	0.18
2	78.06	0.196	0.183	0.183	0.19	0.186	0.191	0.184	0.196	0.186	0.167	<u>.</u>	6 8	0.163	0.202	0.167
8	90.08	0.186	0.163	0.10	0. 2.	0.186	0.187	20.0	0.1 <b>9</b> 6	0.183	0.167	0. 6	6 5	0.10	0.202	0.186
82	82.05	0.164	0.16	0.10 0.10	0.190	0.186	0.167	0.161	0.196	0.163	0.184	0. <b>5</b>	<b>6</b>	0 6 6	0. 6	0.18
2	<b>2</b> .08	0.183	0.18	0.10	0.198	0,185	0.167	0.161	0.10	0.163	0. 2	0.1	6 8	0. 6	0.18 8	9.0
2	96.05	0.161	0.177	0.187	0.196	0.181	0. 10.	0.161	0.10	0.1	0.16	0.187	6 2 8	0.187	0.188	0.181
2	86.06	0.18	0.174	0.187	0.193	0.181	0.18	0.178	0.10	0.17	0.16	0.187	6. 18	0.187	0.18 8	2.0
8	90.06	0.18	0.177	0.167	0.188	0.181	0.181	0.178	0.166	£ .0	0.177	0.167	6.100 0.100	0.1 1	0.198	6.1
92	92.06	0.178	0.174	20.0	0.193	0.18	0.181	0.175	0.186	0.173	0.177	0. 10.	90.0	0.1 <b>2</b>	0. 8	0.13
	2.8	0.178	0.171	0.184	0.10	0.178	0.181	0.178	0.186	0.17	0.177	0.18	9000	0.16	0. 8	0.5%
8	99.06	0.176	0.171	0.18	0.10	0.177	0.181	0.178 87.1.0	0.168	0.17	0.174	0.18	9000	0.18	0.160	0.174
8	90.08	571.0	0.171	0.177	0.186	0.178	0.178	0.171	0.185	0.164	0.171	0.17	0.10	0.18	0.186	0.178
\$	100.06	0.173	0.166	0.177	0.186	0.173	0.178	0.171	0.182	0.158	0.171	0.17	0.100	0.17	0.180	0.171
110	110.06	0.167	0.161	0.174	0.18	0.180	0.171	0.166	0.176	0.135	0.165	0.174	0.14	0.1 7.		0.163
120	120.05	0.162	0.155	0.168	0.174	0.162	0.165	0.162	0.18	0.1	0.158	0.156	9. 9.	0.165	0.174	0.155
130	130.06	0.150	0.152	0.104	0.171	0.150	0.162	0.156	0.100	0.00	0.152	0.181	-0.236	0. 161	0.17	0.151
140	140.05	0.156	0.140	0.101	0.167	0.156	0.150	0.153	0.163	0.00	0.140	0.156	0.267	0.158	0.167	0.147
55	150.06	0.151	0.142	0.155	0.161	0.15	0.152	0.15	0.16 8	0.00	0.146	0.156	0.296	0.152	2	0.143
5	160.05	0.146	0.130	0.152	0.158	0.145	0.149	0.146	0.154	0.068	0.130	0.140	-0.335	0.1	0.156	0.136
81		0.145	0.136	0.140	0.155	0.142	0.146	0.14	0.151	0.088	0.136	0.146	-0.358	0.146	0.155	0.135
. 180		0.141	0.133	0.145	0.152	0.130	0.143	0.137	0.147	0.062	0.133	0.142	0.363	0.142	0.15	0.132
061	190.06	0.138	0.13	0.142	0.148	0.136	0.14	0.134	0.144	0.066	0.13	0.130	0.40	0.130	0.148	0.13
902	-	0.136	0.123	0.139	0.145	0.131	0.138	0.131	0.141	0.070	0.120	0.136	0.420	0.136	0.145	0.126
210	210.06	0.132	0.123	0.136	0.142	0.120	0.133	0.131	0.138	0.070	0.123	0.136	-0.446	0.133	0.142	0.122
220	-	0.120	0.12	0.133	0.130	0.126	0.133	0.128	0.136	0.070	0, 12	0.133	94.0	0.13	0.13 8	0.121

0.00 0.007 0.007 0.007 0.006 0.006 0.006 0.007 0.007 0.006 0.006 0.006 0.007 0.007 0.007 0.007 0.007 0.007 0.007 ₹88 0.10 0.101 0.107 0.107 0.107 0.104 0.104 0.104 0.0 0.11 0.107 1 2 E 90.08 90.08 90.08 90.08 0.006 0.006 0.006 0.002 0.002 80.0 0.111 0.107 0.107 0.104 0.104 0.000 8 0.11 5.1 ₹ B € 0.000 0.736 0.736 0.707 0.707 0.816 0.826 0.841 0.877 6.8 6.8 7 -0.545 900 0.87 ₹ 21 € 0.107 0.104 0.104 0.101 0.101 0.101 0.008 0.008 0.008 0.008 3 . 8 0.076 0.076 0.070 0.070 0.006
0.005
0.002
0.002
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003 90.0 ₹8€ 0.044 0.044 0.041 0.031 0.031 0.031 0.031 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 ₹8€ 0.107 0.108 0.108 0.108 0.108 0.108 0.108 0.097 0.0097 0.0094 0.0094 0.0094 0.0094 0.0094 0.0094 0.0094 0.113 0.1 1.0 9.5 ₹8€ 0.1 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.067 2007 0.100 0.100 0.100 0.100 0.100 ₹8€ 0.101 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.108 0.101 9.10 ₹ 5 E 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ₹ 5 € 0.107 0.104 0.104 0.101 0.101 0.000 0.000 0.005 0.0 0.114 0.107 3 2 8 0.005 0.005 0.002 0.002 0.002 0.002 0.104 0.101 0.101 0.101 0.001 0.000 0.000 900 0.111 0.107 0.107 0.114 0.111 ₹ 2 E 0.062 0.062 0.062 0.062 0.07 0.070 0.070 0.0 0.0 0.001 0.001 0.008 0.008 0.000 0.00 9. 10 0.10 Table 2. Multiple-Well Pumping Test Recovery Data ₹ 22 E 0.00 0.108 0.102 0.102 0.008 90.0 80.0 9 0.15 0.110 5 . 108 D. 121 } = E 160.08 10.06 Corrected Time 230.05 240.05 (minutes) 500 530 530 530 540 550 550 560 560 560 560 Uncorrected (minutes) Ē

Table 2. Multiple-Well Pumping Test Recovery Data

1	Corrected W	Well	¥	×	¥e!	Ne.	Voi	¥	×	Wei	<b>=</b>	7	3	7		3
(7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7)         (7) <th>_</th> <th></th> <th>œ</th> <th>2</th> <th>I</th> <th>2</th> <th>ō</th> <th>8</th> <th>8</th> <th>8</th> <th>8</th> <th>ŭ</th> <th></th> <th></th> <th></th> <th>į</th>	_		œ	2	I	2	ō	8	8	8	8	ŭ				į
0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084 <th< th=""><th>£</th><th>- 1</th><th>E</th><th>E</th><th>Œ</th><th>3</th><th>£</th><th>(£)</th><th>£</th><th>E</th><th>E</th><th>; £</th><th>3 8</th><th>3 8</th><th>: E</th><th>8 8</th></th<>	£	- 1	E	E	Œ	3	£	(£)	£	E	E	; £	3 8	3 8	: E	8 8
0.088         0.091         0.092         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098         0.098 <th< td=""><td>900</td><td></td><td>9.076</td><td>0.068</td><td>1000</td><td>0.082</td><td>900</td><td>7800</td><td>780</td><td></td><td>   </td><td></td><td></td><td></td><td></td><td></td></th<>	900		9.076	0.068	1000	0.082	900	7800	780							
0.088         0.091         0.091         0.093         0.093         0.093         0.093         0.093         0.093         0.093         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094 <th< td=""><td>9.067</td><td></td><td>9.00</td><td>0.068</td><td>0.001</td><td>90'0</td><td>900</td><td>200</td><td>3</td><td>3 6</td><td>P/0.0</td><td></td><td>9.0</td><td>0.068</td><td>800</td><td>0.0</td></th<>	9.067		9.00	0.068	0.001	90'0	900	200	3	3 6	P/0.0		9.0	0.068	800	0.0
0.088         0.081         0.082         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084 <th< td=""><td>3.087</td><td></td><td>0.076</td><td>0.066</td><td>0.091</td><td>0.062</td><td>000</td><td>700</td><td>0.007</td><td>200</td><td>9 6</td><td></td><td></td><td>0.086</td><td>0.00</td><td>0.0</td></th<>	3.087		0.076	0.066	0.091	0.062	000	700	0.007	200	9 6			0.086	0.00	0.0
0.07%         0.08%         0.08%         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084 <th< td=""><td>8</td><td></td><td>0.076</td><td>0.066</td><td>0.001</td><td>0.082</td><td>0.065</td><td>0.00</td><td>700</td><td>7</td><td></td><td></td><td></td><td>0.086</td><td>9000</td><td>0.0</td></th<>	8		0.076	0.066	0.001	0.082	0.065	0.00	700	7				0.086	9000	0.0
0.088         0.091         0.092         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094 <th< td=""><td>790.0</td><td></td><td>0.076</td><td>0.088</td><td>0.001</td><td>90.0</td><td>0.085</td><td>0.0</td><td>700</td><td>700</td><td></td><td>9 6</td><td>9 5</td><td>90.0</td><td>0.000</td><td>0.07</td></th<>	790.0		0.076	0.088	0.001	90.0	0.085	0.0	700	700		9 6	9 5	90.0	0.000	0.07
0,079         0,084         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094         0,094 <th< td=""><td>900</td><td></td><td>0.076</td><td>0.086</td><td>0.001</td><td>80.0</td><td>0.089</td><td>0.084</td><td>900</td><td>7000</td><td>200</td><td>80.0</td><td>8 8</td><td>900</td><td>0.00</td><td>0.07</td></th<>	900		0.076	0.086	0.001	80.0	0.089	0.084	900	7000	200	80.0	8 8	900	0.00	0.07
0.079         0.084         0.091         0.082         0.084         0.084         0.091         0.084         0.084         0.084         0.092         0.084         0.084         0.092         0.084         0.084         0.097         0.077         0.078         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084 <th< td=""><td>90</td><td>_</td><td>0.078</td><td>0.066</td><td>0.0</td><td>0.062</td><td>0.005</td><td>0.064</td><td>0.007</td><td>900</td><td>9200</td><td>800</td><td>0 A87</td><td></td><td></td><td></td></th<>	90	_	0.078	0.066	0.0	0.062	0.005	0.064	0.007	900	9200	800	0 A87			
0.078         0.082         0.081         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084 <th< td=""><td>8</td><td></td><td>0.076</td><td>0.088</td><td>0.001</td><td>0.062</td><td>0.065</td><td>0.084</td><td>0.00</td><td>0.037</td><td>9200</td><td>0.085</td><td>0.867</td><td></td><td></td><td></td></th<>	8		0.076	0.088	0.001	0.062	0.065	0.084	0.00	0.037	9200	0.085	0.867			
0.079         0.086         0.086         0.084         0.084         0.084         0.084         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.084         0.084         0.084         0.089         0.089         0.084         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.099         0.099         0.099         0.099         0.099         0.099         0.099         0.099         0.099         0.099         0.099         0.099         0.099         0.099 <th< td=""><td>8</td><td>_</td><td>0.076</td><td>0.002</td><td>0.00</td><td>0.062</td><td>0.000</td><td>0.084</td><td>0.0</td><td>0.007</td><td>0.078</td><td>0.068</td><td>-0.687</td><td>0.066</td><td></td><td></td></th<>	8	_	0.076	0.002	0.00	0.062	0.000	0.084	0.0	0.007	0.078	0.068	-0.687	0.066		
0.079         0.084         0.085         0.086         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084 <th< td=""><td>8</td><td>•</td><td>0.07</td><td>0.066</td><td>0.00</td><td>0.063</td><td>0.000</td><td>0.064</td><td>0.007</td><td>0.047</td><td>0.03</td><td>0.088</td><td>-0.867</td><td>0.088</td><td>9000</td><td></td></th<>	8	•	0.07	0.066	0.00	0.063	0.000	0.064	0.007	0.047	0.03	0.088	-0.867	0.088	9000	
0.078         0.084         0.085         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084         0.084 <th< td=""><td>8</td><td>•</td><td>0.070</td><td>0.068</td><td>0.005</td><td>0.085</td><td>0.080</td><td>0.084</td><td>0.097</td><td>0.063</td><td>0.078</td><td>990.0</td><td>0.0</td><td>0.00</td><td>9000</td><td>0</td></th<>	8	•	0.070	0.068	0.005	0.085	0.080	0.084	0.097	0.063	0.078	990.0	0.0	0.00	9000	0
0.079         0.084         0.085         0.085         0.084         0.084         0.084         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.084         0.094         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.099         0.099         0.099         0.099         0.099         0.099         0.099         0.099         0.099         0.099         0.099         0.099         0.099         0.099         0.099         0.099         0.099         0.099         0.099         0.099         0.099         0.099         0.099         0.099         0.099         0.099         0.099         0.099         0.099         0.099         0.099         0.099         0.099         0.099         0.099         0.099         0.099         0.099 <th< td=""><td>ğ</td><td>2</td><td>0.070</td><td>0.068</td><td>0.005</td><td>0.083</td><td>0.080</td><td>0.084</td><td>0.007</td><td>990.0</td><td>0.076</td><td>0.000</td><td>0.628</td><td>0.00</td><td>9000</td><td>0.00</td></th<>	ğ	2	0.070	0.068	0.005	0.083	0.080	0.084	0.007	990.0	0.076	0.000	0.628	0.00	9000	0.00
0.079         0.085         0.085         0.086         0.084         0.087         0.082         0.082         0.089         0.089         0.084         0.084         0.084         0.082         0.082         0.089         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092         0.092 <th< td=""><td>ğ</td><td>2</td><td>0.070</td><td>0.088</td><td>900</td><td>0.065</td><td>0.0</td><td>0.0</td><td>0.007</td><td>90.0</td><td>0.082</td><td>990.0</td><td>-0.908</td><td>0.066</td><td>0.096</td><td>0.082</td></th<>	ğ	2	0.070	0.088	900	0.065	0.0	0.0	0.007	90.0	0.082	990.0	-0.908	0.066	0.096	0.082
0.078         0.086         0.086         0.086         0.084         0.1         0.079         0.082         0.082         0.082         0.084         0.091         0.092         0.082         0.082         0.082         0.082         0.082         0.092         0.091         0.091         0.092         0.082         0.092         0.091         0.092         0.092         0.094         0.092         0.094         0.092         0.094         0.092         0.094         0.092         0.094         0.094         0.092         0.094         0.094         0.092         0.094         0.094         0.092         0.094         0.094         0.092         0.094         0.092         0.094         0.094         0.092         0.094         0.094         0.092         0.094         0.094         0.092         0.094         0.094         0.092         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0	2	8 1	0.07	0.088	0.006	0.088	0.000	0.0	0.007	0.00	0.082	0.066	<b>9</b> .11	0.00	9000	9
0.082         0.089         0.085         0.084         0.085         0.084         0.085         0.084         0.082         0.082         0.082         0.083         0.092         0.091           0.082         0.089         0.086         0.084         0.044         0.044         0.044         0.044         0.044         0.044         0.089         0.092         0.089         0.091           0.085         0.086         0.086         0.086         0.087         0.043         0.149         0.082         0.084         0.091           0.086         0.086         0.086         0.086         0.086         0.086         0.082         0.044         0.096         0.091           0.085         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.096         0.096         0.096         0.096         0.096         0.096         0.096         0.096         0.096         0.096         0.096         0.096         0.096         0.096         0.096         0.096         0.096         0.096         0.096         0.096         0.096         0.096         0.096         0.096         0.096         0.096         0.096         0.096         0.096	ō (	8 :	0.0 20.0	0.000	900	0.066	0.060	90.0	9	0.070	0.062	9000	0.722	0.002	0.101	0.087
0.085         0.086         0.086         0.086         0.084         0.103         0.104         0.082         -0.59         0.092         -0.59         0.091         0.011         0.092         -0.59         0.001         0.011         0.092         -0.59         0.001         0.001         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002 <th< td=""><td>0</td><td>8 8</td><td>0.082</td><td>0.000</td><td>0.000</td><td>0.068</td><td>0.092</td><td>0.067</td><td><u>.</u></td><td>0.00</td><td>0.082</td><td>0.002</td><td>-0.868</td><td>0.002</td><td>0.101</td><td>0.0</td></th<>	0	8 8	0.082	0.000	0.000	0.068	0.092	0.067	<u>.</u>	0.00	0.082	0.002	-0.868	0.002	0.101	0.0
0.065         0.086         0.086         0.086         0.086         0.087         0.103         0.11         0.086         0.082         -0.645         0.085         0.091         -0.092         -0.092         -0.092         -0.093         0.093         0.092         -0.093         0.093         0.093         0.093         0.093         0.093         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094         0.094	0	2 :	0.082	0.0	0.008	0.098	0.000	<b>0</b> .0	0.105	o. 10	0.086	0.002	9.0	0.002	0.101	0.00
0.065         0.085         0.082         0.082         0.082         0.082         0.082         0.082         0.083         0.092         0.0101           0.085         0.086         0.086         0.086         0.085         0.082         0.044         0.092         0.0101           0.085         0.086         0.086         0.086         0.085         0.082         0.048         0.086         0.086         0.082         0.086         0.096         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086	<u>,</u>	~	0.000	0.000	0.00	0.066	0.002	0.087	0.18	0.1	0.086	0.002	0.648	0.000	0.101	0.0
0.065         0.086         0.086         0.086         0.085         0.085         0.082         -0.445         0.086         0.0101           0.085         0.086         0.086         0.086         0.085         0.082         -0.446         0.086         0.086         0.082         -0.446         0.086         0.096         0.086         0.085         0.082         -0.448         0.086         0.086         0.086         0.082         -0.448         0.086         0.086         0.086         0.082         -0.448         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.082         -0.448         0.086         0.086           0.085         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086         0.086 <td< td=""><td>Ö</td><td>8</td><td>990.0</td><td>0.002</td><td>0.006</td><td>0.088</td><td>0.002</td><td>0.087</td><td>0.100</td><td>0.110</td><td>0.068</td><td>0.082</td><td>9080</td><td>9000</td><td>0.101</td><td>0000</td></td<>	Ö	8	990.0	0.002	0.006	0.088	0.002	0.087	0.100	0.110	0.068	0.082	9080	9000	0.101	0000
0.085         0.086         0.086         0.082         0.087         0.103         0.086         0.085         0.082         0.048         0.092         -0.448         0.092         -0.048         0.092         -0.048         0.092         -0.048         0.092         -0.048         0.092         -0.048         0.092         -0.048         0.092         -0.048         0.092         -0.048         0.092         -0.048         0.092         -0.048         0.092         -0.048         0.092         -0.048         0.092         -0.048         0.092         -0.048         0.092         -0.048         0.092         -0.048         0.101           0.086         0.084         0.084         0.087         0.087         0.107         0.107         0.104         0.085         -0.086         0.101           0.086         0.086         0.086         0.087         0.087         0.107         0.129         0.086         0.086         0.101           0.086         0.086         0.087         0.087         0.107         0.129         0.085         -0.286         0.101           0.086         0.086         0.087         0.087         0.107         0.129         0.086         -0.286         0.101 <td>0</td> <td>8</td> <td>0.088</td> <td>0.066</td> <td>0.006</td> <td>0.066</td> <td>0.000</td> <td>0.067</td> <td>0.103</td> <td>0.113</td> <td>0.066</td> <td>0.002</td> <td>-0.467</td> <td>9000</td> <td>0.101</td> <td></td>	0	8	0.088	0.066	0.006	0.066	0.000	0.067	0.103	0.113	0.066	0.002	-0.467	9000	0.101	
0.085         0.086         0.086         0.082         0.087         0.103         0.081         0.082         0.082         0.082         0.082         0.082         0.082         0.082         0.082         0.082         0.082         0.082         0.082         0.082         0.082         0.082         0.082         0.082         0.082         0.082         0.082         0.082         0.082         0.082         0.082         0.082         0.082         0.082         0.082         0.082         0.082         0.082         0.082         0.082         0.082         0.082         0.082         0.082         0.082         0.082         0.082         0.082         0.083         0.083         0.083         0.083         0.083         0.083         0.083         0.083         0.083         0.083         0.083         0.083         0.083         0.083         0.083         0.083         0.083         0.083         0.083         0.083         0.083         0.083         0.083         0.083         0.083         0.083         0.083         0.083         0.083         0.083         0.083         0.083         0.083         0.083         0.083         0.083         0.083         0.083         0.083         0.083 <th< td=""><td>Ö</td><td>8</td><td>0.065</td><td>0.068</td><td>0.006</td><td>0.088</td><td>0.002</td><td>0.067</td><td>0.10</td><td>0.006</td><td>0.000</td><td>0.002</td><td>-0.448</td><td>0000</td><td>900</td><td></td></th<>	Ö	8	0.065	0.068	0.006	0.088	0.002	0.067	0.10	0.006	0.000	0.002	-0.448	0000	900	
0.062         0.092         0.092         0.092         0.093         0.092         0.092         0.092         0.092         0.046         0.092         0.046         0.092         0.046         0.092         0.046         0.092         0.046         0.092         0.093         0.092         0.092         0.092         0.093         0.093         0.094         0.094         0.092         0.093         0.094         0.094         0.094         0.094         0.094         0.095         0.094         0.094         0.095         0.094         0.094         0.095         0.094         0.094         0.095         0.094         0.094         0.095         0.095         0.094         0.094         0.095         0.095         0.094         0.095         0.095         0.094         0.095         0.095         0.094         0.095         0.095         0.095         0.095         0.095         0.095         0.095         0.095         0.095         0.095         0.095         0.095         0.095         0.095         0.095         0.095         0.095         0.095         0.095         0.095         0.095         0.095         0.095         0.095         0.095         0.095         0.095         0.095         0.095 <th< td=""><td>0</td><td>8</td><td>0.068</td><td>0.066</td><td>9000</td><td>0.068</td><td>0.062</td><td>0.067</td><td>81.0</td><td>0.00</td><td>900</td><td>0.002</td><td>0.420</td><td>0000</td><td></td><td></td></th<>	0	8	0.068	0.066	9000	0.068	0.062	0.067	81.0	0.00	900	0.002	0.420	0000		
0.086 0.082 0.086 0.081 0.082 0.087 0.107 0.101 0.082 0.085 0.087 0.101 0.082 0.088 0.085 0.101 0.088 0.088 0.088 0.088 0.088 0.088 0.101 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088	Ö	8	0.062	0.002	0.005	0.088	0.002	0.067	0.18	0.062	9000	0.00	9770	600		
0.085 0.088 0.088 0.09 0.082 0.087 0.107 0.12 0.089 0.085 0.095 0.101 0.088 0.082 0.086 0.091 0.082 0.087 0.107 0.129 0.082 0.085 0.089 0.086 0.101 0.088 0.088 0.089 0.087 0.107 0.129 0.082 0.085 0.086 0.101	ĕ	2	0.088	0.002	900.0	0.001	0.002	0.067	0.107	0.101	0.002	90.00	0.807	100		
0.088 0.082 0.086 0.081 0.082 0.087 0.107 0.128 0.082 0.088 0.101 0.088 0.088 0.081 0.082 0.084 0.107 0.128 0.082 0.085 0.101	0	9	990.0	0.066	0.006	90.0	0.002	0.067	0.107	0.0			200			
0.086 0.086 0.089 0.081 0.082 0.084 0.107 0.128 0.082 0.085 0.084 0.085 0.101	8	~	0.088	0.092	0.000	0.001	0.092	0.087	0.107	0.120					5 6	9
	9	•	0.088	0.066	0.000	0.001	0.092	0.00	0.107	0.126	0.002	900	792			

	Client: EG&G ROCKY FLATS	FLATS
DESIGNATION OPERABLE UNIT 1	Ë	EEK
881 HILLSI	FER TEST - WELL II	11
		DATA SET: 11PT.IN 03/17/92
-		AQUIFER TYPE: Unconfined SOLUTION METHOD:
<u>. lu</u>	-luu	Neuman TEST DATE:
(13)		12/18/91 TEST WELL: 03
	THE REAL PROPERTY OF THE PARTY	OBS. WELL:
Drawdo		ESTIMATED PARAMETERS:  T = 0.1398 ft ² /min  S = 0.008818  Sy = 0.3075  B = 2.
0.01	mii i i i	TEST DATA:  0 = 0.2019 ft ³ /min  r = 5.15 ft  b = 3.68 ft
0.001 [/	1000. 1000. n)	

Client: EG&G ROCKY FLATS	FLATS
CDEDADIE HNIT 1 Location:	BEK
HILSIDE AQUIFER T	12
	DATA SET:
10. E-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	03/17/92
	AGUIFER TYPE:
11	Unconfined SOLUTION METHOD:
	Neuman
рп -i	TEST DATE:
	12/18/91
	TEST WELL:
3)	
u	OBS. WELL:
0.1 I	11
	ESTIMATED PARAMETERS:
	T = 0.1494 ft2/min
<u> </u>	S = 0.08489 S = 1.139
°	•
тт. Т	TEST DATA:
	0 = 0.2019 ft ³ /min
	7 = 3.028 ft b = 3.47 ft
mmin	
0.001 10. 10. 100. 1000.	
Time (min)	
	ŧ

Client:	EQ&G ROCKY FLATS	ATS
Project No.: OPERABLE UNIT 1 Location:	on: WOMAN CREEK	
881 HILLSIDE AQUIFER	TEST - WELL 13	
10. E. T.	13pt.in 1111118	\ SET: in //92
_	AQU]	AQUIFER TYPE: Unconfined SOLUTION METHOD:
	Neuman TEST D 12/18/91	Neuman TEST DATE:
1111	1EST 03 08S.	T WELL:
Drawdor 0 0000	EST EST	ESTIMATED PARAMETERS:  T = 0.1292 ft ² /min  S = 0.09685 Sy = 1.58
0.01	TEST TEST	0.6 T DATA: 0.2019 ft ³ /min 2.42 ft
0.001 1. 1. 10. 10. 100. Time (min)	1000.	

CREEK	14	DATA SET: 14pt.in 03/18/92	AGUIFER TYPE: Unconfined SOLUTION METHOD:	TEST DATE: 12/18/91 TEST WELL:	03 08S. WELL: 14	ESTIMATED PARAMETERS: T = 0.1145 ft ² /min S = 0.04099 Sy = 0.902 P = 0.8	TEST DATA: 0 = 0.2019 ft ³ /min r = 3.24 ft b = 3.54 ft	
Client: EG&G ROCKY FLATS Project No.: OPERABLE UNIT 1 Location: WOMAN CREEK		10. <u>- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>	-	-i -i	0.1			0.001 1. 10. 10. 100. 1000. Time (min)

ROCKY FLATS	REEK	. 15	DATA SET: 15pt.in	03/20/92	Unconfined SOLUTION METHOD:	Neuman TEST DATE:	12/18/91 TEST WELL:	OBS. WELL:		ESTIMATED PARAMETERS:		S = 0.01883 Sy = 0.3036	•	TEST DATA:	0 = 0.2019 ft ³ /min r = 5.38 ft	b = 3.56 ft			
Client: EG&G ROCK	Project No.: OPERABLE UNIT 1 Location: WOMAN CREEK	881 HILLSIDE AQUIFER TEST - WELL		10. <u>Entritudent in Franklike in Franklike</u>					0.1		ه	0		— по-n			0.001 1.11111 1.11111 1.000	Time (min)	

Y FLATS	REEK	0.1	DATA SET:  otht.in  o3/18/92  AQUIFER TYPE: Unconfined SOLUTION METHOD: Neuman TEST DATE: 12/18/91 TEST MELL: 03 OBS. WELL: 04  ESTIMATED PARAMETERS: T = 0.1382 ft²/min S = 0.0379 Sy = 0.4883 P = 0.8  TEST DATA: 0 = 0.2019 ft³/min r = 4.51 ft b = 3.72 ft
Client: EG&G ROCKY FLATS	r 1 Location: WOMAN CREEK	SIDE AQUIFER TEST - WELL 01	0 0 0 0 0 100. 100. 1000.
	Project No .: OPERABLE UNIT		10. 10. 0.01

Y FLATS	REEK	02	DATA SET: o2pt.in o3/19/92	AQUIFER TYPE: Unconfined SOLUTION METHOD:	Neuman TEST DATE:	TEST WELL:	085. MELL. 02	ESTIMATED PARAMETERS: T = 0.1344 ft ² /min S = 0.104	Sy = 2.017 B = 0.8	TEST DATA:	g = 0.2019 ft ³ /min r = 2.25 ft b = 3.65 ft		
Citate RG&G ROCKY FLATS	Ë	AQUIFER TEST - WELL 02		<del>                                      </del>	<del>-  </del> 1111				<del> </del> 1	nir	<u> </u>	1000. 1000.	
	OPERABLE UNIT 1	HILLSIDE		-	<u>lu</u>			шЦТ	0	), U.U.		0.001 1. 1. 10.	
	2	Project No				(11)	UMO	Lymqo	α				

Y FLATS	REEK	03	DATA SET: a3pt.in o5/31/92	AGUIFER TYPE: Unconfined SOLUTION METHOD:	Neuman TEST DATE: 12/18/91 TEST WELL:	03 08S. WELL: 03	ESTIMATED PARAMETERS:  T = 0.1191 ft ² /min  S = 0.3757  Sy = 175.2  P = 0.03	TEST DATA:  Q = 0.2019 ft ³ /min  r = 0.07083 ft  b = 3.37 ft	
Client: EG&G ROCKY FLATS	Project No.: OPERABLE UNIT 1 Location: WOMAN CREEK	881 HILLSIDE AQUIFER TEST, WELL		- - !!!!!!!!!!	- Juiii (1	<del>-</del>	Drawdo		0.01 10. 10. 100. 1000. 1000. Time (min)

ROCKY FLATS	REEK	, 04	DATA SET:  04pmaq.in  05/31/92  AQUIFER TYPE: Unconfined SOLUTION METHOD: Neuman TEST DATE: 12/18/91 TEST WELL: 03 08S. WELL: 04  ESTIMATED PARAMETERS: T = 0.1273 ft²/min S = 0.01238 Sy = 1.162 B = 0.4  TEST DATA: 0 = 0.2019 ft³/min r = 2.53 ft b = 3.56 ft
Client: EG&G ROCK)	Project No : OPERABLE UNIT 1 Location: WOMAN CREEK	881 HILLSIDE AQUIFER TEST - WELL	10. Time (min)

Cilent: EG&G ROCKY FLATS		
Client:   No.: OPERABLE UNIT 1   Location:   881 HILLSIDE AQUIFER TES   10.		= 0.5547 = 1.5 = 0.2019 = 4.99 ft
1 1 7 1 1	No.: OPERABLE UNIT 1  B81 HILLSIDE AQUIFER TEST - WELL  10.	0.001 0.001 1.111111 1.111111 1.111111 1.000. 1000.

Client: BG&G ROCKY FLATS	Y FLATS	<b>VEEK</b>	E1	DATA SET: E1PT.IN 03/19/92	AQUIFER TYPE: Unconfined SOLUTION METHOD:	Neuman TEST DATE: 12/18/91	1651 MELL. 03 085. WELL:	ESTIMATED PARAMETERS: T = 0.1476 ft ² /min S = 0.02665 Sy = 0.3241 P = 0.8	TEST DATA: 0 = 0.2019 ft ³ /min r = 5.33 ft b = 3.73 ft	
10. E TIME UNIT 1  B81 HILLSIDE  10. E TIME  0.01 E TIME  0.001 E TIME  Time			TEST -		<del>-</del>	- porter				100.
$\mathbf{A} + \mathbf{A} \mathbf{Z} \mathbf{A} = \mathbf{A}$		OPERABLE UNIT	881 HILLSIDE		-	-				1 1. 1.

T = 0.1837 ft ² /min S = 0.0005597 Sy = 0.3563 B = 0.4 TEST DATA: Q = 0.2019 ft ³ /min r = 3.47 ft b = 3.83 ft	0.01
AGUIFER TYPE: Unconfined SOLUTION METHOD: Neuman TEST DATE: 12/18/91 TEST WELL: 03 08S. WELL:	10. 10. 10. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
E2  DATA SET: e2pmeq.in 05/31/92	1000. ETTING TING TING TING TING
CREEK	Project No.: OPERABLE UNIT 1 Location: WOMAN CRE
1	

ROCKY FLATS	E3	DATA SET:  E3719/92  AQUIFER TYPE: Unconfined SOLUTION METHOD: Neuman TEST DATE: 12/18/91 TEST WELL: 03 08S. WELL: 63 ESTIMATED PARAMETERS: T = 0.1103 ft²/min S = 0.03755 Sy = 0.8121 P = 0.6  TEST DATA: 0 = 0.2019 ft³/min r = 3.44 ft b = 3.71 ft
Client: EG&G	Project No.: OPERABLE UNIT 1  B81 HILLSIDE AQUIFER TEST - WELL	

Y FLATS	REK	E4	DATA SET: E4PT.IN 03/19/92	AQUIFER TYPE: Unconfined SOLUTION METHOD:	Neuman TEST DATE:	16/10/31 TEST WELL: 03 OBS WELL:		ESTIMATED PARAMETERS:  T = 0.1491 ft ² /min  S = 0.0222  Sy = 0.4998  P = 0.6	TEST DATA: 0 - 0.2019 ft ³ /min r = 3.84 ft b = 3.56 ft	-	
Client EG&G ROCKY FLATS	Ë	881 HILLSIDE AQUIFER TEST - WELL					0.1 =	Same Constant of the constant		0.001 10. 10. 100. 1000. 1000. Time (min)	

CREEK	E2	DATA SET: ESPT.IN 03/19/92	AQUIFER TYPE: Unconfined SOLUTION METHOD:	TEST DATE:	TEST WELL:	OBS. WELL:	ESTIMATED PARAMETERS: T = 0.1171 ft ² /min S = 0.02308 Sy = 0.3394 B = 0.8	TEST DATA: 0 = 0.2019 ft ³ /min r = 5.51 ft b = 3.27 ft	
Client: EG&G ROCKY Project No.: OPERABLE UNIT 1 Location: WOMAN CRE	881 HILLSIDE AQUIFER TEST - WELL	H111111 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			1111	<u>_</u>	Drawdo	0.01 	0.001 10. 10. 100. 1000. 1000. Time (min)

LEEK DATA DATA 11PT. 03/12 SOLU Coope TES 12/16 TES 11 TES 11 TES 11 TES 12/16 TES 11 TES 03 08S	9
EST - ESE - Communication of the communication of t	100. 1000.
O.35 TITTING TITTING TO SEE ON THE CONTROL TO SEE O.35 TITTING	

CREEK	DATA SET:  12pt.in 03/18/92  AGUIFER TYPE: Unconfined SOLUTION METHOD: Cooper-Jacob TEST DATE: 12/18/91 TEST WELL: 03 08S. WELL: 12 ESTIMATED PARAMETERS: T = 0.1497 ft²/min S = 1.145 TEST DATA: 0 = 0.2019 ft³/min r = 3.05 ft b = 3.47 ft	
Project No.: OPERABLE UNIT 1  RA1 HILLSIDE AQUIFER TEST - WELL		1

•

CREEK LL 13	DATA SET:  I3PT.IN  03/12/92  AQUIFER TYPE:  Unconfined SOLUTION METHOD:  Cooper-Jacob TEST DATE: 12/18/91 TEST WELL: 03 OBS. WELL: 13 ESTIMATED PARAMETERS: T = 0.1372 ft²/min S = 1.574  TEST DATA: 0 = 0.2018 ft³/min r = 2.42 ft b = 3.51 ft
Project No.: OPERABLE UNIT 1 Location: WOMAN CRE	0.315

CREEK		AGUIFER TYPE: Unconfined SOLUTION METHOD: Cooper-Jacob TEST DATE: 12/18/91 TEST WELL:	03 0BS. WELL: 14 ESTIMATED PARAMETERS: T = 0.1217 ft ² /min S = 0.9527	TEST DATA:  Q = 0.2019 ft ³ /min  r = 3.24 ft  b = 3.54 ft
E UNIT 1 Location: WOMAN	881 HILLSIDE AQUIFER TEST -	0.380.380.280.29		0.04 0.04 0.000000000000000000000000000

C11ent: BC&C ROCKY FLATS   C11ent: BC&C ROCKY FLATS				 1				
0.35		EEK		AQUIFER TYPE: Unconfined SOLUTION METHOD: Cooper-Jacob	TEST DATE: 12/18/91 TEST WELL: 03 08S. WELL:	•	EST DATA: - 0.2019 ft ³ - 5.38 ft - 3.56 ft	
	EG&G ROCKY	.: OPERABLE UNIT 1 Location: WOMAN	1 HILLSIDE AQUIFER TEST - WELL	0.315	0.245	0.14	0.007	1 1. 100. 100. Time (min)

ROCKY FLATS	, 01	DATA SET: 01PT.IN 03/18/92	AQUIFER TYPE: Unconfined SOLUTION METHOD: Cooper-Jacob TEST DATE: 12/18/91 TEST WELL: 03 OBS. WELL: 01 ESTIMATED PARAMETERS: T = 0.1325 ft²/min S = 0.5508 TEST DATA: 0 = 0.2019 ft³/min r = 4.51 ft b = 3.72 ft	
Client: EG&G	Project No.: OPERABLE UNIT 1 Location: WOMAN CA.  RR1 HILLSIDE AQUIFER TEST - WELL			

KY FLATS	CREEK	, 02	DATA SET: 02PT.IN 03/18/92	AQUIFER TYPE: Unconfined SOLUTION METHOD:	Cooper-Jacob TEST DATE:	12/18/91 TEST WELL: 03	OBS. WELL: 02	ESTIMATED PARAMETERS: T = 0.1338 ft ² /min S = 2.172	TEST DATA: 0 = 0.2019 ft ³ /min r = 2.25 ft		
Client: EG&G ROCKY	Project No.: OPERABLE UNIT 1 Location: WOMAN CR	881 HILLSIDE AQUIFER TEST - WELL	0.35 <u>= 1 1 1   1   1   1   1   1   1   1   1 </u>	0.315	0.28	0.245	0.175	muluuu	0.105	-	0.1 1. 10. 100. 1000. Time (min)

			*	ÿ
FLATS	CREEK	03	DATA SET: 03PT.IN 03/18/92	AGUIFER TYPE: Unconfined SOLUTION METHOD: Cooper-Jacob TEST DATE: 12/18/91 TEST WELL: 03 OBS. WELL: 03 CETIMATED PARAMETERS: T = 0.1298 ft²/min S = 184.1 TEST DATA: 0 = 0.2019 ft³/min r = 0.07083 ft b = 3.37 ft
Client: EG&G ROCKY	Location: WOMAN CRI	TEST - WELL		
	OPERABLE UNIT 1	881 HILLSIDE AQUIFER		0.63 0.49 0.42 0.28 0.21 0.07 0.07 0.07 0.07 1.0. 10.
	Droine No.:			Corrected Drawdown (ft)

CREEK LATS L 04	DATA SET:  D4PWAG.IN  05/30/92  AGUIFER TYPE: Unconfined SOLUTION METHOD: Cooper-Jacob TEST DATE: 12/18/91 TEST WELL: 03 OBS. WELL:	ESTIMATED PARAMETERS:  T = 0.1723 ft ² /min  S = 0.6971  TEST DATA:  0 = 0.2019 ft ³ /min  r = 2.53 ft  b = 3.56 ft
Project No.: OPERABLE UNIT 1 Location: WOMAN CRE	0.35 O.245 O.245 O.275 O	0.14 0.105 0.07 0.035

CREEK	DATA SET:  05PT.IN  03/11/92  AQUIFER TYPE: Unconfined SOLUTION METHOD: Cooper-Jacob TEST DATE: 12/18/91 TEST DATE: 03 0BS. WELL: 05  ESTIMATED PARAMETERS: T = 0.1321 ft ² /min S = 0.5036  TEST DATA: 0 = 0.2019 ft ³ /min r = 4.99 ft b = 3.47 ft
Project No.: OPERABLE UNIT 1  B81 HILLSIDE AQUIFER TEST - WELL (	0.315

Y FLATS	CREEK	E1	DATA SET: E1PT.IN 03/18/92	AQUIFER TYPE: Unconfined SOLUTION METHOD:	Cooper-Jacob TEST DATE:	TEST WELL: 03 08S. WELL:	ESTIMATED PARAMETERS: T = 0.1418 ft ² /min S = 0.355	TEST DATA:  0 = 0.2019 ft ³ /min  r = 5.33 ft  b = 3.73 ft	
Client: EG&G ROCKY	Project No.: OPERABLE UNIT 1 Location: WOMAN CRE	881 HILLSIDE AQUIFER TEST - WELL			0.28		0.14		1. T

ROCKY FLATS	CREEK	E2	DATA SET: E2PWAG.IN 05/30/92 '	AQUIFER TYPE: Unconfined SOLUTION METHOD:	Cooper-Jacob TEST DATE: 12/18/91 TEST WELL:	OBS. WELL:	ESTIMATED PARAMETERS: T = 0.1873 ft ² /min S = 0.3498	TEST DATA:  Q = 0.2019 ft ³ /min  r = 3.47 ft  b = 3.83 ft		
Client: EG&G ROCK	Location: WOMAN CI	FER TEST - WELL						9 	100. 1000.	
	OPERABLE UNIT 1	881 HILLSIDE AQUIFER	0.35 E T TTTT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	0.245	0.21	0.14	0.105	0.035 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Project No.:				w <i>u</i> (tf)	Lymdo	cted D			

r FLATS	EEK	E3	DATA SET:  E3PT.IN  03/18/92  AQUIFER TYPE: Unconfined SOLUTION METHOD: Cooper-Jacob TEST DATE: 12/18/91 TEST DATE: 63 OBS. WELL: 63 CESTIMATED PARAMETERS: T = 0.1315 ft²/min S = 0.7463 TEST DATA: G = 0.2019 ft³/min r = 3.44 ft b = 3.71 ft	W. W. T.
Client: EG&G ROCKY	Location: WOMAN CREEK	FER TEST - WELL		
	Project No.: OPERABLE UNIT 1		0.36 O.32 O.24 O.0.24 C.0.12 C.0.12 C.0.000000 O.0000000 O.0000000 O.0000000 O.0000000 O.0000000 O.0000000 O.0000000 O.00000000	

		DATA SET:  E4PT.IN  03/18/92  AQUIFER TYPE: Unconfined  SOLUTION METHOD:  Cooper-Jacob  TEST DATE: 12/18/91  TEST WELL: 03  OBS. WELL: E4  ESTIMATED PARAMETERS: T = 0.1345 ft²/min S = 0.5952  TEST DATA: 0 = 0.2019 ft³/min r = 3.84 ft b = 3.56 ft	
	AN CREEK WELL E4		
Client: EG&G	TEST -		
	Project No.: OPERABLE UNIT 1  881 HILLSIDE AQUIFER	0.36 0.38 0.28 0.24 0.24 0.02 0.08 0.04 0.09 0.04 0.0000000000000000000000	ı





---- Actual ---- Adjusted

CREEK II, ADJ	DATA SET:  11_ADJ.IN  05/30/92  AQUIFER TYPE:  Confined  SOLUTION METHOD:  Theis Recovery  TEST DATE:  12/18/91  TEST DATE:  12/18/91  TEST WELL:  03  OBS. WELL:  11  ESTIMATED PARAMETERS:  T = 0.1951 ft²/min  S' = 1.717  TEST DATA:  Q = 0.2019 ft³/min  t pumping = 480. min	
Project No.: OPERABLE UNIT 1  RR1 HILLSIDE AQUIFER TEST - WELL II,	10.	

Recovery Data - Well 12 Aquifer Pumping Test - 12/18-19/91



Actual —* Adjusted

CKY FLATS CREEK 12, ADJ	DATA SET: 12_adj.in 05/28/92 ,	AGUIFER TYPE: Confined SOLUTION METHOD: Theis Recovery TEST DATE: 12/18/91 TEST WELL:	08S. WELL:  12  ESTIMATED PARAMETERS:  7 = 0.156 ft ² /min 5' = 1.621	TEST DATA:  a = 0.2019 ft ³ /min t pumping = 480. min	
Project No.: OPERABLE UNIT 1  B81 HILLSIDE AQUIFER TEST - WELL 12,	8.35 Eminimum randina 26.0	0.315	0.21 Drawdo 0.21	0.105	0. [ 10. 10. 100. 1000. 1000. Time t/t'

Recovery Data - Well 13 Aquifer Pumping Test - 12/18-19/91



Actual —*— Adjusted

2420	POCKY FLATS
Client: Book	700
Project No.: OPERABLE UNIT 1 Location: WOMAN CR	CREEN
881 HILLSIDE AQUIFER TEST - WELL 13.	ADJ
	DATA SET:
0.35 F 1 1 1 mm 1 1 1 mm 1 1 1 mm 1 1 1 mm	, 05/31/92
-	AQUIFER TYPE:
0.315 — / — = 0.315	Confined SOLUTION METHOD:
0.28	Theis Recovery
uuu.	IEST UNIE.
0.245	12/18/91 TEST WELL:
0.21	
<u> </u>	OBS. WELL:
0.175 巨	1.3
111111	ESTIMATED PARAMETERS:
181. 0.14.	T = 0.1564 ft $^2/min$   S' = 1.721
0.105	. H & C H C H C H C H C H C H C H C H C H
	E3  UA A.   p = 0 2019 ft ³ /min
0.07	t pumping = 480. min
10. 100. 1000.	
3	





--- Actual --- Adjusted

Client: EG&G ROCK	ROCKY FLATS
Project No.: OPERABLE UNIT 1 Location: WOMAN CR	CREEK
881 HIL	, ADJ
#11111	DATA SET: 14_ADJ.IN 05/30/92
	AGUIFER TYPE: Confined
0.28	SULUIIUN MEINUU. Theis Recovery TEST DATE:
0.245	12/18/91 TEST WELL:
0.21	03 0BS. WELL: 14
	ESTIMATED PARAMETERS: T = 0.1625 ft ² /min S' = 1.81
Resid 0.07	TEST DATA:  G = 0.2019 ft ³ /min t pumping = 480. min
10. Tir	

Recovery Data - Well 15 Aquifer Pumping Test - 12/18-19/91



Actual ——— Adjusted

CREEK	DATA SET: 15_8dj.in 05/30/92	AQUIFER TYPE:  Confined  SOLUTION METHOD:  Theis Recovery  TEST DATE:	12/18/91 TEST WELL: 03 08S. WELL: 15	ESTIMATED PARAMETERS: T = 0.146 ft ² /min S' = 1.692	TEST DATA:  Q = 0.2019 ft ³ /min  t pumping = 480. min	
ABLE UNIT 1 Location: WOMAN LOCATION: WFILE	HILLSIDE AQUIFER 1531	0.315	D.245 00.245 00.21 0.21 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27	0.14	0.105	0.035





---- Actual ---- Adjusted

Client: EG&G ROCKY	FLATS
Project No : OPERABLE UNIT 1 Location: WOMAN CR	CREEK
881 HILI	, ADJ
	DATA SET: 01_8d).in 05/30/92
	AQUIFER TYPE: Confined
0.28	Theis Recovery TEST DATE:
0.21	TEST WELL: 03 08S. WELL:
ual Dra	ESTIMATED PARAMETERS: T = 0.1694 ft ² /min S' = 1.736
0.105	TEST DATA:  Q = 0.2019 ft ³ /min t pumping = 480
0.035 - 1.111111   1.11111   1.11111   1.11111   1.0000. 10000. 10000. 10000.	



--- Actual --- Adjusted

	Client: EG&G ROC	ROCKY FLATS
Project No.	OPERABLE UNIT 1 Location: WOMAN C	CREEK
	LSIDE AQUIFER TEST - WELL	02, ADJ
		DATA SET: o2_sdj.in o5/31/92
		AQUIFER TYPE:  Confined  Contined
(+3	0.28	Theis Recovery TEST DATE:
, um		12/18/91 TEST WELL:
- p. 11. 0	0.21	OBS. WELL:
	umulamu	ESTIMATED PARAMETERS: T = 0.1633 ft ² /min S' = 1.627
	0.105	TEST DATA:  Q = 0.2019 ft ³ /min t pumping = 480. min
	Marie Harris	
	10. 100. 1000. Time t/t'	





Actual -*- Adjusted

RECOVERY.WQ1

ROCKY FLATS AN CREEK	DATA SET:  03_80j.in  05/30/92	AQUIFER TYPE: Confined SOLUTION METHOD: Theis Recovery TEST DATE: 12/18/91	OBS. WELL:  03  03  ESTIMATED PARAMETERS:  T = 0.1425 ft ² /min S' = 1.609	TEST DATA:  Q = 0.2019 ft ³ /min t pumping = 480. min	
ABLE UNIT 1 Location: WOM	HILLSIDE AQUIFER TEST - WELL	0.315	12.0 0.21 Lawdow 0.21 Lawdow 0.21 Lawdow 0.175 Lawdow 0.14 Lawdow	0.007	0. E. 1111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Recovery Data - Well O5 Aquifer Pumping Test - 12/18-19/91



■ Actual —* Adjusted

|--|

Recovery Data - Well E1 Aquifer Pumping Test - 12/18-19/91



--- Actual ---- Adjusted

STATS	FLATS
Client:	
Project No.: OPERABLE UNIT 1 Location: WOMAN CK	BBN
881 HILLSIDE AQUIFER TEST - WELL E1	E1, ADJ
	DATA SET: e1_edj.in 05/30/92
	AQUIFER TYPE: Confined
0.28	Theis Recovery TEST DATE:
0.21	12/18/31 TEST WELL: 03
0.175	
ատևատ	ESTIMATED PARAMETERS: T = 0.1581 ft ² /min S' = 1.62
Resid 0.105	TEST DATA:  q = 0.2019 ft ³ /min t pumping = 480. min
10	
10. 100. Tim	

Recovery Data - Well E3 Aquifer Pumping Test - 12/18-19/91



■– Actual –*– Adjusted

	1
Client: EG&G ROCKY	FLATS
Project No.: OPERABLE UNIT 1 Location: WOMAN CR.	CREEK
	, ADJ
9.35 ETTIME TITTE	DATA SET: e3_ed).in 05/30/92
0.315	AQUIFER TYPE: Confined SOLUTION METHOD:
0.245	Theis Recovery TEST DATE:
wobws.	TEST WELL: 03 0BS. WELL: E3
0.14	ESTIMATED PARAMETERS: T = 0.1556 ft ² /min S' = 1.719
0.105	TEST DATA: Q = 0.2019 ft ³ /min t pumping = 480. min
10	
Time t/t'	

Recovery Data - Well E4 Aquifer Pumping Test - 12/18-19/91



RECOVERY.WQ1

-*- Adjusted

Actual

CREEK E4. ADJ	 t pumping = 480. min
ABLE UNIT 1  Location: WOMAN THEORET - WELL	0.035

Recovery Data - Well E5 Aquifer Pumping Test - 12/18-19/91



--- Actual --- Adjusted

Client EG&G ROCKY	ROCKY FLATS
MOW	CREEK
881 HIL	, ADJ
	DATA SET: e5_ed{.in 05/30/92
	AQUIFER TYPE: Confined
0.28 =	Theis Recovery
0.245	12/18/91 TEST WELL:
0.21	03 0BS. WELL: ES
ապահասա	ESTIMATED PARAMETERS: T = 0.1482 ft ² /min S' = 1.673
Resid 0.105	TEST DATA:  Q = 0.2019 ft ³ /min t pumping = 480. min
10	
10. 100. 1000. Time t/t'	

# Attachment B2-8 Bromide Analytical Solutions

Phase III RFI/RI Report

#### **BROMIDE ANALYTICAL METHODS**

Bromide concentrations were measured in the field, immediately after samples were collected, using an Orion model 94-35 bromide ISE; an Orion model SA210 meter was used to measure millivolt potential. The reference electrode was filled before each day's use with a 4M KCl, AgCl saturated filling solution. Electrodes were rinsed with distilled water and blotted dry before each measurement was made. In the field, the reference electrode was stored in filling solution when not in use. For periods of inactivity exceeding 2 days the electrode was drained and rinsed with distilled water.

Samples were collected in 50 ml beakers for the bromide tracer evaluation test and in 100 ml beakers for the multiple-well tracer test. Orion-brand ionic strength adjusting solution (ISA), consisting of 5M NaNO₃, was added to each sample. For the 50 ml samples, 1 ml of ISA was added with a 1 ml Grade A pipette. For the 100 ml samples, 2 ml of ISA was added using a Brinkmann Macro-Transferpettor automatic pipette.

Bromide calibration standards were prepared by serial dilutions of Orion 0.1M NaBr standard. Glassware used for the dilutions consisted of 5 ml, 10 ml, and 20 ml Grade A pipettes and a 1,000 ml Grade A volumetric flask. Instead of using three standards, as suggested in Technical Memorandum 4, eight standards were used to provide greater control. The eight standards were made as follows:

Dilution Factor	Pipette: Volumetric Flask	Final Concentration
10X	100 ml (7990.4 mg/l): 1000 ml	800 mg/l
20X	50 ml (7990.4 mg/l) : 1000 ml	400 mg/l
50X	20 ml (7990.4 mg/l) : 1000 ml	160 mg/l
100X	10 ml (7990.4 mg/l): 1000 ml	80.0 mg/l
200X	5 ml (7990.4 mg/l): 1000 ml	40.0 mg/l
1000X	10 ml (800 mg/l): 1000 ml	8.0 mg/l
2000X	10 ml (400 mg/l) : 1000 ml	4.0 mg/l
5000X	10 ml (160 mg/l): 1000 ml	1.6 mg/l

Standards were prepared prior to beginning the single-well bromide tracer evaluation test and again before beginning the multiple-well tracer test. Standards were stored in 1,000 ml Nalgene HDPE bottles. For the multiple-well tracer test, the bottles were sealed in a plastic bag and placed in the discharge water tank to achieve the correct temperature.

Bromide calibration curves were made for several temperatures to evaluate the extent that temperature affects electrode response. Select results are presented in Attachment B2-8, Table 1 and Figure 1. For each calibration curve, a least-squares linear regression was performed on log-transformed data.

Temperature differences between the temperature at which time calibration curve was made and the temperature at which the samples were measured probably constitutes the greatest error in the bromide measurements, although the error would be systematic. Based on the curves made at 2.1°C and at 9.0°C (Attachment B2-8, Figure 1), a 1°C temperature shift produced an error of about 8 percent at a +100 millivolt ISE response (about 1.6 mg/l bromide) and an error of about 3 percent at a -40 millivolt ISE response (about 560 mg/l bromide). A second cause of error results from meter sensitivity. Bromide ISE response was recorded to the nearest millivolt, which yielded an accuracy of about 2 percent for any given bromide concentration. The effect of the limited sensitivity of the meter can be observed in the time-concentration curves in Figure B2-13, in which the discrete number of recorded concentration values produce a "stepped profile." Combining the error factors results in an average estimated error of about ±5 percent for a measured bromide concentration.

As an independent check on the accuracy of the bromide measurements made in the field, samples were collected periodically during the multiple-well tracer test and were submitted to an Environmental Protection Agency-approved analytical laboratory for analysis. Split samples of select calibration standards were also submitted. The analytical laboratory analyzed for bromide using a colorimetric method (Standard Method 4500-Br B, Phenol Red Colorimetric Method). The results of these analyses are presented in Attachment B2-8, Table 2. All field and laboratory

measurements were comparable to within one order of magnitude. The percentage difference between laboratory and field measurements ranged from less than 1 percent to 45 percent. The average percent difference was 20 percent. Concentration variations are likely due to the different analytical techniques used in the field and the laboratory.

Table 1. Bromide ISE Calibration Data, Electrode Potential in Millivolts for Calibration Standards

								,	200	104
Ć	5	Time	5000X (1.6 mg/l)	2000X (4.0 mg/l)	1000X (8.0 mg/l)	200X (40.0 mg/l)	(80.0 mg/l)(160 mg/l)		(400 mg/l)	(R00 mg/l)
	Date	2	(6.00)							
2.1 ± 0.1 3.8 ± 0.2 4.6 ± 0.2 7.7 ± 1.4 9.0	01/27/92 01/27/92 01/27/92 01/27/92 12/14/91	21:07 21:25 21:43 13:13 04:10	90 92 92 107 104	73 76 76 83 84	58 59 61 61 68	21 21 23 24 29	10 10	-11 -13 -4 -7	-34 -33 -29 -29	-51 -50 -50 -51

Least-Squares Linear Regression Coefficients for Log-Transformed Data

-0.01873
-0.01863
-0.01768
-0.01768

Notes:

Bromide concentration in mg/l may be determined as follows:

 $[Br] = 10^{(mX+b)}$ 

where: m is slope

X is measured concentration in millivolts
b is the y intercept

**used for single-well tracer evaluation test *used for multiple-well tracer test

OUI Phase III

Table 2 Comparison of Laboratory and Field Bromide Concentrations Page 1 of 1

	Concentration (mg/l)					
Well	Elapsed Time Lab/Field (min)	Laboratory	Field			
13	32/33	320	388			
	54/57	490	405			
	298/294	290	547			
O3	32/33	190	158			
	54/55	330	<b>253</b> ·			
•	286/297	360	481			
El	31/32	14	18			
	53/54	57	56			
	87/88	92	98			
	285/290	160	213			
E2	33/34	16	23			
	56/57	78	86			
	*108/109	140	179			
	108/109	140	179			
	288/291	180	287			
<b>E3</b>	+*-11/	1.3				
	-11/	1.5	. •			
	34/35	180	133			
	56/58	290	287			
	290/292	390	441			
<b>E</b> 4	34/35	230	232			
	57/59	340	313			
	298/293	300	388			
<b>E</b> 5	35/36	140	253			
	58/59	340	287			
	299/294	170	287			
Tracer Solution	58/68	480	423			
20X Standard	•	420	400			
200X Standard	•	40	40			
2000X Standard	•	4.1	4.0			

Bromide ISE used to determine field concentration

Colorimetric method (Method 4500-Br-B. Phenol Red Colorimetric Method) used to determine laboratory concentration

- * Labotory duplicate
- + Sample collected prior to injection of tracer



Curve	Date	Time	T(*C)		
Uppermost Middle	12/14/91	04:10	9.0°		
	01/27/92	13:13	7.7±1.4°		
	01/27/92	21:43	4.6±0.2°		
	01/27/92	21:25	3.8±0.2°		
	01/27/92	21:07	2.1±0.1°		

U.S. DEPARTMENT OF ENERGY Rocky Flats Plant Golden, Colorado

> 061 HILLSIDE AREA OPERABLE UNIT NO. 1 PHASE III RFI/RI REPORT



Effect of Temperature on Bromide Calibration Curves Attachment B2-8, Figure 1

_ > PROJECT . DAL HAL MICE LE 3 PCKG RECD/CUSTODY SEALS INTACT TEMPERATURE WITHIN SPECIFICATION PROBLEMS OR DISCREPANCIES SAMPLE LABELS/COC3 AGREE CORRECTED COPY ATTACHED LABORATORY USE ONLY H-PAPMENTH LABALOCATION HSZOA BOTTLE CODES - DATE/TIME HIO2 PRESERVATIVE HOYN COOLED COMPAAN SPEC REPORTS A- HEUR GNUORA 4-SSIG TOG SOIL(S) WATER (W) MEDIA NUMBER OF CONTAINERS * RECEIVED BY CONTAINER امالحون 1955-1107 TYPE SAMPLERS EG&GROCKYELATS, CHAINOF CUSTODY 4RKER LOCATION 1130 - 3° /4 F. 4 03 DATE/TIME H 77 . 03 ū SITE CONTACT/PHONE TRAVE AKTELL EBUT-TAST-01 1-23-1 41ES anolesial TTEIDOOSEAR TTTE DODOLESM 1764 DOUNTERN TIT 3 OUR ZERE 1103 DO00 2 EMM TTE SADDALEAN TTE3 0000 18 8M TTEL ADOCALBL TTE400001EBM! 47 £ 5 00001CBW TT& Laboure TERL SPANISHELL TYESOUPPIEGH TT GIUDUUZEAL TTO LOCATE BELL SAMPLE NUMBER CONTRACTOR SERASLU RELINQUISHED BY 1833 1651 15514 1553 C-0-C NUMBER 1584 1515 1551 न्ड्र 1558 15.32 1534 1531 K31 1533 **6ATE/TIME** गामा

SAMPLERS S. Curlok Ard. 13.	PROJECT - AM I WOO NA
-	
100	
4-9 6-9	
13VI H3T, H2 H3	
VINOF CUSTODY SOUTH POT IN POT IN PREPARED RUS	33.
SOIL(	
A NAINE A NAIN	
NE NUMBER LOCATION TYPE 3 F EFF 6 8 F Z F	
23, 21, 20, 2011	
6.3	
TE SOIND A E Bul	
A A MAINTE AM	
1	
112 30002 52	
ارُ	
1959 TTLSQUUU36AM &S	
41ST DOUGHERUL	
7755 013007 EBL	
H	
	ABORATORY USE ONLY
RELINQUISHED BY UATEVILLE	PCKG RECD/CUSTODY SEALS INTAC!
1	SAMPLE LABELS/COCs AGREE
	C CONTRIBE WITHIN SPECIFICATION
	LEMPERATURE WITHING CO.
	CORRECTED COPY ATTACHED
	PROBLEMS OR DISCREPANCIES
REMARKS	
- 1	
SHIP THE THOO	

DAMES & MOORE

## REMOVABLE CONTAMINATION REPORT FORM

BACKGROUND (CPH)	GROSS CHIS	TIME (MIM)	9991/100 cm ²		
2	ø		۷5		
2			45		
2	0		<u>د</u> ح		
2			45		
	<u> </u>	2	45		
			<u> </u>		
		2	<u> </u>		
			_ 5		
			45		
			<u> </u>		
		2			
2	<u>.</u>		<u> </u>		
2		2	<i>L</i> 5		
2	0	2	15		
	0	2	45		
2	0		45		
	<u>.</u>	2 .	45		
<u>z</u>	0	2	<u>د ۲</u>		
۷	0		15		
2		۷			
2	0	ع	45		
	Z S. BARDIELD	z o	2 0 2		

DANES & MOORE

## REMOVABLE CONTAMINATION REPORT FORM

BNIPE ID	SYSTEM/EFF (CIM/DPM)	BACKGROUND (CPH)	GROSS CHIS	TIME (MIN)	9991/100 cm ²
E1 1553	0.36	2	0	2	15
EZ 164B	036		0		
E3 1950	036		0		<u> </u>
E1 1627	0.36	2			
2 1556	0.36				6 5
E3 244	036	2		2	c 5
E3 1556	0.36	2	0		4 %
		•			
					· · · · · · · · · · · · · · · · · · ·
		<del>\</del>			
		Bb	<u> </u>		
				<u> </u>	
					<del>\</del>
				-	

1 · r	. ,1			• • •	486	644.		ERRE	4884	١,	****	48.4	••	224			•	24.1	
1 1	1:	carre frame		100 20201601 100 20201601 100 20201602										_					
		T T		1 2761		!				-		,					. •		
	15	F		128127 128127 128127		1				1						! ! !		į	
1		H		1255 1255 1255		•		!		į							•		
	ACENT SIVE	POTET BATE TINE		(Z10E4 6Z10E4 6Z10E4														t signs er 2 signs	
s	1			8888 			ı											98	
25	E .	612E						i				İ					•		
MAYTICAL BERVICES MATHEMATICS NAV. RICHAMB.	reported on 920203	ENHON		1. 765-64(28) 4. 865-69(28) 1. 265-64(28) 7. 045-69(28)				i i							•	I	:	the level of	•
TO ANALYTICAL MADIOCHEMICAL ANALYTICAL MADIOCHEMICAL MAN AND TOTAL MAN A	Accelte rep-	EMON		4. 048-05 4. 048-05 6. 048-05													!   	(MB) apacibles 6	•
		· · · · · · · · · · · · · · · · · · ·		311 2.04E-04 UCIA. 312 0 4.03E-03 UCIA. 311 0 1.23E-04 UCIA. 312 0 7.71E-05 UCIA.														overell error (18)	
		THOUGH														Ì	:	ž	
					1													#	·
1:43 79		CUETTO	• 900200	TT1300001 TT1300001 TTE100004 TTE100004	Pater								!			-	:	a result less	
60-feb-72 01:45 FM		. BANTLE TWPE	es Asperted	MATER HATER F. HETAI	- Becerde												! !   `	· Benetas .	
<b>!</b> :::.				· · · · :	1	,			, a.		ا ر	ر در داه در	].					!	١.

GRAPOIR BRITING THE

. . . . . .

Sample Servening Release Form Uhter Matrix COC#: EDG#1 FOU-TTEST-02 Betch#: _2020/801-02 EBUI-TTEST-01 Total Activity is uci **Bets** Client ID Alpha Other. II / ITE 300001 EBUL 10\$10COC <.0 <del>(24535239</del>2 20201802 ITE 100004EBU1 ÷ Below Category I Release Limits: yes If "no," specify the samples above Category I **: Precautions: Approval for Release Date 2-3-92 (1) Sample Screening Form (RD2802 Appendix A) and calculated results must accompany this form. Other analysis may include Tritium, etc. Only Category I samples can be transferred to other IT: Laboratories.

Form RC-001 12/91 Rev 1

# Attachment B2-9 Single-Well Tracer Evaluation Tests— Test Parameters and Results

Phase III RFI/RI Report

Water column height, static	Distilled Water Test 3.84 ft *	Bromide Test 3.67 ft **
Injection volume	30 gal	30 gal
Injection time, total	412 min.	417 min.
Down time	0 min.	10 min.
Injection time, net	412 min.	407 min.
Injection rate (volume/net time)	0.073 gpm	0.074 gpm
Water column height, final	3.97 ft	3.80 ft
Δ water level (final relative to static)	+ 3.4%	+ 3.5%
Switchover time	10 min.	7 min.
Extraction volume	38 gal	41 gal
Extraction time, total	608 min.	740 min.
Down time	25 min.	45 min.
Extraction time, net	583 min.	695 min.
Extraction rate (volume/net time)	0.065 gpm	0.059 gpm
Water column height, final	3.47 ft	3.29 ft
Δ water level (final relative to static)	- 9.6%	- 10.4%

#### Notes:

^{*} at 10:12 on 12/11/91. ** at 08:55 on 12/13/91.

Page 1 of 3

Time (min)	Flow SC (µmhos/cm)	=		C/C _f	Discharge SC** (µmhos/cm)	C/C _f **
0	10.9	7.8*	17	0.018		
4	19.8	7.8	31	0.032	28	0.030
6	30.8	7.7	48	0.050	53	0.056
8	46.9	7.7	74	0.077	60	0.063
11	108	7.5	171	0.178	146	0.154
13	129	7.3	205	0.214		
15	161	7.2	257	0.268	246	0.259
18	189	7.2	302	0.314	290	0.305
19	202	7.1	324	0.337	306	0.322
21	219	7.1	351	0.366	335	0.353
23	240	7.0	386	0.402	364	0.383
25	261	7.0	420	0.437	403	0.424
27	274	6.9	442	0.460	426	0.448
28	279	6.9*	450	0.469		
30	293	6.9	473	0.492		
33	311	6.8	503	0.524	492	0.518
36	328	6.8*	531	0.553		
38	337	6.8	545	0.568	534	0.562
43	361	6.7	586	0.611	576	0.606
48	373	6.8	604	0.629	599	0.631
53	392	6.6	639	0.665	630	0.663
58	402	6.5	657	0.685	647	0.681
68	417	6.4	684	0.713	680	0.716
78	433	6.4	711	0.740	707	0.744
89	448	6.3	738	0.768	739	0.778
98	455	6.3	749	0.780	745	0.784
108	465	6.2	768	0.800	769	0.809

Time (min)	Flow SC (µmhos/cm)	Temperature (°C)	Corr. SC (µmhos/cm)	C/C _f	Discharge SC** (µmhos/cm)	C/C _f **	
118	471	6.2	778	0.811	782	0.823	
128	478	6.1	793	0.826	796	0.838	
138	485	6.1	804	0.838	805	0.847	
158	495	5.9	827	0.861	826	0.869	
168	509	5.9	850	0.885	835	0.879	
178	512	5.8	858	0.894	841	0.885	
188	517	5.8	866	0.902			
193	520	5.8	871	0.908	857	0.902	
203	520	5.7	874	0.911	860	0.905	
213	522	5.8	875	0.911	869	0.915	
223	525	5.6	886	0.923	871	0.917	
233	527	5.6	889	0.926	875	0.921	
243	530	5.6	894	0.932	880	0.926	
253	533	5.6	899	0.937	885	0.932	
263	534	5.6	901	0.939	888	0.935	
273	535	5.5	906	0.944	892	0.939	
283	538	5.5	911	0.949	896	0.943	
293	539	5.5	913	0.951	899	0.946	
303	540	5.5	914	0.953	902	0.949	
313	542	5.4	921	0.960	906	0.954	
323	542	5.4	921	0.960	908	0.956	
333	542	5.4	921	0.960	912	0.960	
343	544	5.4	925	0.963	919	0.967	
363	543	5.4	923	0.961	920	0.968	
378	544	5.5	921	0.960	922	0.971	
393	542	5.5	918	0.956	928	0.977	
408	549	5.5	930	0.968	929	0.978	

Time (min)	Flow SC (µmhos/cm)	Temperature (°C)	Corr. SC (µmhos/cm)	C/C _f	Discharge SC** (µmhos/cm)	C/C _f **
423	547	5.4	930	0.968	930	0.979
438	546	5.9	912	0.950	934	0.983
453	549	5.6	926	0.965	936	0.985
468	552	5.6	931	0.970	939	0.988
488	559	5.5	947	0.986	942	0.992
503	562	5.5	952	0.991	942	0.992
518	561	5.5	950	0.990	943	0.993
533	562	5.5	952	0.991	949	0.999
548	565	5.5	957	0.997	947	0.997
563	566	5.6	955	0.995	949	0.999
578	568	5.6	958	0.998	947	0.997
583	568	5.6	958	0.998	950	1.000

#### Notes:

Time - elapsed time in minutes (excluding down time).

Flow SC - specific conductivity measured with flow-through cell in µmhos/cm.

Temperature - temperature in °C measured at the discharge line (asterisk indicates an estimated value).

Corr. SC - specific conductivity measured with flow-through cell corrected to 25°C using a temperature coefficient of 2.1%/°C (see text).

 $C/C_f$  - corrected SC (above) normalized to the corrected specific conductivity measured from the formation water with the flow-through cell (960  $\mu$ mhos/cm).

Discharge SC - specific conductivity measured with a temperature-compensating probe-type electrode at the discharge line.

 $C/C_f$  - discharge SC (above) normalized to the specific conductivity measured from the formation water with the probe-type electrode (950 µmhos/cm).

** Included for verification purposes only.

Time (min)	Bromide (mV)	Bromide (mg/l)	C/C。
1	-36	486	0.972
2	-36	486	0.972
4	-36	486	0.972
6	-36	486	0.972
8	-35	467	0.934
10	-34	448	0.896
12	-33	430	0.861
14	-34	448	0.896
17	-31	397	0.793
20	-30	381	0.762
22	-29.5	373	0.746
24	-29	366	0.731
26	-29	366	0.731
28	-28	351	0.702
33	-30	381	0.762
38	-24	298	0.597
43	-24	298	0.597
48	-22	275	0.550
53	-21	264	0.528
58	-20.5	259	0.517
63	-20	253	0.507
73	-17	224	0.449
78	-16.5	220	0.440
83	-16	215	0.431
88	-15	207	0.414
92	-14	199	0.397
97	-13	191	0.381
107	-12	183	0.366

Time (min)	Bromide (mV)	Bromide (mg/l)	C/C。
117	-10	169	0.337
127	-8.5	159	0.317
137	-6	143	0.287
147	-5	138	0.275
157	-5	138	0.275
167	-3	127	0.254
177	-1	117	0.234
187	0	112	0.225
197	1	108	0.216
207	1	108	0.216
217	0	112	0.225
227	3	99	0.199
237	3	99	0.199
247	6	88	0.176
257	7	84	0.169
267	7	84	0.169
277	8	81	0.162
287	9	78	0.156
291	10	75	0.149
306	12	69	0.138
321	13	66	0.132
332	15	61	0.122
342	18	54	0.108
362	20	50	0.099
382	20	50	0.099
402	22	46	0.092
422	23	44	0.088
442	24	42	0.085

Time (min)	Bromide (mV)	Bromide (mg/l)	C/C。
462	25	41	0.081
482	. 25	41	0.081
502	26	39	0.078
522	28	36	0.072
542	31	32	0.064
562	32	31	0.061
582	33	29	0.059
598	33	29	0.059
618	32	31	0.061
633	34	28	0.056
653	35	27	0.054
673	36	26	0.052
693	37	25	0.050

# Notes:

Time - elapsed time in minutes (excluding down time).

Bromide (mV) - concentration of bromide measured with bromide ion selective electrode in millivolts.

Bromide (mg/l) - concentration in mV converted to mg/l using calibration curve made at 7.7°C (01/27/92; 13:13).

 ${\rm C/C_o}$  - bromide (mg/l) normalized to the concentration in the tracer fluid (500 mg/l).

# Attachment B2-10 Multiple-Well Tracer Evaluation Tests— Test Parameters and Results

Phase III RFI/RI Report

# ATTACHMENT B2-10 MULTIPLE-WELL TRACER TEST - TEST PARAMETERS AND RESULTS:

Table 1. Corrected Flow Accumulator Readings (gallons)

Table 2. Injection and Extraction Rates

Table 3. Relative Water Column Heights

Table 4. Summary of Relative Water Column Heights

**Table 5. Bromide Tracer Results** 

Figure 1. Pumping Rates

Figure 2. Gradient for Wells I1, 01, E1

Figure 3. Gradient for Wells I2, 02, E2

Figure 4. Gradient for Wells I3, 03, E3

Figure 5. Gradient for Wells I4, 04, E4

Figure 6. Gradient for Wells I5, 05, E5

14         15         E1         E2         E3         E4           12405         12406         7311         11303         11306         12404         1           12405         12406         7311         11303         11306         12404         1           17         1.003508         0.995816         1.00254         1.000931         1.008703         1.004802         0.03           0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 <t< th=""><th>rected Fi</th><th>OW</th><th>Table 1 Corrected Flow Accumulator</th><th>or Readings (gallons)</th><th>gallons)</th><th></th><th></th><th></th><th></th><th></th><th>Page 1 of 2</th></t<>	rected Fi	OW	Table 1 Corrected Flow Accumulator	or Readings (gallons)	gallons)						Page 1 of 2
12405         12406         7311         11303         11306         12404         15           1.003508         0.995816         1.00254         1.000931         1.008703         1.004802         0.5           1.003508         0.995816         1.00254         1.000931         1.004802         0.5         0.5           0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00           0.08         6.74         6.37         1.26         0.92         3.82         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00	11 12	12		13	14	IS	EI	E2	E3	72	ES
1.003508         0.995816         1.00254         1.000931         1.008703         1.004802         0.05           0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0	10646 11304			12403	12405	12406	7311	11303	11306	12404	12407
14         15         E1         E2         E3         E4           0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00	1.000931 1.005774 0.9		0.9	98367	1.003508	0.995816	1.00254	1.000931	1.008703	1.004802	0.97924
0.00         0.00         0.00         0.00         0.00           0.08         6.74         6.37         1.26         0.92         3.82           0.08         18.38         14.07         2.94         2.15         10.63           0.08         29.00         21.98         4.57         3.34         16.94           0.08         50.28         38.56         7.79         5.74         29.92           0.08         67.03         51.81         10.24         7.59         40.39           0         80.55         62.98         12.37         9.24         48.98           0         90.8         106.73         85.19         16.58         12.34         65.68           0         0.08         118.92         95.78         18.63         13.91         74.07           8         1.09         158.59         113.20         21.85         16.33         87.11           9         1.15         181.70         154.27         29.17         21.91         116.79           9         1.16         201.80         176.26         33.00         24.89         132.69	11 12	12		13	41	15	E1	E2	E3	E4	ES
0.08         6.74         6.37         1.26         0.92         3.82           0.08         18.38         14.07         2.94         2.15         10.63           0.08         29.00         21.98         4.57         3.34         16.94           0.08         50.28         38.56         7.79         5.74         29.92           0.08         67.03         51.81         10.24         7.59         40.39           0.08         80.55         62.98         12.37         9.24         48.98           5         0.08         106.73         85.19         16.58         12.34         65.68           6         0.45         118.92         95.78         18.63         13.91         74.07           8         1.09         158.59         113.20         21.85         16.33         87.11           8         1.09         158.59         132.33         25.26         18.90         100.66           9         1.15         201.80         176.26         33.00         24.89         132.69	0000 0000			00.	000	00.00	0.00	0.00	0.00	0.00	0.00
0.08       18.38       14.07       2.94       2.15       10.63         0.08       29.00       21.98       4.57       3.34       16.94         0.08       50.28       38.56       7.79       5.74       29.92         0.08       67.03       51.81       10.24       7.59       40.39         0.08       80.55       62.98       12.37       9.24       48.98         0.08       106.73       85.19       16.58       12.34       65.68         0.45       118.92       95.78       18.63       13.91       74.07         0.88       139.59       113.20       21.85       16.33       87.11         1.09       158.59       132.33       25.26       18.90       100.66         1.15       181.70       154.27       29.17       21.91       116.79         1.16       201.80       176.26       33.00       24.89       132.69	1.70 0.30		O	09'	80.0	6.74	6.37	1.26	0.92	3.82	1.69
0.08       29.00       21.98       4.57       3.34       16.94         0.08       50.28       38.56       7.79       5.74       29.92       1         0.08       67.03       51.81       10.24       7.59       40.39       1         0.08       80.55       62.98       12.37       9.24       48.98       2         0.08       106.73       85.19       16.58       12.34       65.68       2         0.45       118.92       95.78       18.63       13.91       74.07         0.88       139.59       113.20       21.85       16.33       87.11         1.09       158.59       132.33       25.26       18.90       100.66         1.15       181.70       154.27       29.17       21.91       116.79         1.16       201.80       176.26       33.00       24.89       132.69	0.68		_	.49	80.0	18.38	14.07	2.94	2.15	10.63	4.70
0.08       50.28       38.56       7.79       5.74       29.92         0.08       67.03       51.81       10.24       7.59       40.39       1         0.08       80.55       62.98       12.37       9.24       48.98       2         0.08       106.73       85.19       16.58       12.34       65.68       2         0.45       118.92       95.78       18.63       13.91       74.07         0.88       139.59       113.20       21.85       16.33       87.11         1.09       158.59       132.33       25.26       18.90       100.66         1.15       181.70       154.27       29.17       21.91       116.79         1.16       201.80       176.26       33.00       24.89       132.69	6.84 1.00 2.		2.	32	80.0	29.00	21.98	4.57	3.34	16.94	7.45
0.08       67.03       51.81       10.24       7.59       40.39       1         0.08       80.55       62.98       12.37       9.24       48.98       2         0.08       106.73       85.19       16.58       12.34       65.68       2         0.45       118.92       95.78       18.63       13.91       74.07         0.88       139.59       113.20       21.85       16.33       87.11         1.09       158.59       132.33       25.26       18.90       100.66         1.15       181.70       154.27       29.17       21.91       116.79         1.16       201.80       176.26       33.00       24.89       132.69	12.21 1.77 4.		4.	15	0.08	50.28	38.56	7.79	5.74	29.92	13.67
0.08       80.55       62.98       12.37       9.24       48.98       2         0.08       106.73       85.19       16.58       12.34       65.68       2         0.45       118.92       95.78       18.63       13.91       74.07         0.88       139.59       113.20       21.85       16.33       87.11         1.09       158.59       132.33       25.26       18.90       100.66         1.15       181.70       154.27       29.17       21.91       116.79         1.16       201.80       176.26       33.00       24.89       132.69	16.40 2.33 5.6		5.6	<b>4</b>	0.08	67.03	51.81	10.24	7.59	40.39	17.87
0.08       106.73       85.19       16.58       12.34       65.68       201.86       201.80       10.34       65.68       201.86       201.89       10.34       65.68       201.80       20.66       20.66       201.80       10.34       74.07       20.71       20.71       20.71       20.71       20.66       20.66       20.66       20.66       20.66       20.66       20.66       20.66       20.66       20.66       20.67       20.71       20.71       21.91       116.79       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76       20.76	2.89		6.9	5	0.08	80.55	62.98	12.37	9.24	48.98	21.65
0.45       118.92       95.78       18.63       13.91       74.07         0.88       139.59       113.20       21.85       16.33       87.11         1.09       158.59       132.33       25.26       18.90       100.66         1.15       181.70       154.27       29.17       21.91       116.79         1.16       201.80       176.26       33.00       24.89       132.69	27.20 3.98 9.4		9.6	<u> </u>	0.08	106.73	85.19	16.58	12.34	65.68	29.20
0.88     139.59     113.20     21.85     16.33     87.11       1.09     158.59     132.33     25.26     18.90     100.66       1.15     181.70     154.27     29.17     21.91     116.79       1.16     201.80     176.26     33.00     24.89     132.69	4.49		10	56	0.45	118.92	95.78	18.63	13.91	74.07	32.92
1.09     158.59     132.33     25.26     18.90     100.66       1.15     181.70     154.27     29.17     21.91     116.79       1.16     201.80     176.26     33.00     24.89     132.69	36.43 5.40 12		12	.36	0.88	139.59	113.20	21.85	16.33	87.11	38.81
1.15     181.70     154.27     29.17     21.91     116.79       1.16     201.80     176.26     33.00     24.89     132.69	42.71 6.27 14		14	1.28	1.09	158.59	132.33	25.26	18.90	100.66	44.76
1.16 201.80 176.26 33.00 24.89 132.69	50.06 7.37 16		7	5.62	1.15	181.70	154.27	29.17	21.91	116.79	51.92
	56.64 8.36 1		-	60.6	1.16	201.80	176.26	33.00	24.89	132.69	59.07

							-			
Time	11	12	13	4	15	EI	E2	E3	E4	E5
266	62.01	9.20	21.18	1.19	217.59	193.63	35.86	27.14	145.09	64.20
310	70.57	10.61	24.25	2.11	241.99	221.72	40.56	30.93	164.64	73.25
332	75.00	11.29	25.82	2.53	. 255.15	236.30	42.86	32.84	174.75	77.91
354	79.37	12.02	27.40	2.83	268.35	250.02	45.11	34.67	184.29	82.26
399	87.64	13.43	30.43	2.99	293.86	277.87	50.04	38.76	203.58	91.01
438	94.72	14.63	33.12	2.99	315.85	302.48	53.44	41.59	220.58	
470	100.35	15.65	35.38	2.99	333.42	321.56	56.43	44.13	233.86	104.75
503	106.10		37.65	3.42	349.82	341.68	59.50	46.71	247.43	111.02
540	113.45	17.76	40.05	3.62	368.37	365.94	63.03	49.77	263.20	118.11
TOTALS					543					860

		•		Converted	to Pumping	Rates (gpm)			Pa	Page 1 of 2
Table 2 Co	rrected Flov	Table 2 Corrected Flow Accumulator		COllyciacu						
	;	2	2	14	Well 15	EI	E2	E3	E4	ES
Time	=	71	C		0000	000	0000	0.000	0.000	0.000
C	0.000	0.000	0.000	0.000	0.000	0.000	000		2020	0 282
· \	7000	0500	0.100	0.013	1.124	1.061	0.210	0.153	0.020	707.0
9	0.284	0.00	0010	0000	1 164	0.770	0.168	0.123	0.681	0.301
16	0.265	0.038	0.089	0.000			631.0	0110	0.631	0.275
70	0.248	0.031	0.083	0.000	1.062	0.791	0.103	0.117		
707	0.5	3600	0.083	0000	0.967	0.754	0.146	0.109	0.590	0.283
48	0.244	0.035	0.00	0000	0.021	0.736	0.136	0.103	0.582	0.233
99	0.232	0.031	0.083	0.000	0.931			0110	0.573	0.252
10	0.241	0.037	0.087	0.000	0.905	0.745	0.142	0.110	5.0	
10	1.7.0	to	6000	0000	0.873	0.740	0.140	0.103	0.557	0.252
111	0.240	0.037	0.00	0000	0.071	0.757	0.147	0.112	0.599	0.266
125	0.240	0.036	0.083	0.027	0.0/1	101.0		2000	0.521	0.235
150	0.735	0.037	0.072	0.017	0.827	0.697	0.129	0.097	140.0	
001	0.233	3000	7200	0.008	0.760	0.765	0.137	0.103	0.542	0.238
175	0.251	0.00		0000	0.722	0.686	0.122	0.094	0.504	0.224
207	0.230	0.035	0.0/3	0.007	77.0	7770	0.116	060 0	0.482	0.217
240	0.200	0.030	0.075	0.000	0.609	0.000	0.110			7010
276	9000	0.032	0.080	0.001	0.607	0.668	0.110	0.087	0.477	0.197
007		0.033	0.070	0.021	0.555	0.638	0.107	0.086	0.444	0.206
310	0.194	0.032	200							

					Well	Well				- 1
Ë	=	12	13	14	15	E1	E2	E3	<b>4</b> 2	ES
11112			1500	0100	0 508	0 663	0.105	0.087	0.459	0.212
332	0.202	0.031	0.0/1	0.017	0.00			,		9
757	0 100	0.033	0.072	0.014	0.600	0.624	0.102	0.083	0.434	0.198
100	0.184	0.031	0.067	0.004	0.567	0.619	0.109	0.091	0.429	0.195
377	101.0				0.564	0.631	0.087	0.072	0.436	
438	0.181	0.031	0.00	0.00			7000	0,000	0.415	0 104
470	0.176	0.032	0.071	0.000	0.549	0.597	0.094	6/0:0	0.410	
<b>5</b> 03	0 174		0.069	0.013	0.497	609.0	0.093	0.078	0.411	0.190
505		0000	0.064	0.005	0.501	0.656	0.095	0.083	0.426	0.192

Page 1 of 10

OUI Phase III RFIRI Report

Table 3	Relative Water Column Heights	Water Cc	Jumn F	<b>leights</b>	(£)										rage z or re	:
	=	2	22	4	15	10	02	Well O3	90	05	E1	E2	E3	E4	E5	1
E I	-	2	2					1		900	97.0	0.162	0.133	20.155	-0.162	
	3770	0.773	0.260	0.256	0.214	-0.048	-0.053	•	0.041	0.010	-0.109	-0.133	121.0	0130	0.147	
90	0.240	0.00	0.057	0 222	0.207	-0.048	-0.050	-0.032	0.031	-0.016	-0.156	0.13/	-0.101	-0.137	110	
28	0.26/	0.242	0.237	7770		2000	0.00	•	0.018	-0.016	-0.159	-0.124	-0.196	-0.158	-0.139	
9	0.296	0.245	0.235	0.237	0.142	200	0.030		0117	-0.016	-0.153	-0.127	-0.130	-0.174	-0.139	
62	0.254	0.229	0.263	0.253	0.139	-0.031	-0.033	•	0.00	0100	0.150	-0.130	-0.168	-0.167	-0.139	
3	0.272	0.283	0.238	0.285	0.163	-0.048	-0.053	•		0100	0 121	-0.174		-0.148	-0.146	
. <b>y</b>	0.283	0.267	0.244	0.256	0.144	-0.057	-0.053	•		-0.017	0 153	-0.137	-0.158	-0.161	-0.126	
8 <b>%</b>	0.276	0.248	0.279	0.279	0.191	-0.048	-0.053		•	0.010	0.131	-0.134			-0.123	
8 2	0.270	0.232	0.248	0.225	0.182	-0.048	-0.053			0100	0.156	-0.146			-0.149	
3 2	0.264	0.283	0.222	0.279	0.142	-0.061	-0.053			0.017	0.130	0.150			-0.173	
74	0.259	0.267	0.260	0.231	0.160	-0.048	-0.050			0.00	0.146	-0.114			-0.151	
76	0.254	0.245	0.228	0.250	0.157	-0.048	-0.050			0.02	-0.134	-0.130			-0.167	
28	0.251	0.229	0.222	0.275	0.150	-0.051	-0.053			0.02	0.156	0.156			-0.168	
2 08	0.256	0.280	0.317	0.285	0.138	-0.048	-0.053			-0.02	0.162	-0.114	-0.127		-0.144	
82	0.264	0.248	0.267	0.241	0.222	0.048	0.050			-0.02	-0.156	-0.140			-0.126	
<b>8</b>	0.296	0.245	0.241	0.241	0.176	-0.045	0.050			-0.022	-0.146	-0.108			-0.152	
98	0.264	0.270	0.228	0.247	0.165	-0.048	0.053			-0.026	-0.150	-0.124			-0.172	
88	0.264	0.267	0.235	0.256	0.165	-0.034	0.053			-0.026	-0.153	-0.162	-0.184	-0.161	-0.172	
06	0.276	0.245	0.286	0.260	0.184	-0.001	0.05					-0.130		•	-0.136	
35	0.305	0.229	0.257	0.285	0.149	950	0.053	-0.041	-0.048	-0.029		-0.108	-0.149	•	-0.131	
94	0.248	0.276	0.222	0.269	0.100	0.040	0.056					-0.146		•	-0.143	
96	0.278	0.261	0.279	0.256	0.103	0.040	0.050							•	-0.172	
86	0.296	0.242	0.257	0.272	0.250	0.040	0.056			-				1-0.177	-0.146	
<u>00</u>	0.260	0.226	0.241	0.244	0.144	10.05	0.00							-	-0.139	
102	0.291	0.283	0.292	0.231		10.03	-0.030			•	·			-	•	
<u>\$</u>	0.264	0.264	0.251	0.285		-0.048	-0.055			-		-			•	
106	0.260	0.248	0.241			-0.048	-0.030			-	-0.137		•	•	•	
108	0.276	0.229	0.235		0.144	-0.051	0.050				•	•		٠		
110	0.248	0.292	0.228		•	-0.043	-0.050			•	5 -0.153	٠			-	
112	0.246	0.273	0.289	0.260	0.182	-0.048	-0.053			•	•		_	١.		
114	0.303	10.20	0.232	- 1					١							

881/RPT0064 10/1/92 9:21 am sma

Page 3 of 10

	ES	0.139 0.176 0.141 0.144 0.151 0.153 0.153 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.151 0.151 0.151 0.151
	E4	0.174 0.164 0.167 0.167 0.161 0.161 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174 0.174
	E3	0.168 -0.0168 -0.0165 -0.0165 -0.0165 -0.0165 -0.0165 -0.0165 -0.0184 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187 -0.0187
	E2	0.121 0.121 0.121 0.124 0.124 0.127 0.121 0.127 0.127 0.127 0.127 0.130 0.140 0.140 0.140 0.140 0.140 0.153 0.153 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.165 0.
	E1	0.134 0.153 0.127 0.127 0.137 0.153 0.153 0.153 0.156 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157 0.157
	05	0.029 0.029 0.029 0.029 0.029 0.029 0.026 0.026 0.020 0.019 0.019 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016
	9	0.029 0.029 0.023 0.023 0.023 0.013 0.013 0.044 0.050 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060
	Well 03	0.041 0.041 0.044 0.044 0.041 0.044 0.041 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044
	03	-0.056 -0.053 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056 -0.056
	10	0.051 -0.051 -0.051 -0.051 -0.051 -0.048 -0.048 -0.048 -0.048 -0.048 -0.048 -0.048 -0.048 -0.048 -0.048 -0.048 -0.048 -0.048 -0.048 -0.051 -0.051 -0.051 -0.051 -0.051
(£)	<u> </u>	136 180 181 181 188 188 188 180 180 180 180
eights (	2	0.250 0.250 0.244 0.244 0.237 0.238 0.210 0.253 0.272 0.272 0.272 0.273 0.273 0.273 0.273 0.274 0.274 0.285 0.285
lumn H	2	
ater Co	2	0.232 0.232 0.289 0.273 0.264 0.248 0.248 0.248 0.248 0.248 0.248 0.248 0.248 0.267 0.280 0.267 0.280 0.280 0.280 0.280 0.280 0.280 0.280 0.280 0.280 0.280
Relative Water Column Heights		0.280 0.245 0.249 0.251 0.251 0.280 0.281 0.291 0.289 0.289 0.289 0.294 0.299 0.241 0.296 0.296 0.296 0.296 0.296 0.296
Table 3		Time 116 117 118 119 117 119 119 119 119 119 119 119 119

-0.136 -0.122 0.110 -0.155 0.122 -0.152 -0.172 -0.136-0.146 -0.133-0.118 0.120 0.146 0.155 -0.159 -0.117 -0.143-0.115 E5 0.145 0.139-0.1450.174 -0.133-0.1230.171 0.186-0.139-0.126-0.133-0.164 0.161 -0.158-0.1230.164 0.142-0.1520.174-0.120-0.1670.177 0.155  $\Xi$ 0.165 0.190 0.168 0.1230.190-0.158-0.1390.1270.114 0.139 0.130 0.168 0.123 0.174 0.1360.114 0.155 0.149 0.165 0.1930.114 0.177 0.161 0.190 0.130 **E3** 0.108 -0.159-0.1400.118 0.114 -0.156 -0.108 -0.118 -0.130-0.146-0.111 -0.134 -0.108 -0.134 0.114 0.127 0.111 -0.168 0.118 -0.181 0.111 **E**2 0.169 0.165 0.169 0.146 0.1500.169 0.143 0.140 -0.1750.124 0.143 0.153 -0.1530.1080.118 -0.1590.1460.162 0.175 0.146 0.153 0.159 0.153 0.134 E 0.026 0.026 0.029 0.029 0.026 0.026 0.016 0.016 0.019 0.019 0.022 0.022 0.022 0.026 0.026 0.019 0.019 0.016 0.016 0.016 0.016 0.016 0.013 0 0.075 0.072 0.072 0.069 0.072 0.066 0.063 0.063 0.063 0.063 0.082 0.079 0.082 0.079 0.082 0.085 0.088 0.082 0.082 9 0.050 0.047 0.050 0.047 -0.0500.050 0.050 0.054 0.050 0.050 0.054 0.054 0.054 0.054 0.054 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 Well 03 0.059 0.056 0.056 0.059 0.056 0.056 0.0590.056 -0.056 -0.056 0.056 0.056 0.059 0.059 0.059 0.056 0.056 0.059 0.059 0.059 0.059 0.059 07 0.057 0.057 0.057 0.054 0.061 0.054 0.051 0.051 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.045 0.051 0.051 0.051 0.054 0.054 0.051 0.054 0.051 0.051 5 0.204 0.209 0.153 0.223 ).149 0.199 0.218 0.144 0.176 0.172 0.153 0.147 0.177 0.161 0.166 0.142 0.166 0.147 0.171 0.155 0.185 0.196 0.242 ).242 ).172 .163 Table 3 Relative Water Column Heights (ft) 15 0.241 0.266 0.237 0.244 0.244 0.234 0.234 0.282 0.282 0.260 0.234 0.282 0.260 0.260 0.279 0.282 0.260 0.279 0.279 0.279 0.425 3.415 0.402 383 14 0.270 ).279 0.241 3.748 0.289 0.260 0.248 0.276 0.270 0.260 0.232 0.263 0.251 0.270 0.241 0.248 0.248 0.238 0.232 0.282 0.263 0.241 0.251 0.241 3 0.286 0.289 0.286 0.229 0.242 0.248 0.270 0.264 0.273 0.270 0.248 0.242 0.257 0.267 0.229 0.280 0.232 0.283 0.261 0.251 2 0.256 0.275 0.208 0.300 0.260 0.253 0.292 0.292 0.278 0.278 0.278 0.278 0.278 0.278 0.278 0.299 0.270 0.256 0.296 0.300 ).280 ).275 ).265 ).243 ).292 ).289 ).270 Time 

881/RPT0064 10/1/92 9:21 am sma

					***************************************											
Time	. =	12	13	14	15	10	05	Well O3	9	05	EI	E2	Ē	<b>E4</b>	E5	
236	0 278	0.289	0.241	0.358	0.169	-0.057	-0.059	-0.054	0.053	-0.026	-0.156	-0.168	-0.127	-0.129	-0.149	
238	0.286	0.235	0.260	0.371	0.149	-0.06	-0.059	-0.057	0.050	-0.032	-0.146	-0.162	-0.161	-0.174	0910	
240	0.300	0.251	0.273	0.361	0.158	-0.057	-0.059	-0.054	0.050	-0.029	-0.143	-0.108	-0.120	-0.183	-0.133	
242	0.268	0.267	0.292	0.355	0.128	-0.054	-0.056	-0.054	0.047	-0.032	-0.115	-0.121	-0.184	-0.190	-0.152	
244	0.254	0.273	0.289	0.342	0.184	-0.057	-0.059	-0.057	0.047	-0.029	-0.159	-0.108	-0.117	-0.148	-0.139	
246	0.265	0.283	0.286	0.339	0.203	-0.064	-0.059	-0.057	0.041	-0.032	-0.156	-0.124	-0.184	-0.123	-0.147	
248	0.272	0.292	0.282	0.333	0.190	-0.064	-0.059	-0.057	0.037	-0.032	-0.153	-0.149	-0.171	-0.148	-0.165	
250	0.273	0.238	0.286	0.323	0.155	-0.057	-0.059	-0.057	0.037	-0.032	-0.162	-0.114	-0.152	-0.177	-0.149	
252	0.284	0.245	0.276	0.275	0.187	-0.057	-0.059	-0.060	0.034	-0.035	-0.153	-0.146	-0.136	-0.129	-0.123	
254	0.294	0.257	0.267	0.263	0.152	-0.057	-0.059	-0.060	0.031	-0.032	-0.134	-0.114	-0.127	-0.167	-0.136	
256	0.300	0.267	0.254	0.256	0.185	-0.057	-0.059	-0.060	0.028	-0.032	-0.169	-0.137	-0.127	-0.180	-0.149	
258	0.243	0.273	0.241	0.247	0.152	-0.057	-0.059	-0.060	0.028	-0.032	-0.131	-0.108	-0.120	-0.177	-0.160	
260	0.256	0.283	0.286	0.237	0.161	-0.064	-0.059	-0.060	0.025	-0.035	-0.131	-0.140	-0.171	-0.183	-0.146	
797	0.267	0.292	0.263	0.231	0.165	-0.057	-0.059	-0.060	0.022	-0.035	-0.146	-0.114	-0.177	-0.148	-0.122	
<b>264</b>	0.280	0.242	0.222	0.250	0.161	-0.057	-0.059	-0.060	0.025	-0.032	-0.124	-0.165	-0.165	-0.177	-0.167	
<b>5</b> 66	0.291	0.254	0.263	0.231	0.184	-0.061	-0.062	-0.060	0.022	-0.035	-0.131	-0.137	-0.123	-0.161	-0.152	
268	0.253	0.280	0.257	0.279	0.158	-0.054	-0.056	-0.057	0.018	-0.035	-0.137	-0.121	-0.133	-0.136	-0.134	
270	0.246	0.286	0.295	0.241	0.157	-0.061	-0.059	-0.060	0.022	-0.032	-0.118	-0.114	-0.158	-0.148	-0.144	
272	0.273	0.235	0.263	0.269	0.172	-0.061	-0.059	-0.057	0.018	-0.035	-0.153	-0.149	-0.168	-0.180	-0.175	
274	0.296	0.251	0.232	0.237	0.182	-0.061	-0.059	-0.060	0.018	-0.035	-0.153	-0.130	-0.177	-0.148	-0.164	
276	0.246	0.264	0.273	0.269	0.160	-0.061	-0.062	-0.060	0.022	-0.035	-0.153	-0.124	-0.177	-0.136	-0.147	
278	0.268	0.286	0.241	0.237	0.182	-0.057	-0.062	-0.060	0.018	-0.038	-0.143	-0.121	-0.130	-0.152	-0.144	
280	0.292	0.232	0.254	0.266	0.174	-0.061	-0.062	-0.060	0.015	-0.035	-0.159	-0.149	-0.187	-0.155	-0.167	
282	0.267	0.248	0.270	0.241	0.157	-0.061	-0.062	-0.060	0.018	-0.035	-0.121	-0.111	-0.136	-0.161	-0.128	
<b>784</b>	0.297	0.267	0.286	0.266	0.179	-0.061	-0.062	-0.063	0.018	-0.035	-0.115	-0.134	-0.117	-0.158	-0.155	
286	0.256	0.286	0.289	0.234	0.166	-0.061	-0.062	-0.060	0.018	-0.038	-0.127	-0.137	-0.158	-0.183	-0.126	
288	0.276	0.232	0.286	0.256	0.171	-0.061	-0.062	-0.060	0.015	-0.035	-0.137	-0.127	-0.139	-0.183	-0.159	
290	0.251	0.248	0.260	0.234	0.149	-0.064	-0.062	-0.060	0.015	-0.038	-0.165	-0.146	-0.190	-0.193	-0.122	
262	0.270	0.267	0.298	0.266	0.171	-0.067	-0.062	-0.060	0.015	-0.038	-0.162	-0.162	-0.130	-0.180	-0.143	
294	0.299	0.289	0.251	0.241	0.169	1900	-0.062	0900	0.015	-0.035	C91 0	20102	0 150	154	0 166	

OUI Phase III RFI/RI Report

Well         Well         Oct 1         O2         O3         O4         O5         E1         E2         E3         E4         E3         O1         O2         O3         O4         O5         E1         E2         E3         E4         E3           0.248         0.235         0.235         0.235         0.235         0.235         0.235         0.235         0.235         0.235         0.235         0.235         0.235         0.235         0.235         0.235         0.235         0.235         0.235         0.235         0.235         0.235         0.235         0.235         0.235         0.235         0.235         0.235         0.235         0.235         0.235         0.235         0.235         0.235         0.235         0.235         0.236         0.244         0.035         0.035         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015	Table 3	Relative Water Column Heights	Water Co	lumn	Heights	(E)											
0.248 0.235 0.270 0.279 0.172 0.067 0.062 0.060 0.018 0.0135 0.0127 0.0144 0.0120 0.0126 0.0256 0.2351 0.235 0.236 0.239 0.135 0.0161 0.0661 0.0662 0.060 0.018 0.0135 0.0137 0.0134 0.0155 0.0129 0.0254 0.2267 0.235 0.231 0.1561 0.0661 0.0662 0.060 0.018 0.0135 0.0146 0.0127 0.0184 0.0161 0.024 0.286 0.286 0.228 0.240 0.218 0.064 0.062 0.060 0.015 0.035 0.0146 0.0127 0.0184 0.0161 0.0280 0.235 0.236 0.241 0.127 0.061 0.062 0.060 0.018 0.0135 0.0159 0.0137 0.0184 0.0161 0.0284 0.2287 0.224 0.2712 0.199 0.0061 0.0062 0.006 0.018 0.0138 0.0159 0.0159 0.0145 0.0264 0.229 0.2281 0.239 0.241 0.156 0.0061 0.0062 0.008 0.018 0.0138 0.0159 0.0184 0.0159 0.0284 0.229 0.286 0.231 0.0179 0.0061 0.0062 0.0061 0.018 0.0138 0.0159 0.0184 0.0159 0.0264 0.229 0.288 0.189 0.0064 0.0062 0.018 0.0138 0.0154 0.0159 0.0184 0.0204 0.2207 0.238 0.239 0.1079 0.0061 0.0062 0.0063 0.018 0.0139 0.0184 0.0139 0.0184 0.0180 0.0284 0.227 0.228 0.289 0.137 0.0062 0.0063 0.012 0.038 0.0159 0.0184 0.0139 0.0184 0.0064 0.0062 0.0063 0.012 0.038 0.0159 0.0184 0.0139 0.0180 0.0284 0.227 0.229 0.229 0.239 0.171 0.0062 0.0063 0.012 0.038 0.0159 0.0184 0.0139 0.0184 0.0130 0.0184 0.0294 0.229 0.229 0.229 0.229 0.229 0.0294 0.0171 0.0062 0.0063 0.012 0.038 0.0157 0.0139 0.0184 0.0139 0.0184 0.0139 0.0184 0.0139 0.0184 0.0139 0.0184 0.0139 0.0184 0.0139 0.0184 0.0139 0.0184 0.0139 0.0184 0.0139 0.0184 0.0139 0.0184 0.0139 0.0184 0.0139 0.0184 0.0139 0.0184 0.0139 0.0184 0.0139 0.0184 0.0139 0.0184 0.0139 0.0184 0.0139 0.0184 0.0139 0.0184 0.0139 0.0184 0.0139 0.0184 0.0139 0.0184 0.0139 0.0184 0.0139 0.0184 0.0139 0.0184 0.0139 0.0184 0.0139 0.0184 0.0139 0.0184 0.0139 0.0184 0.0139 0.0184 0.0139 0.0184 0.0139 0.0184 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139	i		2	2	2	7	5	07	Well O3	9	05	E1	E2	E3	<b>E4</b>	E5	
0.248         0.255         0.275         0.275         0.175         -0.067         -0.066         0.015         -0.017         -0.114         -0.114         -0.115         -0.129         -0.250         -0.254         0.257         0.253         0.155         -0.061         -0.066         0.015         -0.015         -0.015         -0.016         -0.017         -0.114         -0.127         -0.118         -0.159         -0.279         -0.289         0.253         0.251         0.051         -0.060         0.015         -0.035         -0.114         -0.127         -0.114         -0.127         -0.149         -0.153         -0.157         -0.169         -0.127         -0.146         -0.127         -0.146         -0.127         -0.149         -0.153         -0.157         -0.146         -0.127         -0.146         -0.127         -0.146         -0.127         -0.146         -0.127         -0.146         -0.127         -0.146         -0.127         -0.146         -0.127         -0.146         -0.127         -0.146         -0.127         -0.146         -0.127         -0.146         -0.127         -0.146         -0.127         -0.146         -0.127         -0.146         -0.127         -0.146         -0.127         -0.146         -0.127         <	Time		71	CI CI	<u>+</u>	2	5	3	3								
0.248         0.253         0.253         0.155         0.150         0.006         0.018         0.035         0.114         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015         0.015 <th< td=""><td></td><td>1</td><td></td><td>0.00</td><td>0000</td><td>0.173</td><td>6900</td><td>0.062</td><td>990 0-</td><td>0.015</td><td>-0.035</td><td>-0.127</td><td>-0.114</td><td>-0.120</td><td>-0.126</td><td>-0.122</td><td></td></th<>		1		0.00	0000	0.173	6900	0.062	990 0-	0.015	-0.035	-0.127	-0.114	-0.120	-0.126	-0.122	
0.285         0.251         0.253         0.253         0.253         0.254         0.255         0.253         0.253         0.254         0.127         0.108         0.114         0.117         0.118         0.114         0.117         0.118         0.114         0.114         0.115         0.013         0.023         0.236         0.239         0.238         0.238         0.239         0.239         0.239         0.239         0.234         0.118         -0.061         -0.062         -0.062         0.003         -0.015         -0.015         -0.015         -0.015         -0.015         -0.116         -0.117         -0.116         -0.116         -0.116         -0.116         -0.117         -0.116         -0.116         -0.117         -0.116         -0.118         -0.118         -0.061         -0.062         -0.063         -0.018         -0.018         -0.018         -0.118         -0.118         -0.118         -0.118         -0.118         -0.118         -0.064         -0.062         -0.063         -0.018         -0.038         -0.118         -0.118         -0.118         -0.118         -0.118         -0.118         -0.118         -0.118         -0.118         -0.118         -0.118         -0.118         -0.118         -0.118	236	0.248	0.235	0.270	0.279	2/1/2	200	0.00	9000	0.018	-0.035	-0.143	-0.124	-0.155	-0.129	-0.141	
0.294         0.267         0.235         0.310         0.161         -0.002         -0.003         -0.135         -0.150         -0.151         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150         -0.150	298	0.265	0.251	0.235	0.253	CC1.0	-0.001	-0.002	98.9	210.0	0.035	0 146	1010	-0.184	-0.161	-0.170	
0.249 0.286 0.298 0.260 0.218 0.0044 0.0052 0.0060 0.0115 0.0135 0.0135 0.0135 0.0135 0.0135 0.0280 0.287 0.224 0.224 0.224 0.024 0.0061 0.0062 0.0060 0.018 0.035 0.0153 0.0154 0.0155 0.0155 0.0145 0.0280 0.257 0.254 0.272 0.179 0.0061 0.0062 0.0060 0.018 0.035 0.0162 0.0153 0.0184 0.0136 0.0294 0.292 0.263 0.269 0.198 0.2041 0.0062 0.0060 0.018 0.038 0.0124 0.0152 0.0155 0.0164 0.0062 0.0060 0.018 0.038 0.0124 0.0154 0.0154 0.0061 0.0062 0.0063 0.018 0.035 0.0154 0.0154 0.0159 0.0159 0.0264 0.257 0.238 0.236 0.139 0.0064 0.0062 0.0063 0.018 0.035 0.0127 0.0144 0.0170 0.0061 0.0062 0.0063 0.018 0.0135 0.0124 0.0184 0.0180 0.0297 0.228 0.226 0.237 0.139 0.0064 0.0062 0.0063 0.015 0.038 0.0194 0.0180 0.0264 0.027 0.238 0.236 0.136 0.0064 0.0062 0.0060 0.015 0.038 0.0184 0.0196 0.0196 0.0194 0.0199 0.0196 0.0254 0.226 0.237 0.132 0.2064 0.0062 0.0062 0.012 0.038 0.0184 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196 0.0064 0.0066 0.0066 0.0069 0.0198 0.0196 0.0196 0.0196 0.0196 0.0064 0.0066 0.0066 0.0099 0.0198 0.0199 0.0290 0.2290 0.2290 0.2290 0.2290 0.2290 0.2290 0.2290 0.2290 0.2290 0.2290 0.2290 0.2290 0.2290 0.2290 0.2290 0.2290 0.2290 0.2290 0.2290 0.2290 0.2290 0.2290 0.2290 0.2290 0.2290 0.2290 0.2290 0.2290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.029	300	0.294	0.267	0.235	0.301	0.161	-0.061	-0.062	0.00	0.015	CC0.0-	0.140	77.0	13.	106	10.103	
0.280         0.235         0.282         0.241         0.182         -0.061         -0.062         -0.060         0.015         -0.153         -0.153         -0.153         -0.153         -0.153         -0.153         -0.153         -0.153         -0.153         -0.153         -0.153         -0.153         -0.153         -0.153         -0.153         -0.153         -0.153         -0.153         -0.153         -0.153         -0.153         -0.153         -0.155         -0.156         -0.156         -0.061         -0.062         -0.060         0.018         -0.035         -0.153         -0.153         -0.153         -0.153         -0.154         -0.155         -0.164         -0.150         -0.061         -0.062         -0.060         0.018         -0.035         -0.154         -0.158         -0.188         -0.064         -0.062         -0.063         0.018         -0.035         -0.159         -0.188         -0.164         -0.062         -0.063         -0.018         -0.063         -0.063         -0.063         -0.018         -0.064         -0.062         -0.063         -0.018         -0.188         -0.188         -0.064         -0.062         -0.063         -0.018         -0.188         -0.188         -0.188         -0.189         -0.188	30.	0 240	0.286	0.298	0.260	0.218	-0.0 <del>6</del>	-0.062	90.0	0.015	-0.035	-0.150	-0.134	-0.127	201.0-	6.143	
0.280         0.277         0.278         0.279         0.279         0.279         0.279         0.271         0.179         0.061         0.062         0.063         0.018         -0.018         -0.118         -0.118         -0.118         -0.119         -0.114         -0.117         -0.180         -0.180         -0.018         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180         -0.180	300	0300	0.235	0.282	0.241	0.182	-0.061	-0.062	-0.060	0.015	-0.035	-0.127	-0.140	-0.138	-0.143	6.143	
0.280         0.227         0.228         0.244         0.064         0.018         0.028         0.124         0.115         0.115         0.115         0.116         0.115         0.115         0.114         0.117         0.118         0.124         0.125         0.114         0.117         0.018         0.028         0.018         0.026         0.027         0.027         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018 <th< td=""><td><b>5</b> 25</td><td>0.200</td><td>0.257</td><td>0.254</td><td>0.77</td><td>0.179</td><td>1900</td><td>-0.062</td><td>-0.060</td><td>0.018</td><td>-0.035</td><td>-0.169</td><td>-0.153</td><td>-0.184</td><td>-0.136</td><td><b>5</b> 5</td><td></td></th<>	<b>5</b> 25	0.200	0.257	0.254	0.77	0.179	1900	-0.062	-0.060	0.018	-0.035	-0.169	-0.153	-0.184	-0.136	<b>5</b> 5	
0.264         0.277         0.289         0.244         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.018         -0.018         -0.018         -0.018         -0.018         -0.018         -0.018         -0.018         -0.018         -0.018         -0.018         -0.018         -0.018         -0.018         -0.018         -0.018         -0.018         -0.018         -0.018         -0.018         -0.018         -0.018         -0.018         -0.018         -0.018         -0.018         -0.018         -0.018         -0.018         -0.018         -0.018         -0.018         -0.018         -0.018         -0.018         -0.018         -0.018         -0.018         -0.018         -0.019         -0.006         -0.006         -0.019         -0.006         -0.006         -0.012         -0.008         -0.118         -0.118         -0.006         -0.000         -0.012         -0.03         -0.124         -0.118         -0.180         -0.006         -0.012         -0.03         -0.012         -0.03         -0.012         -0.03         -0.012         -0.03         -0.012         -0.03         -0.012         -0.018         -0.019         -0.018         -0.050         -0.012         -0	200	0.280	0.23	0000	7/7:0	0 166	1900	0.062	0900	0.018	-0.038	-0.124	-0.162	-0.155	-0. 18	-0.130	
0.294         0.224         0.229         0.239         0.234         0.234         0.234         0.235         0.239         0.234         0.234         0.237         0.239         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037 <th< td=""><td>308</td><td>0.264</td><td>0.273</td><td>0.290</td><td>0.241</td><td>0.10</td><td>0.00</td><td>000</td><td>-0.063</td><td>0.018</td><td>-0.038</td><td>-0.165</td><td>-0.114</td><td>-0.117</td><td>-0.180</td><td>-0.162</td><td></td></th<>	308	0.264	0.273	0.290	0.241	0.10	0.00	000	-0.063	0.018	-0.038	-0.165	-0.114	-0.117	-0.180	-0.162	
0.264         0.257         0.248         0.257         0.248         0.257         0.248         0.257         0.248         0.257         0.248         0.257         0.248         0.257         0.248         0.257         0.248         0.257         0.248         0.257         0.270         0.288         0.179         0.064         0.062         0.063         0.015         0.038         0.159         0.114         0.180         0.180         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018 <th< td=""><td>310</td><td>0.294</td><td>0.292</td><td>0.203</td><td></td><td>0.170</td><td>0.057</td><td>0.00</td><td>7500</td><td>0.015</td><td>-0.038</td><td>-0.153</td><td>-0.124</td><td>-0.158</td><td>-0.158</td><td>-0.131</td><td></td></th<>	310	0.294	0.292	0.203		0.170	0.057	0.00	7500	0.015	-0.038	-0.153	-0.124	-0.158	-0.158	-0.131	
0.288         0.267         0.248         0.257         0.248         0.253         0.119         -0.004         -0.005         -0.003         -0.159         -0.159         -0.169         -0.114         -0.159         -0.180         -0.190         -0.190         -0.190         -0.114         -0.155         -0.139         -0.180         -0.139         -0.180         -0.139         -0.180         -0.114         -0.155         -0.139         -0.180         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130         -0.130	312	0.264	0.257	0.238		0.174	70.0-	60.0	0.05	8100	-0.035	-0.127	-0.146	-0.130	-0.180	-0.120	
0.272         0.286         0.1288         0.1288         0.1288         0.1288         0.1081         0.0062         0.0062         0.0075         0.0078         0.0174         0.0184         0.0186         0.0062         0.0060         0.015         0.038         0.0174         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0062         0.0060         0.015         0.038         0.0174         0.0134         0.0172         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184	314	0.268	0.267	0.248		0.179	-0.00	0.00	0.00	0.010	-0.038	-0.159	-0.168	-0.149	-0.180	-0.141	
0.297         0.238         0.286         0.247         0.182         0.204         0.182         0.204         0.182         0.182         0.184         0.184         0.184         0.184         0.184         0.184         0.184         0.184         0.184         0.184         0.184         0.184         0.184         0.184         0.184         0.184         0.184         0.184         0.084         0.084         0.084         0.015         0.015         0.017         0.017         0.118         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.066         0.066         0.060         0.012         0.018         0.018         0.064         0.066         0.063         0.003         0.018         0.016         0.018         0.018         0.064         0.066         0.063         0.003         0.018         0.017         0.018         0.018         0.064         0.066         0.063         0.003         0.018         0.016         0.016         0.064         0.066         0.063         0.003         0.018         0.017         0.013         0.017         0.018         0.017         0.018         0.012 <th< td=""><td>316</td><td>0.272</td><td>0.286</td><td>0.270</td><td></td><td>0.188</td><td>0.00</td><td>20.0</td><td></td><td>0.015</td><td>-0.038</td><td>-0.169</td><td>-0.114</td><td>-0.165</td><td>-0.136</td><td>-0.122</td><td></td></th<>	316	0.272	0.286	0.270		0.188	0.00	20.0		0.015	-0.038	-0.169	-0.114	-0.165	-0.136	-0.122	
0.289         0.257         0.292         0.269         0.111         -0.004         -0.005         -0.017         -0.038         -0.137         -0.136         -0.136         -0.137         -0.136         -0.136         -0.137         -0.136         -0.136         -0.136         -0.136         -0.136         -0.136         -0.136         -0.137         -0.136         -0.136         -0.136         -0.137         -0.136         -0.136         -0.136         -0.137         -0.136         -0.136         -0.136         -0.137         -0.137         -0.136         -0.136         -0.136         -0.136         -0.137         -0.136         -0.136         -0.136         -0.136         -0.137         -0.131         -0.149         -0.137         -0.136         -0.136         -0.137         -0.136         -0.136         -0.137         -0.136         -0.136         -0.137         -0.137         -0.136         -0.136         -0.136         -0.136         -0.136         -0.136         -0.136         -0.136         -0.136         -0.136         -0.136         -0.139         -0.136         -0.136         -0.136         -0.136         -0.136         -0.136         -0.136         -0.136         -0.136         -0.136         -0.136         -0.136         -0.136	318	0.297	0.238	0.286		0.182	9.0	70.00	900			-0.124	-0.134	-0.139	-0.180	-0.155	
0.248         0.273         0.292         0.288         0.108         0.1084         0.1094         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.1004         0.112         0.1130         0.1136         0.1136         0.1136         0.1136         0.1136         0.1136         0.1136         0.1136         0.1136         0.1136         0.1136         0.1136         0.1136         0.1136         0.1136         0.1136         0.1136         0.1136         0.1137         0.1136         0.1137         0.1136         0.1136         0.1137         0.1136         0.1136         0.1137         0.1136         0.1136         0.1136         0.0139         0.0138         0.0169         0.0127         0.0138         0.0159         0.0138         0.0169         0.0174         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184         0.0184	320	0.289	0.257	0.292		0.1/1	-0.001	700.0-				-0.137	-0.172	-0.184	-0.136	-0.130	
0.254         0.296         0.297         0.237         0.172         -0.001         -0.003         0.012         -0.038         -0.169         -0.172         -0.161         -0.136         -0.164         -0.004         0.004         -0.006         -0.003         -0.103         -0.172         -0.131         -0.174         -0.134         -0.174         -0.134         -0.174         -0.106         -0.006         -0.003         -0.109         -0.127         -0.131         -0.174         -0.134         -0.174         -0.134         -0.174         -0.134         -0.174         -0.134         -0.174         -0.134         -0.127         -0.131         -0.174         -0.184         -0.064         -0.066         -0.063         -0.038         -0.162         -0.159         -0.184         -0.193         -0.174         -0.193         -0.174         -0.193         -0.184         -0.193         -0.184         -0.193         -0.184         -0.193         -0.184         -0.193         -0.184         -0.193         -0.184         -0.193         -0.184         -0.193         -0.184         -0.193         -0.184         -0.193         -0.184         -0.184         -0.184         -0.184         -0.184         -0.184         -0.184         -0.184         -0.184	322	0.248	0.273	0.292		0.108	5000	700.0-	20.0			-0.153	-0.127	-0.130	-0.158	-0.191	
0.254	324	0.254	0.296	0.292		2/1/0	-0.001	900	000			-0.169	-0.172	-0.161	-0.136	-0.160	
0.260         0.264         0.286         0.250         0.188         -0.064         -0.065         -0.063         0.003         -0.038         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.059         -0.059         -0.059         -0.066         -0.063         0.003         -0.038         -0.151         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.159         -0.151         -0.159         -0.159         -0.159         -0.159	326	0.254	0.242	0.292		0.174	0.00	0000				0.169	-0.127	-0.133	-0.174	-0.149	
0.259 0.289 0.270 0.256 0.180 -0.064 -0.066 -0.063 0.003 -0.038 -0.156 0.121 -0.139 -0.174 -0.254 0.224 0.257 0.256 0.187 -0.064 -0.066 0.0063 0.003 -0.038 -0.162 0.121 -0.139 -0.174 -0.259 0.264 0.244 0.256 0.182 -0.061 -0.066 0.0063 0.003 -0.038 -0.162 -0.121 -0.149 -0.177 -0.299 0.283 0.232 0.233 -0.061 -0.066 0.060 0.000 0.038 -0.162 -0.121 -0.149 -0.177 -0.299 0.242 0.270 0.250 0.161 -0.064 -0.066 0.060 0.000 0.038 -0.159 -0.171 -0.133 -0.260 0.201 0.232 0.234 0.185 -0.064 -0.066 0.063 0.000 -0.038 -0.159 -0.174 -0.177 -0.177 -0.270 0.232 0.234 0.174 -0.064 -0.066 0.063 0.000 0.038 -0.159 -0.174 -0.177 -0.177 -0.270 0.232 0.234 0.174 -0.064 0.065 0.063 0.000 0.038 -0.159 -0.118 -0.161 -0.161 -0.064 0.065 0.0063 0.000 0.038 -0.159 -0.174 -0.177 -0.177 -0.250 0.257 0.267 0.275 0.168 -0.064 0.066 -0.063 0.000 0.038 -0.156 -0.139 -0.146 -0.139 0.251 0.257 0.267 0.275 0.168 -0.064 0.066 0.063 0.000 0.038 0.145 -0.149 -0.146 -0.139 0.251 0.251 0.238 0.234 0.151 0.064 -0.066 0.063 0.004 0.038 0.143 -0.149 -0.146 -0.139 0.251 0.251 0.238 0.234 0.158 0.064 0.066 0.063 0.007 -0.041 0.177 -0.139 0.146 0.139 0.251 0.238 0.234 0.158 0.064 0.066 0.063 0.001 0.041 0.178 0.111 0.190 0.129 0.280 0.281 0.273 0.254 0.275 0.168 0.064 0.066 0.063 0.001 0.041 0.178 0.111 0.190 0.129 0.280 0.281 0.273 0.234 0.158 0.064 0.066 0.063 0.001 0.041 0.178 0.113 0.155 0.186 0.280 0.280 0.280 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.281 0.2	328	0.260	0.264	0.286		0.188	40.00	000.0	-0.003		-	0.163	0 150	-0 184	-0.193	-0.147	
0.254         0.242         0.257         0.256         0.187         -0.004         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005         -0.005	330	0.259	0.289	0.270		0.180	6.064 40.064	-0.000	50.00		-	0.156	0.12	0.13	-0.174	-0.141	
0.259 0.264 0.244 0.256 0.182 -0.061 -0.059 -0.003 -0.053 -0.162 -0.121 -0.149 -0.177 -0.299 0.283 0.289 0.253 0.233 -0.061 -0.066 0.006 0.003 -0.038 -0.162 -0.121 -0.149 -0.177 -0.299 0.242 0.270 0.250 0.161 -0.064 -0.066 0.006 0.003 -0.038 -0.159 -0.118 -0.127 -0.171 -0.133 -0.260 0.261 0.232 0.234 0.185 -0.064 -0.066 0.0063 0.000 -0.038 -0.159 -0.118 -0.127 -0.171 -0.180 0.270 0.232 0.238 0.244 0.174 -0.064 -0.062 -0.063 0.000 -0.038 -0.156 -0.130 -0.174 -0.187 0.260 0.257 0.257 0.257 0.275 0.168 -0.064 -0.065 -0.063 0.000 -0.038 0.172 -0.118 -0.161 -0.161 0.260 0.257 0.257 0.241 0.247 0.161 -0.064 -0.066 -0.063 0.000 -0.038 0.143 -0.149 -0.146 -0.139 0.251 0.258 0.254 0.275 0.158 -0.064 -0.066 -0.063 -0.004 0.038 0.143 -0.149 -0.146 -0.139 0.251 0.251 0.273 0.234 0.158 -0.064 -0.066 -0.063 -0.007 -0.041 0.172 -0.113 0.110 0.107 0.167 0.251 0.251 0.273 0.234 0.158 -0.064 -0.066 -0.063 -0.007 0.041 0.172 0.113 0.110 0.107 0.150 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.25	332	0.254	0.242	0.257		0.187	0.00 40.5	-0.000	-0.003		•	0.121	0.146	0.168	0.130	-0.133	
0.299 0.283 0.289 0.253 0.233 -0.061 -0.066 -0.005 0.003 -0.012 -0.102 -0.127 -0.177 -0.133 -0.299 0.242 0.270 0.250 0.161 -0.061 -0.059 0.006 0.000 -0.038 -0.112 -0.149 -0.171 -0.133 -0.260 0.261 0.232 0.234 0.185 -0.064 -0.066 0.063 0.000 -0.038 -0.159 -0.118 -0.127 -0.171 -0.180 0.292 0.283 0.273 0.269 0.174 -0.064 -0.062 0.063 0.000 -0.038 -0.159 -0.149 -0.174 -0.180 0.270 0.232 0.238 0.244 0.174 -0.064 -0.062 -0.063 0.000 -0.038 0.156 -0.130 -0.174 -0.161 0.260 0.257 0.267 0.275 0.168 -0.064 -0.066 -0.063 0.000 -0.038 0.172 -0.118 -0.161 -0.161 0.253 0.276 0.241 0.247 0.161 -0.064 -0.066 -0.063 0.004 0.038 0.143 -0.149 -0.146 -0.139 0.251 0.238 0.254 0.275 0.158 -0.064 -0.066 -0.063 -0.007 -0.041 0.162 -0.167 -0.130 -0.167 0.291 0.291 0.273 0.234 0.158 -0.064 -0.066 -0.063 -0.010 -0.041 0.178 -0.111 -0.190 -0.159 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.090 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.09	334	0.259	0.264	0.244	0.256	0.182	-0.061	-0.059	-0.000 0.000				121	0170	0.177	0.136	
0.299 0.242 0.270 0.250 0.161 -0.061 -0.059 -0.000 0.000 -0.038 -0.112 -0.117 -0.171 -0.260 0.261 0.232 0.234 0.185 -0.064 -0.066 0.063 0.000 -0.038 -0.159 -0.118 -0.127 -0.171 -0.260 0.261 0.222 0.233 0.273 0.269 0.174 -0.064 -0.062 0.063 0.000 -0.038 -0.159 -0.139 -0.174 -0.180 -0.174 -0.064 -0.062 0.0063 0.000 -0.038 -0.156 -0.130 -0.174 -0.177 -0.064 0.065 0.063 0.000 -0.031 0.172 -0.118 -0.161 -0.161 -0.161 0.251 0.257 0.257 0.257 0.267 0.275 0.168 -0.064 -0.066 -0.063 0.000 -0.041 -0.172 -0.118 -0.161 -0.161 0.253 0.276 0.275 0.158 -0.064 -0.066 -0.063 -0.004 -0.038 0.143 -0.149 -0.146 -0.139 0.251 0.238 0.254 0.275 0.158 -0.064 -0.066 -0.063 -0.001 -0.041 -0.162 -0.157 -0.130 -0.167 0.261 0.273 0.234 0.158 -0.064 -0.066 -0.063 -0.010 -0.041 -0.178 -0.111 -0.190 -0.129 0.280 0.286 0.224 0.155 -0.064 -0.066 -0.063 -0.010 -0.041 -0.178 -0.111 -0.190 -0.155 -0.186	336	0.299	0.283	0.289		0.233	-0.061	-0.066	-0.063				0.140	0.171	0.133	9910	
0.260 0.261 0.232 0.234 0.185 -0.064 -0.065 0.000 -0.038 -0.157 -0.119 -0.117 -0.180 -0.292 0.283 0.273 0.269 0.174 -0.064 -0.062 0.063 0.000 -0.038 -0.153 -0.149 -0.174 -0.180 -0.292 0.283 0.273 0.240 0.174 -0.064 -0.062 0.063 0.000 -0.038 -0.156 -0.130 -0.174 -0.187 -0.177 -0.257 0.257 0.267 0.275 0.168 -0.064 -0.066 -0.063 0.000 -0.041 -0.172 -0.118 -0.161 -0.161 -0.253 0.276 0.241 0.247 0.161 -0.064 -0.066 -0.063 -0.004 -0.038 -0.143 -0.149 -0.146 -0.139 0.251 0.238 0.254 0.275 0.158 -0.064 -0.066 -0.063 -0.007 -0.041 -0.162 -0.127 -0.130 -0.167 0.241 0.261 0.273 0.234 0.158 -0.064 -0.066 -0.063 -0.010 -0.041 -0.178 -0.111 -0.190 -0.129 0.241 0.261 0.273 0.234 0.155 -0.064 -0.066 -0.063 -0.010 -0.041 -0.178 -0.113 -0.155 -0.186	338	0.299	0.242	0.270		0.161	-0.061	-0.059	-0.000			•	0.110	121	1710	0.152	
0.292 0.283 0.273 0.269 0.174 -0.064 -0.063 0.000 -0.038 -0.153 -0.149 -0.174 -0.107 -0.107 -0.064 0.062 -0.063 0.000 -0.038 -0.156 -0.130 -0.174 -0.177 -0.177 -0.232 0.238 0.244 0.174 -0.064 -0.066 -0.063 0.000 -0.041 -0.172 -0.118 -0.161 -0.161 -0.167 -0.253 0.257 0.267 0.275 0.168 -0.064 -0.066 -0.063 -0.004 -0.038 -0.143 -0.149 -0.146 -0.139 -0.251 0.258 0.254 0.275 0.158 -0.064 -0.066 -0.063 -0.007 -0.041 -0.162 -0.127 -0.130 -0.167 -0.241 0.241 0.273 0.234 0.158 -0.064 -0.066 -0.063 -0.010 -0.041 -0.178 -0.111 -0.190 -0.129 0.241 0.258 0.278 0.244 0.155 -0.064 -0.066 -0.063 -0.010 -0.041 -0.159 -0.143 -0.155 -0.186	340	0.260	0.261	0.232	0.234	0.185	-0.0 <del>0</del>	90.0-	-0.003					77.0		0 134	
0.270 0.232 0.238 0.244 0.174 -0.064 -0.063 0.000 -0.038 -0.150 -0.150 -0.177 -0.117 -0.117 -0.117 -0.117 -0.117 -0.117 -0.117 -0.118 -0.116 -0.161 -0.161 -0.260 0.257 0.267 0.275 0.168 -0.064 -0.065 -0.063 -0.004 -0.038 -0.143 -0.149 -0.146 -0.139 -0.251 0.238 0.254 0.275 0.158 -0.064 -0.066 -0.063 -0.007 -0.041 -0.162 -0.127 -0.130 -0.167 -0.251 0.251 0.234 0.158 -0.064 -0.066 -0.063 -0.010 -0.041 -0.178 -0.111 -0.190 -0.129 0.241 0.261 0.273 0.234 0.155 -0.064 -0.066 -0.063 -0.010 -0.041 -0.178 -0.113 -0.155 -0.186	342	0.292	0.283	0.273	0.269	0.174	-0.064	-0.062	-0.063					-0.174		6.124	
0.257 0.257 0.267 0.275 0.168 -0.064 -0.066 -0.063 0.000 -0.041 -0.172 -0.118 -0.161 -0.161 -0.161 0.255 0.257 0.257 0.275 0.161 -0.067 -0.062 -0.063 -0.004 -0.038 -0.143 -0.149 -0.146 -0.139 0.251 0.238 0.254 0.275 0.158 -0.064 -0.066 -0.063 -0.007 -0.041 -0.162 -0.127 -0.130 -0.167 0.241 0.261 0.273 0.234 0.158 -0.064 -0.066 -0.063 -0.010 -0.041 -0.178 -0.111 -0.190 -0.129 0.241 0.258 0.244 0.155 -0.064 -0.066 -0.063 -0.010 -0.041 -0.159 -0.143 -0.155 -0.186	344	0.770	0.232	0.238		0.174	-0.06 4	-0.062	-0.063				•	-0.1.5		5 5	
0.253 0.276 0.241 0.247 0.161 -0.067 -0.062 -0.063 -0.004 -0.038 -0.143 -0.149 -0.146 -0.139 -0.251 0.238 0.224 0.275 0.158 -0.064 -0.066 -0.063 -0.007 -0.041 -0.162 -0.127 -0.130 -0.167 -0.251 0.251 0.273 0.234 0.158 -0.064 -0.066 -0.063 -0.010 -0.041 -0.178 -0.111 -0.190 -0.129 -0.241 0.264 0.155 -0.064 -0.066 -0.063 -0.010 -0.041 -0.159 -0.143 -0.155 -0.186	345	0.250	0.257	0.267	-	0.168	-0.064	-0.066	-0.063				-	•	•	-	
0.251 0.238 0.254 0.275 0.158 -0.064 -0.066 -0.063 -0.007 -0.041 -0.162 -0.127 -0.130 -0.167 0.251 0.251 0.273 0.234 0.158 -0.064 -0.066 -0.063 -0.010 -0.041 -0.178 -0.111 -0.190 -0.129 0.241 0.261 0.273 0.234 0.158 -0.064 -0.066 -0.063 -0.010 -0.041 -0.159 -0.143 -0.155 -0.186	3,40	0.253	0.276	0.241	0.247	0.161	-0.067	-0.062	-0.063					•			
0.241 0.261 0.273 0.234 0.158 -0.064 -0.066 -0.063 -0.010 -0.041 -0.178 -0.111 -0.190 -0.129 0.280 0.280 0.228 0.244 0.155 -0.064 -0.066 -0.063 -0.010 -0.041 -0.159 -0.143 -0.155 -0.186	<b>5</b>	0.25	0.238	0.254		0.158	-0.064	-0.066	-0.063		•	-0.162	•	-0.13(	•	•	
0.28 0.278 0.244 0.155 -0.064 -0.063 -0.010 -0.041 -0.159 -0.143 -0.155 -0.180	353	0.231	0.261			0.158	-0.064	-0.066	-0.063		•	-0.178	٠	•		•	
	356	0.280	0.286			0.155	-0.064	-0.066	٠		•	-0.159	'	•	Ė	-0.120	

Table 3	Relative Water Column Heights	Water C	olumn	Heights	(ft)										Page 7 of 10	of 10
Time	11	12	13	14	15	01	05	Well 03	8	05	田	E2	E3	E4	E5	
356	0.294	0.242	0.241	0.241	0.155	-0.064	-0.066	-0.063	-0.007	-0.038	-0.127	-0.118	-0.130	-0.177	-0.159	
358	0.265	0.264	0.254	0.250	0.157	-0.064	-0.066	-0.060	-0.004	-0.035	-0.124	-0.108	-0.184	-0.126	-0.126	
360	0.251	0.292	0.254	0.260	0.168	-0.064	-0.066	-0.063	-0.004	-0.038	-0.137	-0.137	-0.136	-0.186	-0.181	
362	0.241	0.248	0.260	0.247	0.166	-0.064	-0.066	-0.063	-0.007	-0.041	-0.150	-0.118	-0.117	-0.167	-0.125	
364	0.245	0.264	0.292	0.279	0.184	-0.064	-0.066	-0.063	-0.007	-0.041	-0.146	-0.111	-0.196	-0.186	-0.146	
366	0.254	0.286	0.248	0.237	0.199	-0.064	-0.066	-0.063	-0.007	-0.038	-0.150	-0.146	-0.180	-0.177	-0.167	
368	0.264	0.242	0.276	0.241	0.171	-0.064	-0.066	-0.063	-0.010	-0.041	-0.175	-0.156	-0.168	-0.133	-0.122	
370	0.276	0.264	0.228	0.234	0.168	-0.064	-0.066	-0.063	-0.010	-0.041	-0.159	-0.140	-0.136	-0.155	-0.143	
372	0.283	0.289	0.238	0.237	0.155	-0.064	-0.066	-0.063	-0.010	-0.041	-0.118	-0.134	-0.177	-0.174	-0.162	
374	0.291	0.238	0.248	0.244	0.160	-0.064	-0.066	-0.063	-0.010	-0.041	-0.150	-0.134	-0.165	-0.193	-0.172	
376	0.299	0.270	0.241	0.234	0.163	-0.064	-0.066	-0.063	-0.010	-0.041	-0.153	-0.127	-0.142	-0.152	-0.157	
378	0.291	0.289	0.301	0.241	0.161	-0.064	-0.066	-0.063	-0.010	-0.041	-0.156	-0.130	-0.130	-0.174	-0.138	
380	0.272	0.242	0.276	0.282	0.161	-0.064	-0.062	-0.063	-0.013	-0.041	-0.131	-0.130	-0.120	-0.152	-0.154	
382	0.245	0.264	0.251	0.234	0.176	-0.064	-0.066	-0.063	-0.013	-0.041	-0.140	-0.134	-0.168	-0.174	-0.172	
384	0.253	0.289	0.292	0.237	0.176	-0.070	-0.066	-0.063	-0.013	-0.041	-0.131	-0.134	-0.171	-0.161	-0.134	
386	0.257	0.242	0.241	0.237	0.155	-0.064	-0.066	-0.063	-0.013	-0.041	-0.159	-0.137	-0.152	-0.167	-0.131	
388	0.259	0.267	0.267	0.231	0.163	-0.064	-0.066	-0.063	-0.013	-0.041	-0.131	-0.140	-0.130	-0.171	-0.147	
390	0.267	0.289	0.289	0.231	0.166	-0.064	-0.066	-0.063	-0.013	-0.041	-0.156	-0.159	-0.117	-0.158	-0.159	
392	0.278	0.242	0.286	0.244	0.236	-0.064	-0.066	-0.066	-0.013	-0.041	-0.137	-0.111	-0.127	-0.133	-0.162	
394	0.291	0.261	0.228	0.234	0.161	-0.067	-0.066	-0.066	-0.013	-0.041	-0.162	-0.121	-0.123	-0.183	-0.133	
336	0.291	0.283	0.238	0.241	0.193	-0.064	-0.066	-0.066	-0.013	-0.041	-0.118	-0.124	-0.161	-0.167	-0.149	
398	0.256	0.238	0.238	0.231	0.150	-0.067	-0.066	-0.066	-0.016	-0.041	-0.150	-0.130	-0.161	-0.152	-0.165	
400	0.272	0.257	0.235	0.234	0.172	-0.067	-0.066	-0.066	-0.016	-0.045	-0.137	-0.165	-0.193	-0.145	-0.130	
402	0.292	0.283	0.248	0.237	0.153	-0.064	-0.062	-0.063	-0.019	-0.041	-0.165	-0.134	-0.130		-0.123	
404	0.278	0.235	0.238	0.234	0.201	-0.064	-0.066	-0.066	-0.023	-0.045	-0.162	-0.165	-0.127	-0.190	-0.143	
406	0.251	0.257	0.248	0.272	0.076	-0.067	-0.066	-0.066	-0.023	-0.045	-0.143	-0.121	-0.130		-0.186	
408	0.265	0.280	0.282	0.237	0.152	-0.064	-0.066	-0.066	-0.023	-0.041	-0.162	-0.153	-0.130	•	-0.139	
410	0.288	0.289	0.267	0.231	0.161	-0.067	-0.066	-0.066	-0.023	-0.041	-0.162	-0.118	-0.139	-0.161	-0.165	
412	0.292	0.251	0.244	0.237	0.160	-0.067	-0.066	-0.066	-0.029	-0.045	-0.143	-0.140	-0.142	•	-0.133	
414	0.260	0.273	0.279	0.237	0.298	-0.067	-0.066	-0.066	-0.029	-0.045	-0.153	-0.111	-0.155	-0.152	-0.168	

ļ	=	12	13	14	15	10	07	03	8	05	E1	E2	E3	E4	E5	
	0.292	0.299	0.257	0.266	0.182	-0.067	-0.066	-0.063	-0.029	-0.045	-0.140	-0.127	-0.152	-0.183	-0.134	
	0.248	0.251	0.292	0.260	0.150	-0.067	-0.066	-0.066	-0.029	-0.045	-0.156	-0.149	-0.168	-0.180	-0.170	
	0.275	0.273	0.251	0.234	0.185	-0.067	-0.066	-0.069	-0.032	-0.045	-0.140	-0.111	-0.152	-0.136	-0.130	
	0.253	0.292	0.276	0.237	0.147	-0.067	-0.066	-0.066	-0.032	-0.048	-0.137	-0.130	-0.155	-0.139	-0.151	
	0.265	0.242	0.235	0.244	-0.023	-0.067	-0.066	-0.066	-0.035	-0.045	-0.121	-0.156	-0.168	-0.199	-0.125	
	0.294	0.264	0.260	0.231	0.150	-0.067	-0.069	-0.069	-0.035	-0.045	-0.159	-0.118	-0.168	-0.161	-0.159	
	0.249	0.283	0.235	0.234	0.155	-0.067	-0.069	-0.069	-0.035	-0.048	-0.150	-0.124	-0.184	-0.158	-0.128	
	0.278	0.238	0.295	0.231	0.241	-0.067	-0.066	-0.066	-0.038	-0.045	-0.140	-0.134	-0.187	-0.136	-0.162	
	0.246	0.261	0.263	0.282	0.150	-0.067	-0.066	0.069	-0.038	-0.045	-0.165	-0.146	-0.190	-0.142	-0.133	
	0.278	0.286	0.235	0.231	0.193	-0.067	-0.066	-0.069	-0.038	-0.045	-0.165	-0.159	-0.174	-0.142	-0.155	
	0.246	0.238	0.267	0.234	0.171	-0.045	-0.066	-0.069	-0.038	-0.045	-0.156	-0.121	-0.127	-0.174	-0.146	
	0.286	0.261	0.228	0.234	0.160	-0.067	-0.069	-0.069	-0.042	-0.045	-0.159	-0.108	-0.136	-0.158	-0.147	
	0.257	0.283	0.257	0.234	0.157	-0.067	-0.069	-0.069	-0.042	-0.045	-0.165	-0.137	-0.155	-0.158	-0.146	
	0.245	0.242	0.289	0.269	0.182	-0.064	-0.062	-0.066	-0.042	-0.041	-0.121	-0.118	-0.193	-0.145	-0.162	
	0.268	0.264	0.228	0.231	0.166	-0.067	-0.066	-0.069	-0.048	-0.045	-0.159	-0.134	-0.177	-0.148	-0.123	
	0.243	0.289	0.232	0.272	0.188	-0.067	-0.066	-0.069	-0.048	-0.048	-0.162	-0.162	-0.123	-0.183	-0.165	
	0.281	0.245	0.235	0.228	0.153	-0.070	-0.069	-0.069	-0.048	-0.048	-0.140	-0.127	-0.142	-0.145	-0.147	
	0.262	0.276	0.241	0.231	0.222	-0.067	-0.066	-0.069	-0.051	-0.048	-0.159	-0.153	-0.171	-0.158	-0.130	
	0.265	0.238	0.238	0.234	0.166	-0.070	-0.069	-0.069	-0.051	-0.045	-0.162	-0.118	-0.117	-0.180	-0.149	
	0.299	0.270	0.282	0.231	0.152	-0.073	-0.066	-0.069	-0.051	-0.048	-0.134	-0.146	-0.133	-0.167	-0.173	
	0.280	0.289	0.279	0.253	0.188	-0.067	-0.069	-0.069	-0.051	-0.048	-0.159	-0.114	-0.158	-0.158	-0.170	
	0.268	0.242	0.263	0.272	0.172	-0.070	-0.066	-0.069	-0.051	-0.045	-0.146	-0.143	-0.168	-0.161	-0.168	
	0.251	0.273	0.248	0.234	0.212	-0.067	-0.069	-0.069	-0.051	-0.048	-0.124	-0.114	-0.139	-0.155	-0.168	
	0.257	0.296	0.289	0.247	0.237	-0.067	-0.069	-0.069	-0.051	-0.048	-0.162	-0.149	-0.161	-0.199	-0.164	
	0.299	0.261	0.257	0.244	0.193	-0.067	-0.069	-0.069	-0.051	-0.048	-0.162	-0.121	-0.180	-0.129	-0.131	
	0.281	0.286	0.232	0.234	0.146	-0.067	-0.069	-0.069	-0.048	-0.048	-0.150	-0.156	-0.117	-0.142	-0.144	
	0.273	0.245	0.263	0.231	0.155	-0.067	-0.069	-0.069	-0.048	-0.048	-0.150	-0.143	-0.139	-0.158	-0.159	
	0.275	0.273	0.248	0.237	0.161	-0.067	-0.069	-0.069	-0.048	-0.048	-0.172	-0.124	-0.174	-0.202	-0.165	
	0.270	0.292	0.238	0.234	0.169	-0.070	-0.069	-0.073	-0.048	-0.048	-0.134	-0.134	-0.127	-0.145	-0.136	
	0.284	0.267	0.276	0.253	0.182	-0.064	-0.066	-0.066	-0.054	-0.048	-0.153	-0.137	-0.142	-0.193	-0.151	

881/RPT0064 10/1/92 9:21 am sma

Table 3	Relative Water Column Heights	Water Co	lumn !	- - - - - - - -	(f)										Page 9 of 10	of 10
Time	=	12	13	41	15	10	07	Well 03	04	05	E1	E2	E3	E4	ES	
													:	1	•	
7.7	0.273	0.292	0.241	0.279	0.165	-0.067	-0.066	-0.069	-0.051	-0.048	-0.115	-0.121	-0.155	-0.177	-0.125	
27	0.50	120	0.770	0.231	0 184	-0.067	-0.066	-0.073	-0.051	-0.048	-0.124	-0.162	-0.190	-0.180	-0.134	
8/8	7/7/0	0.292	0.220	0.228	0.153	-0.067	-0.066	-0.069	-0.051	-0.048	-0.169	-0.140	-0.136	-0.152	-0.154	
480	0.280	0.203	0.636	077.0	0.130	0.00	0.066	0900	-0 048	-0.048	-0.162	-0.121	-0.184	-0.196	-0.191	
482	0.283	0.235	0.248	0.237	0.179	-0.007	20.020	0.00	0.05	0.048	-0.137	-0.108	-0.130	-0.171	-0.131	
<b>28</b>	0.284	0.264	0.254	0.237	0.70	0.0/0	-0.003	6,0,0		970		0 146	1910	-0.133	-0.151	
486	0.300	0.292	0.257	0.234	0.174	-0.067	-0.069	-0.00	-0.048	-C.C46	-0.110	0.137	130	190	-0.173	
488	0.286	0.257	0.263	0.250	0.225	-0.067	-0.069	-0.069	-0.048	-0.048	-i.103	-0.127	201.0		0.126	
490	0.246	0.286	0.216	0.231	0.152	-0.070	-0.069	-0.073	-0.048	-0.048	-0.162	-0.118	-0.132	-0.193	-0.130	
403	0.257	0.248	0.263	0.237	0.172	-0.067	-0.069	-0.066	-0.048	-0.051	-0.140	-0.108	-0.117	-6.180	-0.149	
764	0.220	0.276	0.238	0.231	0.149	-0.070	-0.069	-0.069	-0.048	-0.051	-0.162	-0.165	-0.149	-0.161	7/1/0-	
<u> </u>	0.200	0.242	0.257	0.237	0.177	-0.067	-0.069	-0.073	-0.051	-0.054	-0.140	-0.162	-0.120	-0.174	-0.151	
400	0.256	0.270	0.241	0.234	0.168	-0.070	-0.069	-0.073	-0.051	-0.051	-0.165	-0.111	-0.177	-0.161	-0.141	
0 2	0.230	0.235	0.286	0.234	0.163	-0.070	-0.069	-0.073	-0.051	-0.051	-0.153	-0.118	-0.149	-0.190	-0.151	
3 5	0.23	0.253	0.263	0.234	0.152	-0.070	-0.069	-0.076	-0.051	-0.054	-0.124	-0.143	-0.136	-0.142	-0.172	
700	0 292	0.242	0.235	0.237	0.169	-0.070	-0.069	-0.076	-0.051	-0.054	-0.124	-0.114	-0.130	9. iso	-0.134 6.134	
\$ <b>\$</b>	0.262	0.296	0.286	0.241	0.179	-0.067	-0.066	-0.069	-0.051	-0.057	-0.131	-0.137	0.184	-0.196	-0.162	
8 8	0.260	0.283	0.235	0.282	0.195	-0.070	-0.069	-0.076	-0.051	-0.057	-0.165	-0.124	-0.136	0.180	-0.133	
5 <b>5</b>	0.268	0.267	0.257	0.228	0.199	-0.070	-0.069	-0.076	-0.051	-0.054	-0.121	-0.124	0.180	-0.145	Ć.1/0	
512	0.280	0.254	0.286	0.231	0.149	-0.070	-0.069	-0.076	-0.051	-0.057	-0.165	-0.108	-0.161	-0.139	-0.131	
514	0.276	0.245	0.232	0.231	0.155	-0.070	-0.069	-0.076	-0.051	-0.057	-0.134	-0.102	-0.133	-0.142	5.15	
216	0.251	0.283	0.238	0.234	0.157	-0.070	-0.069	-0.076	-0.051	-0.054	-0.153	-0.140 0.191	-0.155	-0.1/1	-0.139	
518	0.260	0.286	0.248	0.263	0.152	-0.073	-0.072	-0.076	-0.051	-0.054	-0.163	-0.121	-0.140	100	0.120	
\$20	0.275	0.267	0.254	0.234	0.215	-0.070	-0.072	-0.076	-0.05	-0.U5/	-0.134	-0.149	0.133	0.177	21.0	
525	0.297	0.251	0.254	0.275	0.177	-0.070	-0.072	-0.076	-0.051	-0.057	-0.131	-0.149	-0.133	-0.130	-0.173 -	
776	0.246	0.292	0.251	0.272	0.153	-0.070	-0.072	-0.076	-0.051	-0.057	-0.156	-0.143	-0.133		-U.181	
526	0.268	0.273	0.244	0.234	0.166	-0.070	-0.069	-0.076	-0.051	-0.057	-0.165	-0.137	-0.146		-c. 100	
220	0.284	0.257	0.238	0.231	0.155	-0.073	-0.069	-0.076	-0.051	-0.060	-0.172	-0.130	-0.161		-0.16/	
520	0.20	0.238	0.286		0.161	-0.073	-0.072	-0.076	-0.051	-0.057	-0.150	-0.114	-0.155	-	-0.168	
230	7960	0.276	0.270		0.158	-0.073	-0.072	-0.079	-0.048	-	•	-0.114	-0.146		-0.159	
766	0.260	0.251	0.251	0.231	0.161	-0.073	-0.072	-0.079	-0.051	-0.057	-0.121	-0.114	-0.158	-0.186	-0.162	
5	200															

Table 3	Table 3 Relative Water Column Heigh	Water C	olumn	Heights	(ft)										Page 10 of 10
Time	11	12	13	14	15	10	02	Well O3	04	05	E	E2	E3	E4	ES
536	0.253	0.289	0.282	0.231	0.169	-0.073	-0.072	-0.079	-0.051	-0.057	-0.162	8110	061 0-	6. 8.	-0.168
538	0.249	0.264	0.257	0.275	0.177	-0.070	-0.072	-0.076	-0.051	-0.057	-0.169	-0.118	-0.190	-0.148	-0.176
540	0.272	0.254	0.267	0.298	0.165	-0.073	-0.072	-0.076	-0.051	-0.057	-0.153	-0.118	-0.123	0610	0.160
mean	0.271	0.263	0.259	0.258	0.172	-0.058	-0.060	-0.055	0.005	-0.031	-0.147	-0.132	-0.154	-0.160	-0.147
stddev	0.018	0.020	0.022	0.036	0.028	0.009	0.007	0.014	0.044	0.017	0.016	0.018	0.024	0.020	0.017

881/RPT0064 10/1/92 9:21 am sma

Table 4 Summary of Relative Water Column Heights (measurements in feet) Page 1 of 1

Injection Wells	<u>I1</u>	12	13	14	15
(Static)	3.871	3.972	4.091	4.115	4.182
Relative mean	+0.271	+0.263	+0.259	+0.258	+0.172
Standard deviation	±0.018	±0.020	±0.023	±0.036	±0.028
Estimated relative high	+0.30	+0.29	+0.29	+0.28	+0.22
Estimated relative low	+0.25	+0.23	+0.24	+0.23	+0.15
Estimated variation	0.05	0.06	0.05	0.05	0.07
Observation Wells	O1	O2	O3	04	O5
(Static)	3.793	3.656	3.928	3.911	3.950
Relative mean	-0.058	-0.060	-0.055	+0.005	-0.031
Standard deviation	±0.009	±0.007	±0.014	±0.044	±0.017
Extraction Wells	E1	E2	E3	E4	E5
(Static)	3.808	3.566	3.743	3.969	3.860
Relative mean	-0.147	-0.132	-0.154	-0.160	-0.147
Standard deviation	±0.016	±0.018	±0.024	±0.020	±0.017
Estimated relative high	-0.12	-0.11	-0.12	-0.13	-0.13
Estimated relative low	-0.16	-0.16	-0.18	-0.18	-0.17
Estimated variation	0.04	0.05	0.06	0.05	0.04
Gradient	I1-E1	I2-E2	I3-E3	I4-E4	15-E5
Mean Ah	0.419	0.395	0.413	0.417	0.320
ΔL	4.78	5.04	5.85	5.05	4.75
Mean gradient (\Delta h/\Delta L)	0.0877	0.0783	0.0705	0.0826	0.0672

**4 5** 

112 117 117 117 117 117 117

Tracer

Page 1 of 3

Table 5 Bromide Tracer Results (mg/l)

881/RPT0064 10/1/92 9:35 am sma

(mg/l)
ニー
Resul
Tracer Result
Bromide
9
Table

Page 2 of 3

Table 5	Bromide Tracer Results (ing.)	Tracer	Kesults (	(1/8/1)			How								
			Î	ï	13	Time	well E4	Time	ES.	Time	13	Time	03	Time	Tracer
Time	E	Time	E2	11116	3			8	300	276	202	155	423		
8	ž	88	138	120	388	98	37.1	90	3			į	144		
79	8	3 ;		970	405	93	327	81	300	265	571	7/1	Ī		
<b>%</b>	98	<b>8</b> 8		}	3	. 00	141	96	300	294	547	200	423		
88	86	91	145	152	674		, ,	. 8	300	325	547	727	405		
86	103	95	<u>2</u>	171	423		330	£ ;		764	247	244	460		
3	m	16	158	203	405	119	341	110	313	5	; ;	100	101		
<b>.</b>			173	223	405	139	341	118	313	427	202	167	101		
24	/01		1 5	960	441	151	356	138	313	466	547	326	547		
103	117	105	7/1	607		191	341	150	300	493	296	365	202		
901	111	109	179	292	<u>‡</u>	101		37.1	300			427	481		
109	117	116	179	322	460	204	312					466	202		
	117	81	187	361	460	223	326	202	37/			3	107		
114		2			760	258	327	222	300			474	481		
121	127	120	195	474	904	007		980	787			543	524		
129	138	131	204	462	460	293	388	967	107						
	979	134	213	490	481	322	405	\$2	/87						
132	138	<u> </u>	213	542	524	360	341	323	187						
138	138	741	666	!		423	423	360	707						
141	145	153	767			461	388	422	287						
145	121	191	747			489	372	430	275						
156	<u> 2</u>	201	737			240	372	488	275						
171	<b>1</b> 5	225	232			ξ	<u>.</u>	539	253						
200	172	260	253												
228	172	291	287												
262	195	321	275												
290	213	362	287												

Page 3 of 3		Tracer							
Page '		Time							
		õ	3						
		12 Time Of Time Tracer							
		17	2						
		ï	E) IIIIE						
		1	3						
		i	Time						
		Well	E						
			E3 Time						
			E3						
	(mg/r)		Time						
	Kesuits		E2	300	300	327	341		
•	Table 5 Bromide Tracer Results (mg/1)		Time	426	443	491	541		
	Bromid		EI	204	195	204	213	232	264
	Table 5		Time	320	363	428	464	492	540





U.S. DEPARTMENT OF ENERGY Rocky Flats Plant Golden, Colorado

> 081 HILLSIDE AREA OPERABLE UNIT NO. 1 PHASE III RFI/RI REPORT

Multiple-Well Tracer Test-Gradient for Wells 11, 01, E1 Attachment B2-10, Figure 2

JUNE 1802



U.S. DEPARTMENT OF ENERGY Rocky Flats Plant Golden, Colorado

> 861 HILLSIDE AREA OPERABLE UNIT NO. 1 PHASE III RFI/RI REPORT

Multiple-Well Tracer Test-Gradient for Wells 12, C2, E2 Attachment B2-10, Figure 3

JUNE 1892



U.S. DEPARTMENT OF ENERGY Rocky Flats Plant Golden, Colorado

> 881 HILLSIDE AREA OPERABLE UNIT NO. 1 PHASE III RFI/RI REPORT



Multiple-Vell Tracer Test-Gradient for Wells 13, 03, E3 Attachment B2-10, Figure 4



*Pressure transducer for Well 04 appears to have malfunctioned.

U.S. DEPARTMENT OF ENERGY Rocky Flats Plant Golden, Colorado

881 HILLSIDE AREA OPERABLE UNIT NO. 1 PHASE III RFI/RI REPORT

Multiple-Vell Tracer Test-Gradient for Vells 14, 04, E4 Attachment B2-10, Figure 5

JUNE 199



U.S. DEPARTMENT OF ENERGY Rocky Flats Plant Golden. Colorado

> 881 HILLSIDE AREA OPERABLE UNIT NO. 1 PHASE III RFI/RI REPORT

Multiple-Well Tracer Test-Gradient for Wells 15, 05, 25 Attachment B2-10, Figure 6

ADE 100

# Attachment B2-11 Surveyed Well Locations

Phase III RFI/RI Report

# Surveyed Well Locations

Well Number	Northings (ft)	Eastings (ft)
	SINGLE-WELL	
39891	747694.502	2085490.0741
	MULTIPLE-WELL ARRAY	
<b>I</b> 1	747688.1713	2085472.3106
I2	747690.8963	2085472.4142
13	747693.1271	2085472.5959
14	747695.3232	2085473.2138
15	747697.8299	2085473.7358
O1	747688.0972	2085474.5671
O2	747690.3744	2085475.3225
O3	747692.5909	2085474.9550
O4	747694.7528	2085476.2696
O5	747697.5084	2085475.7735
E1	747687.6940	2085477.0626
E2	747690.1336	2085477.4005
E3	747692.2385	2085478.3770
E4	747694.6276	2085478.2111
E5	747696.8983	2085478.3975

## APPENDIX B3

### **GROUNDWATER ELEVATION DATA**

Groundwater elevations were calculated from data for wells sampled within OU1 from first quarter 1989 through second and third quarters 1992. July 1992 is the most recent quarter for which data for wells in OU1 have been input to the Rocky Flats Environmental Database System (RFEDS) as of September 1992. Water level data are currently collected on a monthly basis under the routine monitoring program at RFP. Data initially were reported as measurements of depth to groundwater from the elevation at the top of the well casing. To determine the groundwater elevation, the measured depth to groundwater was subtracted from the surveyed well casing elevation. Appendix A3 provides surveyed well casing elevations for newly installed wells.

Attachment B3-1 presents tables showing well number, sample date, groundwater elevation, and depth to groundwater for Phase I, II, and Phase III monitoring wells. The depth to groundwater is presented as a positive number representing the depth to groundwater from the top of the well casing. If a well was dry at the time of measuring, the depth to groundwater is presented as "Dry Well." Often, the depth to groundwater is represented as "NA." In these cases, the depth to groundwater was not measured because there was an obstruction at the well location that prevented the samplers from taking a depth to groundwater measurement.

Attachment B3-2 presents groundwater hydrographs for monitoring wells installed during the Phase I, II, and III remedial investigations at OU1. Groundwater elevations are plotted by time versus month. Occasionally, water levels were collected more than once a month. Where multiple water levels exist for a month, an average water level and corresponding elevation are calculated. The hydrographs presented provide data useful in assessing and interpreting seasonal water table fluctuations. Additionally, hydrographs are useful in solving groundwater mass balance problems concerning major cation/anion chemistry and the presence of nonaqueous phase liquids in a saturated porous media.

Attachment B3-1 Groundwater Elevation Data Table (1989-1992)

> Phase III RFI/RI Report

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
0974 0974 0974	08/29/83 11/22/83 03/22/85	4.5 7 7.14	5921.7 5919.2 5919.1
0974	08/27/86	10.11	5916.1
0974 0974	08/28/86 08/29/86	15.35 14	5910.9 5912.2
0974	01/15/87	10.71	5915.5
0974 0974	03/02/87 03/09/87	10.38 10.13	5915.8 5916.1
0974	05/08/87	6.29	5919.9
0974	06/24/87	6.99	5919.2
0974 0974	07/01/87 07/08/87	6.7 6.6	5919.5 5919.6
0974	08/11/87	7.3	5918.9
0974 0974	09/29/87 11/09/87	8.4 8.8	5917.8 5917.4
0974	12/21/87	8.8	5917.4
0974	01/11/88	7.9	5918.3
0974 0974	02/03/88 02/04/88	7.4 7.4	5918.8 5918.8
0974	03/21/88	7.4	5918.8
0974 0974	04/18/88 05/16/88	6.5 6.9	5919.7 5919.3
0974	06/15/88	7.8	5918.4
0974	08/18/88	8.2	5918.0
0974 0974	09/15/88 10/22/88	8.4 8.7	5917.8 5917.5
0974	11/15/88	8.9	5917.3
0974 0974	12/15/88 01/15/89	9.1 9.9	5917.1 5916.3
0974	02/14/89	9.9	5916.3
0974	03/27/89	9.3	5916.9
0974 0974	04/27/89 05/15/89	8 9	5918.2 5917.2
0974	05/18/89	9.5	5916.7
0974 0974	06/29/89 08/22/89	8.6 15.96	5917.6 5910.2
0974	08/25/89	10.92	5915.3
0974	10/26/89	9.3	5916.9
0974 0974	01/18/90 02/05/90	6.69 9.78	5919.5 5916.4
0974	04/13/90	5.33	5920.9

Note: The absence of a water level indicates that the data were not available from RFEDS.

 $[\]star$  Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
0974 0974 0974 0974 0974 0974 0974 0974	05/31/90 07/12/90 08/09/90 10/01/90 10/15/90 01/03/91 04/01/91 05/13/91 07/05/91 08/14/91 10/03/91 12/09/91 01/03/92 02/13/92 04/01/92 05/05/92 09/13/86 10/13/86 11/26/86 01/01/87 05/08/87 06/02/87 06/02/87 06/02/87 07/07/87 07/14/87 08/06/87 11/09/87 12/18/87 01/09/88 02/04/88 02/24/88 03/07/88 04/04/88 05/02/88 04/04/88 05/02/88 06/15/88 08/18/88 09/15/88 10/22/88 11/15/88 01/15/89	5.91 6.99 7.24 8.15 8.28 8.93 9.18 8.93 9.60 9.74 9.67 7.74 8.57 DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	5920.3 5919.2 5919.0 5918.1 5917.3 5917.3 5917.3 5917.0 5916.6 5916.5 5916.5 5916.5 5916.7 DRY DRY DRY DRY DRY DRY DRY DRY
5886	02/14/89	DRY	DRY

Note: The absence of a water level indicates that the data were not available from RFEDS.

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

5886         03/24/89         5.9         5891.7           5886         04/27/89         DRY         DRY           5886         05/19/89         DRY         DRY           5886         06/29/89         DRY         DRY           5886         07/28/89         DRY         DRY           5886         08/25/89         DRY         DRY           5886         09/15/89         5.9         5891.7           5886         11/28/89         DRY         DRY           5886         01/16/90         DRY         DRY           5886         04/12/90         DRY         DRY           5886         05/25/90         DRY         DRY           5886         07/10/90         DRY         DRY           5886         07/30/90         DRY         DRY	Location	Date Measured	Water Level(ft)	Water Elevation(ft)	
5886         10/04/90         DRY         DRY           5886         10/05/90         DRY         DRY           5886         01/03/91         DRY         DRY           5886         04/02/91         DRY         DRY           5886         07/02/91         DRY         DRY           5886         10/03/91         DRY         DRY           5886         01/03/92         6.05         5891.6           5886         02/19/92         5.95         5891.7           5886         04/03/92         5.88         5891.7           5886         05/08/92         DRY         DRY           5886         07/01/92         6.37         5891.2           5886         07/01/92         6.37         5891.2           5886         08/10/92         DRY         DRY           5886         01/19/93         6.08         5891.3           5886         01/19/93         6.08         5891.3           5886         04/07/93         5.76         5891.8           5886         06/28/93         6.35         5891.3           5886         07/08/93         6.42         5891.2           5986 <td< td=""><td>5886 5886 5886 5886 5886 5886 5886 5886</td><td>03/24/89 04/27/89 05/19/89 06/29/89 07/28/89 08/25/89 09/15/89 11/28/89 01/16/90 04/12/90 05/25/90 07/10/90 07/30/90 10/04/90 10/05/90 01/03/91 01/03/91 01/03/91 01/03/92 02/19/92 04/03/92 05/08/92 07/01/92 08/10/92 10/01/92 01/19/93 04/07/93 06/28/93 07/08/93 09/30/86 10/03/86 10/03/86 10/03/86 10/03/86 10/03/86 10/03/86 10/03/86 10/03/86 10/03/86 10/03/86 10/03/86 10/03/86 10/03/86 10/03/86 10/03/86 10/03/86</td><td>5.9 DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY</td><td>5891.7 DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY</td><td></td></td<>	5886 5886 5886 5886 5886 5886 5886 5886	03/24/89 04/27/89 05/19/89 06/29/89 07/28/89 08/25/89 09/15/89 11/28/89 01/16/90 04/12/90 05/25/90 07/10/90 07/30/90 10/04/90 10/05/90 01/03/91 01/03/91 01/03/91 01/03/92 02/19/92 04/03/92 05/08/92 07/01/92 08/10/92 10/01/92 01/19/93 04/07/93 06/28/93 07/08/93 09/30/86 10/03/86 10/03/86 10/03/86 10/03/86 10/03/86 10/03/86 10/03/86 10/03/86 10/03/86 10/03/86 10/03/86 10/03/86 10/03/86 10/03/86 10/03/86 10/03/86	5.9 DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	5891.7 DRY	

Note: The absence of a water level indicates that the data were not available from RFEDS.

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date	Water	Water
	Measured	Level(ft)	Elevation(ft)
5986 5986 5986 5986 5986 5986 5986 5986	07/06/87 08/06/87 09/02/87 10/05/87 11/09/87 12/16/87 01/09/88 02/04/88 02/24/88 03/07/88 04/04/88 05/02/88 06/15/88 07/15/88 07/15/88 10/22/88 11/15/88 11/15/88 12/15/88 01/15/89 02/13/89 03/24/89 05/19/89 04/12/90 05/01/90 07/11/90 07/11/90 07/11/90 07/11/90 07/18/90 10/01/90 10/04/90 11/07/90 12/06/90 01/02/91 03/14/91 04/01/91 05/07/91 05/09/91 06/05/91	25.2 24.5 26.2 26.3 26.2 26.3 26.7 25.3 25.1 24.9 25.3 26.4 26.6 26.7 26.9 26.8 26.9 26.7 26.9 26.7 26.9 26.7 26.9 26.7 26.9 26.7 26.9 26.7 26.9 26.6 26.7 26.9 26.6 26.7 25.74 25.74 25.85 26.45 26.45 26.66 26.7 25.74 25.85 26.66 26.7 25.74 25.85 26.66 26.7 25.74 25.85 26.66 26.7 25.74 25.85 26.66 26.7 25.74 25.85 26.66 26.7 25.74 25.85 26.66 26.7 25.74 25.85 26.66 26.76 26.66 26.76 26.66 26.76 26.66 26.76 26.66 26.76 26.66 26.76 26.67 25.78 26.66 26.78 26.66 26.78 26.66 26.78 26.67 25.85 26.66 26.78 26.66 26.78 26.66 26.78 26.66 26.78 26.66 26.78 26.66 26.78 26.66 26.78 26.66 26.78 26.66 26.78 26.66 26.78 26.66 26.78 26.66 26.78 26.66 26.78 26.66 26.78 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 26.89 2	5890.100 5890.800 5889.300 5889.300 5889.300 DRY 5889.630 5890.200 5890.200 5890.300 5890.300 5890.300 5889.200 5888.700 5888.400 5888.400 5888.400 5889.100 5889.100 5889.900 5889.100 5889.900 5889.100 5889.900 5888.600 5889.100 5889.900 5888.600 5889.100 5889.900 5888.600 5889.100 5889.900 5889.900 5889.900 5889.900 5889.900 5889.900 5889.900 5889.450 5889.450 5889.450 5888.620 5888.620 5888.620 5888.620 5888.700 5888.700 5888.800 5889.480 5889.480 5889.480 5889.000
5986	07/02/91	25.65	5889.650
5986	08/06/91	26.38	5888.920
5986	08/21/91	26.39	5888.910

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
5986 5986 5986 5986 5986R 5986R 5986R 5986R 5986R 5986R 5986R 5986R 6286 6286 6286 6286 6286 6286 6286 6	09/03/91 10/02/91 11/05/91 11/14/91 12/07/91 06/06/89 07/25/89 07/25/89 07/28/89 08/25/89 09/13/89 10/17/89 01/18/90 03/20/90 10/06/86 10/07/86 10/07/86 10/13/86 10/13/86 10/13/86 10/15/86 10/16/86 10/15/86 10/16/86 11/26/86 01/01/87 05/07/87 06/02/87 06/02/87 06/02/87 10/05/87 11/09/87 12/01/87 12/16/87 01/08/88 02/24/88 03/07/88 04/04/88 05/16/88 06/15/88 07/15/88	26.36 26.62 26.83 26.92 26.55 25.52 24.45 26.25 26.46 26.58 26.51 26.59 27.91 27.98 28.03 27.99 27.92 27.96 27.92 27.96 27.16 26.5 25.7 26.5 25.7 26.5 25.7 26.5 25.7 26.5 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.9 27.	5888.940 5888.680 5888.470 5888.380 5888.750 5896.140 5897.210 5895.400 5895.200 5895.200 5895.200 5895.200 5875.2 5875.2 5875.2 5875.2 5875.2 5875.1 5875.2 5875.1 5875.2 5875.1 5875.2 5875.1 5875.2 5875.1 5877.1 5877.1 5877.1 5877.1 5877.1 5877.2 5877.1 5877.2 5877.2 5877.2 5877.2 5877.2 5877.2 5877.2 5877.2 5877.2 5877.2
6286	08/18/88	25.2	5877.9

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
6286 6286 6286 6286 6286 6286 6286 6286	09/15/88 10/22/88 11/15/88 11/15/88 01/15/89 02/27/89 03/24/89 04/25/89 05/19/89 06/10/89 06/29/89 07/14/89 07/27/89 08/18/89 09/13/89 10/19/89 01/16/90 02/16/90 04/16/90 06/13/90 07/12/90 09/18/90 11/20/90 01/07/91 01/09/91 01/09/91 01/09/91 01/09/91 01/09/91 01/09/91 01/09/91 01/09/91 01/09/91 01/09/91 01/09/91 01/09/91 01/06/92 02/11/92 04/03/92 07/08/92 07/30/92 11/09/92 01/20/93	25.8 26.1 26.5 26.6 27.3 27.4 27.9 27.9 27.9 27.9 27.73 27.61 27.34 27.02 27.3 26.93 25.58 25.75 26.77 26.73 27.85 27.85 27.85 27.85 27.85 27.85 27.85 27.85 27.85 27.85 27.85 27.72 26.17 27.38 27.38 27.31 27.38 27.31 27.38 27.31 27.38 27.31 27.31 27.32 26.73 27.31 27.31 27.32 27.31 27.32 27.31 27.32 27.31 27.32 27.31 27.32 27.33 27.31 27.31 27.32 27.31 27.32 27.33 27.34 27.35 27.37 27.38 27.37 27.38 27.37 27.38 27.37 27.38 27.37 27.38 27.37 27.38 27.37 27.38 27.37 27.38 27.37 27.38 27.38 27.37 27.38 27.37 27.38 27.37 27.38 27.37 27.38 27.38 27.37 27.38 27.37 27.38 27.37 27.38 27.37 27.38 27.77	5877.3 5876.6 5876.5 5876.5 5875.8 5875.2 5875.2 5875.2 5875.2 5875.2 5875.6 5875.6 5875.7 5875.8 5876.1 5877.4 5877.4 5877.4 5877.4 5877.4 5877.4 5877.5 5877.4 5877.6 5877.6 5877.6 5877.6 5877.6 5877.6 5877.6 5877.6 5877.6 5877.6 5877.6 5877.6 5875.8 5875.8 5875.8 5875.8 5875.6 5875.8 5875.6 5875.8 5875.6 5875.6 5875.6 5875.6 5875.6
6286	03/11/93	28.17	5875.0

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
6286 6286 6286 6286 6386 6386 6386 6386	04/06/93 05/10/93 06/18/93 10/06/86 10/13/86 11/26/86 01/01/87 05/07/87 06/02/87 06/02/87 06/24/87 07/06/87 08/06/87 09/02/87 11/09/87 12/01/87 12/16/87 01/08/88 02/04/88 02/04/88 02/24/88 03/07/88 04/04/88 06/15/88 07/15/88 10/22/88 11/15/88 10/22/88 11/15/88 10/22/88 11/15/88 10/22/88 11/15/88 09/15/89 06/15/89 06/19/89 06/29/89 06/29/89 07/14/89 07/26/89 08/18/89 09/13/89	28.20 28.64 28.70 DRY	5874.9 5874.5 5874.4 5874.4 DRY
6386 6386 6386 6386 6386 6386 6386 6386	11/15/88 12/15/88 01/15/89 02/13/89 03/24/89 04/25/89 05/19/89 06/10/89 06/29/89 07/14/89 07/26/89 08/18/89	DRY 16.8 DRY	DRY 5885.2 DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
6386 6386 6386 6386 6386 6386 6386 6386	01/16/90 04/16/90 06/13/90 07/12/90 08/09/90 09/12/90 09/19/90 10/03/90 11/08/90 11/27/90 12/04/90 01/07/91 04/05/91 05/03/91 06/11/91 07/03/91 08/08/91 10/03/91 11/05/91 11/05/91 11/05/91 11/05/91 11/05/91 11/05/91 11/05/92 02/03/92 03/05/92 04/03/92 04/03/92 05/05/92 06/10/92 07/02/92 07/30/92 07/02/92 10/01/92 11/04/92 11/04/92 11/04/92 12/07/92 01/20/93 03/30/93 04/06/93 05/10/93	DRY 8.60 10.60 15.39 15.50 15.67 16.72 16.67 DRY	5893.4 5891.4 5886.6 5886.5 5886.3 5885.2 5885.3 DRY DRY DRY DRY DRY DRY DRY DRY
6386	06/17/93	16.76	5885.2

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date	Water	Water
	Measured	Level(ft)	Elevation(ft)
6386 6486 6486 6486 6486 6486 6486 6486	07/02/93 09/13/86 10/13/86 11/26/86 01/01/87 05/08/87 06/02/87 06/02/87 06/24/87 07/16/87 07/16/87 08/06/87 11/09/87 11/09/87 12/01/87 02/04/88 06/15/88 07/15/88 08/18/88 09/15/88 10/22/88 11/15/88 10/22/88 11/15/88 10/22/88 11/15/89 02/14/89 03/24/89 04/27/89 05/19/89 05/19/89 05/26/89 07/10/89 09/14/89 10/16/89 01/16/90 02/08/90 04/12/90 05/25/90 07/10/90 10/05/90	16.83 DRY DRY 6.98 7.27 7.02 9.6 9.5 DRY 7.7 10.6 10.6 10.5 9.3 6.94 7.6 9.5 9.5 10 10.3 10.8 10.7 10.5 10.3 6.8 7.7 7.6 8.5 10.7 DRY 11.01 10.91 6.81 7.66 10.94 DRY 11.12 DRY	5885.1  DRY  DRY  5834.0  5833.7  5834.0  5831.4  5831.5  DRY  5833.3  5830.4  5830.4  5830.4  5830.5  5831.7  5834.1  5833.4  5831.5  5831.5  5831.5  5831.0  5830.7  5830.2  5830.3  5830.7  5830.2  5830.7  5830.2  5830.3  5830.7  5834.2  5833.3  5830.1  DRY  5830.0  5830.1  5830.1  DRY  5829.9  DRY
6486	01/02/91	DRY	DRY
6486	04/01/91	DRY	DRY

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date	Water	Water
	Measured	Level(ft)	Elevation(ft)
Location  6486 6486 6486 6486 6486 6486 6486 64			
6886	06/15/88	3.4	5887.0
6886	07/15/88	4	5886.4
6886	08/18/88	DRY	DRY

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
Cocation  6886 6886 6886 6886 6886 6886 6886 6	09/15/88 10/22/88 11/15/88 11/15/88 12/15/88 01/15/89 02/14/89 03/24/89 04/27/89 05/19/89 06/29/89 07/28/89 08/25/89 09/15/89 11/21/89 01/16/90 02/13/90 04/12/90 05/23/90 07/10/90 08/01/90 11/02/90 11/02/91 03/18/91 04/02/91 05/14/91 07/02/91 07/02/91 10/03/92 02/25/92 04/01/92 05/15/92 07/01/92 08/06/92 10/01/92 01/19/93 03/10/93 04/07/93 05/24/93	4.8 3.3 3.4 DRY DRY DRY 3.1 3.4 3.8 DRY 3.68 3.25 3.31 3.22 3.31 3.45 3.45 3.45 3.72 3.78 3.72 3.78 3.78 3.72 3.78 3.72 3.78 3.72 3.78 3.72 3.78 3.72 3.78 3.70 3.71 3.82 3.71 3.72 3.72 3.73 3.74 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.77 3.78 3.77 3.78 3.77 3.78 3.79 3.70 3.71 3.72 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75	5885.6 5887.1 5887.0 DRY DRY 5887.3 5887.0 5886.6 DRY 5886.8 5887.2 5887.1 5887.2 5887.1 5887.0 5887.0 5886.7 5887.1 5887.1 5887.1 5887.1 5887.1 5887.1 5887.1 5887.1 5887.1 5887.1 5887.1 5887.1 5887.1 5887.1 5887.0 5886.8 5886.7 5886.7 5886.7 5886.7 5887.1 5887.1 5887.0 5886.7
6886	07/08/93	6.31	5884.1

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date	Water	Water
	Measured	Level(ft)	Elevation(ft)
6986 6986 6986 6986 6986 6986 6986 6986	Measured  09/30/86 10/02/86 10/03/86 10/06/86 10/08/86 10/13/86 11/26/86 01/01/87 05/07/87 06/02/87 06/02/87 06/24/87 07/06/87 08/06/87 09/02/87 10/05/87 11/09/87 12/16/87 01/09/88 02/04/88 02/24/88 03/07/88 04/04/88 05/02/88 06/15/88 07/15/88 08/18/88 09/15/88 10/22/88 11/15/88 11/15/88 12/15/88 01/15/89 02/13/89 03/24/89 04/27/89 05/19/89 05/30/89 06/29/89	Level(ft) 7.31 7.39 7.37 7.44 7.45 6.83 5.7 5.44 2.35 2.7 1.8 3.9 4.6 3.9 2.2 2 1.8 2.7 14 5.1 6.6 7 6.3 5.4 4.1 3.9 4.55 4	5915.2 5915.1 5915.1 5915.0 5915.6 5916.8 5917.5 5920.1 5919.8 5920.7 5919.6 5917.8 5917.9 5919.6 5920.2 5920.3 5920.3 5920.5 5920.7 5919.6 5920.3 5920.7 5919.6 5920.3 5920.7 5919.6 5917.9 5919.8 5917.3 5917.3 5917.3 5917.3 5917.3 5917.3 5917.3 5917.3 5917.3 5917.3 5917.3 5917.3 5917.3 5918.5
6986	07/28/89	5.35	5917.1
6986	08/10/89	4.2	5918.3
6986	08/25/89	3.58	5918.9
6986	09/13/89	2.75	5919.7
6986	10/17/89	5.02	5917.5

 $[\]star$  Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
Location  6986 6986 6986 6986 6986 6986 6986 69			
0187 0187 0187 0187 0187 0187	01/15/89 02/14/89 03/27/89 04/27/89 05/19/89 06/06/89 06/29/89	11.4 11.4 10.7 10.6 9.9 9.68 11.2	5982.6 5983.3 5983.4 5984.1 5984.4 5982.8

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
0187	07/14/89	9.39	5984.6
0187	08/17/89	9.82	5984.2
0187	08/25/89	12.24	5981.8
0187	09/13/89	11.1	5982.9
0187	10/27/89	9.16	5984.9
0187	01/16/90	9.8	5984.2
0187	02/02/90	11.04 8.98	5983.0
0187 0187	04/13/90 05/02/90	8.91	5985.1 5985.1
0187	07/12/90	9.16	5984.9
0187	07/26/90	8.95	5985.1
0187	10/01/90	7.47	5986.6
0187	10/15/90	8.54	5985.5
0187	01/03/91	10.93	5983.1
0187	04/01/91	12.13	5981.9
0187	05/14/91	12.09	5981.9
0187	07/02/91	10.93	5983.1
0187	08/15/91	8.04	5986.0
0187	10/03/91	6.82	5987.2
0187	11/05/91		5994.0
0187	12/04/91	7.44	5986.6
0187	01/03/92	7.99	5986.0
0187	02/19/92	9.92	5984.1
0187	04/03/92	7.92	5986.1
0187 0187	05/11/92 07/06/92	9.60 11.28	5984.4 5982.8
0187	08/06/92	11.82	5982.2
0187	10/01/92	10.41	5983.6
0187	10/27/92	10.27	5983.8
0187	01/20/93	10.81	5983.2
0187	02/24/93	11.23	5982.8
0187	04/02/93	12.09	5981.9
0187	05/10/93	9.77	5984.3
0187	07/07/93	11.13	5982.9
0287	06/15/87	3.41	5929.1
0287	06/24/87	3.04	5929.4
0287	07/08/87	2.2	5930.3
0287	08/06/87	3.4	5929.1
0287	10/05/87	3.5	5929.0
0287	11/03/87	.7 1	5931.8
0287 0287	12/16/87	1 1.5	5931.5 5931.0
UZO/	01/09/88	1.5	0301.0

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
0287 0287 0287 0287 0287 0287 0287 0287	02/24/88 03/07/88 04/04/88 05/02/88 06/15/88 07/15/88 08/18/88 09/15/88 10/22/88 11/15/88 12/15/88 01/15/89 02/13/89 03/24/89 04/27/89 05/19/89 05/26/89 06/29/89 07/25/89 07/25/89 07/25/89 01/18/90 04/12/90 04/12/90 04/12/90 04/12/90 04/12/90 04/12/90 04/12/90 04/12/90 04/12/90 04/12/90 04/12/90 04/12/90 04/12/90 04/12/90 04/12/90 04/12/90 04/12/90 05/05/91 05/07/91 05/07/91 05/05/91	1.1 1.8 2.8 3.5 3.5 4.9 4.9 4.9 4.9 4.8 5.2 5.2 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9	5931.5 5930.4 5930.7 5929.8 5929.7 5928.6 5927.6 5927.0 5927.1 5927.3 5927.5 5928.0 5928.0 5928.3 5928.7 5927.7 5926.8 5927.2 5927.2 5927.2 5927.8 5927.8 5927.8 5927.8 5927.8 5927.8 5927.8 5927.8 5927.8 5927.1 5927.4 5927.2 5927.7 5927.8 5927.7 5927.8 5927.7 5927.8 5927.7 5927.8 5927.7 5927.8 5927.7 5927.8 5927.2
0287	07/02/91	4.67	5927.8

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
0287	08/06/91	4.53	5928.0
0287	09/03/91	5.15	5927.3
0287	09/06/91	5.05	5927.4
0287	10/04/91	5.16	5927.3
0287	11/05/91	4.62	5927.9
0287	11/14/91 06/18/87	4.22	5928.3 5836.7
0387 0387	06/24/87	95.67 81.35	5851.0
0387	07/08/87	53	5879.4
0387	08/06/87	48.6	5883.8
0387	09/02/87	45.5	5886.9
0387	10/05/87	90.2	5842.2
0387	11/10/87	44.9	5887.5
0387	12/16/87	44.8	5887.6
0387	01/09/88	44	5888.4
0387	02/04/88	43.95	5888.4
0387	02/24/88	85	5847.4
0387	03/07/88	53.3	5879.1
0387	04/04/88	44.9	5887.5
0387	05/02/88	71.8	5860.6
0387	06/15/88	45.3	5887.1
0387	07/15/88	44.6	5887.8
0387	08/18/88	57	5875.4
0387	09/15/88	45.1	5887.3
0387	10/22/88	44.7	5887.7
0387 0387	11/15/88 12/15/88	47 45.6	5885.4 5886.8
0387	01/15/89	44.5	5887.9
0387	02/13/89	50.1	5882.3
0387	03/24/89	44.7	5887.7
0387	04/27/89	44.4	5888.0
0387	05/19/89	46.9	5885.5
0387	06/29/89	37.8	5894.6
0387	07/28/89	47.52	5884.9
0387	08/25/89	97.68	5834.7
0387	04/12/90	45.61	5886.8
0387	05/01/90	44.99	5887.4
0387	07/12/90	45.41	5887.0
0387	09/12/90	44.72	5887.7
0387	10/01/90	53.12	5879.3
0387	10/29/90	46.10	5886.3
0387	01/02/91	57.51	5874.9

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date	Water	Water
	Measured	Level(ft)	Elevation(ft)
Location  0387 0387 0387 0387 0387 0387 0387 0487 0487 0487 0487 0487 0487 0487 04			
0487	01/16/90	12.35	5899.2
0487	01/31/90	12.36	5899.2
0487	04/12/90	5.80	5905.7
0487	06/07/90	7.39	5904.1

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
0487	07/11/90	9.47	5902.1
0487	08/08/90	9.96	5901.6
0487	08/29/90	10.74	5900.8
0487	09/12/90	11.20	5900.3
0487	10/01/90	11.66	5899.9
0487	10/29/90	12.22	5899.3
0487	11/07/90	12.28	5899.3
0487	12/06/90	12.51	5899.0
0487	01/02/91	12.79	5898.7
0487	03/18/91	13.04	5898.5
0487	04/01/91	13.01	5898.5
0487	05/07/91	11.78	5899.8
0487	05/09/91	11.75	5899.8
0487	06/05/91	10.48	5901.1
0487	07/02/91	11.04	5900.5
0487	08/06/91	12.52	5899.0
0487	08/20/91	12.70	5898.8
0487 0487	09/03/91 10/02/91	13.18 14.03	5898.4 5007.5
0487 0487	11/05/91	14.03	5897.5 5896.6
0487	01/03/92	14.39	5897.1
0487	02/03/92	14.35	5897.2
0487	02/03/92	14.29	5897.2
0487	03/05/92	13.94	5897.6
0487	04/06/92	9.77	5901.8
0487	05/06/92	9.77	5901.8
0487	05/11/92	9.82	5901.7
0487	06/01/92	9.93	5901.6
0487	07/01/92	11.87	5899.7
0487	08/03/92	11.04	5900.5
0487	08/12/92	11.31	5900.2
0487	09/04/92	10.86	5900.7
0487	10/01/92	11.58	5900.0
0487	10/21/92	12.05	5899.5
0487	11/03/92	12.37	5899.2
0487	12/07/92	12.90	5898.6
0487	01/20/93	13.15	5898.4
0487	02/02/93	13.22	5898.3
0487	03/10/93	13.53	5898.0
0487	03/26/93	13.33	5898.2
0487	04/08/93	10.10	5901.4
0487	05/14/93	9.90	5901.6

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
0487 0487	05/20/93 06/16/93	9.94 10.47	5901.6 5901.1
0487	07/13/93	11.07	5900.5
0587	04/13/90	46.53	5883.4
0587 0587	05/31/90 07/12/90	46.29	5929.9 5883.7
0587	08/07/90	46.24	5883.7
0587	10/01/90	46.22	5883.7
0587	10/12/90	46.24	5883.7
0587 0587	01/03/91 03/07/91	46.45 46.47	5883.5 5883.5
0587	04/01/91	16.50	5913.4
0587	05/13/91	46.62	5883.3
0587 0587	07/05/91 08/15/91	46.60 46.58	5883.3 5883.4
0587	12/04/91	46.46	5883.5
0587	01/03/92	46.62	5883.3
0587	02/14/92	46.61	5883.3
0587 0587	04/01/92 05/29/92	43.62 44.43	5886.3 5885.5
0587	07/02/92	42.84	5887.1
0587	08/06/92	44.08	5885.9
0587 0587	10/01/92	44.59 45.11	5885.4 5884.8
0587	10/21/92 01/20/93	45.11 45.65	5884.3
0587	02/26/93	46.25	5883.7
0587	04/02/93	46.96	5883.0
0587 0587	05/11/93 07/14/93	44.86 45.32	5885.1 5884.6
0687	06/24/87	5.67	5900.6
0687	07/28/87	6.9	5899.4
0687	08/06/87	7.4	5898.9
0687 0687	10/05/87 11/10/87	4.7 3.7	5901.6 5902.6
0687	12/16/87	3.7	5902.6
0687	01/08/88	2.9	5903.4
0687 0687	02/04/88 02/24/88	2.49 4	5903.8 5902.3
0687	03/07/88	2.4	5902.5
0687	04/04/88	2.3	5904.0
0687	05/02/88	3.2	5903.1
0687	06/15/88	3.3	5903.0

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date	Water	Water
	Measured	Level(ft)	Elevation(ft)
0687 0687 0687 0687 0687 0687 0687 0687	07/15/88 08/18/88 09/15/88 10/22/88 11/15/88 12/15/88 01/15/89 02/13/89 03/24/89 04/25/89 05/19/89 06/10/89 07/14/89 07/26/89 08/18/89 09/13/89 10/19/89 01/16/90 01/31/90 04/12/90 05/03/90 07/11/90 07/20/90 10/01/90 10/08/90 01/02/91 03/18/91 04/01/91 05/14/91 07/02/91 08/19/91 10/02/91 08/19/91 10/02/91 06/19/87 06/24/87 07/08/87 11/10/87 12/16/87 01/09/88 02/04/88	4.5 6.3 7.2 6.2 5.2 6.3 6.2 5.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6	5901.8 5900.3 5899.0 5899.1 5899.8 5900.5 5901.1 5901.5 5901.6 5901.6 5901.0 5901.0 5901.0 5902.0 5902.2 5904.4 5904.4 5901.8 5901.8 5901.0 5901.8 5901.0 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5 5901.5
0887	02/24/88	71.9	5849.6
0887	03/07/88	52.5	5869.0

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
0887 0887	04/04/88 05/02/88	46.4 71.1	5875.1 5850.4
0887	06/15/88	48.9	5872.6
0887	07/15/88	46.6	5874.9
0887	08/18/88	56.1	5865.4
0887 0887	09/15/88 10/22/88	47.1 46.4	5874.4 5875.1
0887	11/15/88	48.2	5873.3
0887	12/15/88	47.1	5874.4
0887	01/15/89	46.1	5875.4
0887 0887	02/13/89 03/24/89	51.5 46.4	5870.0 5875.1
0887	04/27/89	46.4 46	5875.5
0887	05/19/89	48.8	5872.7
0887	06/29/89	56.8	5864.7
0887 0887	07/28/89	47.95 90.25	5873.6 5831.3
0887	08/25/89 04/12/90	47.35	5874.2
0887	05/02/90	46.61	5874.9
0887	07/11/90	46.84	5874.7
0887	09/11/90	46.17	5875.3
0887 0887	10/01/90 11/08/90	51.77 47.12	5869.7 5874.4
0887	11/09/90	47.12	5874.4
0887	01/02/91	47.69	5873.8
0887	03/14/91	46.24	5875.3
0887 0887	04/01/91 05/09/91	24.85 47.06	5896.7 5874.4
0887	07/02/91	47.51	5874.0
0887	09/19/91	46.30	5875.2
0887	10/02/91	56.38	5865.1
0887 0887	11/13/91 02/05/92	47.37 9.92	5874.1 5911.6
4387	07/07/87	8.8	5917.6
4387	11/11/87	8.8	5917.6
4387	12/21/87	8.8	5917.6
4387 4387	01/11/88 02/03/88	8.1 7.6	5918.3 5918.8
4387 4387	02/03/88	7.62	5918.7
4387	03/21/88	6.9	5919.5
4387	04/18/88	7.5	5918.9
4387	05/16/88	6.9	5919.5

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
4387	06/15/88	7.2	5919.2
4387 4387	07/15/88 08/18/88	7.2 8.4	5919.2 5918.0
4387	09/15/88	8.6	5917.8
4387	10/22/88	10.1	5916.3
4387	11/15/88	9.1	5917.3
4387	12/15/88	9.1	5917.3
4387	01/15/89 02/14/89	9.5 9.5	5916.9 5916.9
4387 4387	03/27/89	9.8	5916.6
4387	04/27/89	9.2	5917.2
4387	05/18/89	9.2	5917.2
4387	06/10/89	9.05	5917.3
4387	06/29/89	9.4	5917.0
4387 4387	07/14/89 08/18/89	9.56 9.45	5916.8 5916.9
4387	08/25/89	11.13	5915.2
4387	09/12/89	9.95	5916.4
4387	10/26/89	9.55	5916.8
4387	01/16/90	9.76	5916.6
4387	02/01/90	9.79	5916.6
4387 4387	04/13/90 06/07/90	5.96 6.17	5920.4 5920.2
4387	07/12/90	7.09	5919.3
4387	08/09/90	7.43	5918.9
4387	09/11/90	8.04	5918.3
4387	09/12/90	10.63	5915.7
4387	10/01/90	8.42	5917.9
4387 4387	11/07/90 11/13/90	8.62 8.66	5917.7 5917.7
4387	12/06/90	8.93	5917.4
4387	01/03/91	9.09	5917.3
4387	03/18/91	9.33	5917.0
4387	04/01/91	9.78	5916.6
4387 4387	05/07/91	9.15	5917.2
4387 4387	05/13/91 06/11/91	9.16 8.89	5917.2 5917.5
4387	07/05/91	9.14	5917.2
4387	08/06/91	9.53	5916.8
4387	08/14/91	9.48	5916.9
4387	09/05/91	9.72	5916.6
4387	10/03/91	9.87	5916.5

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
4387	11/05/91	10.05	5916.3
4387	12/02/91	9.92	5916.4
4387	12/10/91	9.96	5916.4
4387	01/03/92	10.08	5916.3
4387	02/13/92	9.89	5916.5
4387	03/05/92	10.18	5916.2
4387	04/01/92	7.90	5918.5
4387	05/05/92	8.92	5917.4
4387	06/01/92	8.67	5917.7
4387	06/23/92	9.27	5917.1
4387	07/02/92	9.20	5917.2
4387	08/03/92	9.17	5917.2
4387	08/06/92	9.08	5917.3
4387	09/04/92	8.95	5917.4
4387	10/01/92	9.73	5916.6
4387	10/27/92	9.31	5917.1
4387	11/02/92	9.52	5916.8
4387	12/03/92	9.31	5917.1
4387	01/20/93	9.62	5916.7
4387	02/02/93	9.55	5916.8
4387	03/26/93	8.55	5917.8
4387	04/02/93	9.23	5917.1
4387	05/13/93	9.06	5917.3
4387	06/17/93	9.40	5917.0
4387	06/28/93	9.43	5916.9
4387	07/13/93	10.17	5916.2
4487	07/07/87	4	5947.1
4487	11/11/87	4	5947.1
4487	12/18/87	4	5947.1
4487	01/09/88	5.1	5946.0
4487	02/03/88	DRY	DRY 5045 7
4487	02/04/88	5.33	5945.7
4487	03/21/88	DRY	DRY
4487	04/04/88	DRY	DRY
4487	06/15/88	DRY	DRY
4487	07/15/88	DRY	DRY
4487	08/18/88	DRY DRY	DRY DRY
4487	09/15/88	DRY	DRY DRY
4487	10/22/88		
4487 4487	11/15/88	DRY	DRY
4487 4487	12/15/88 01/15/89	5.4 DRY	5945.7 DRY
440/	01/13/09	ואט	טואט

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Méasured	Water Level(ft)	Water Elevation(ft)
4487	02/14/89	DRY	DRY
4487	03/27/89	DRY	DRY
4487	04/27/89	DRY	DRY
4487	05/19/89	DRY	DRY
4487	06/10/89	DRY	DRY
4487	06/29/89	DRY	DRY
4487	07/14/89	DRY	DRY
4487	08/17/89	DRY	DRY
4487	08/25/89	DRY	DRY
4487	09/13/89	DRY	DRY
4487	10/26/89	DRY	DRY
4487	01/15/90	DRY	DRY
4487	04/13/90	DRY	DRY
4487	05/24/90	DRY	DRY
4487	07/12/90	DRY	DRY
4487	07/31/90	DRY	DRY
4487	08/09/90	DRY	DRY
4487	09/12/90	DRY	DRY
4487	10/01/90	DRY	DRY
4487	10/15/90	DRY	DRY
4487	11/07/90	DRY	DRY
4487	12/06/90	DRY	DRY
4487	01/03/91	DRY	DRY
4487	04/01/91	DRY	DRY
4487	05/07/91	DRY	DRY
4487	06/11/91	DRY	DRY
4487	07/05/91	DRY	DRY
4487	08/06/91	DRY	DRY
4487	09/05/91	DRY	DRY
4487	10/03/91	DRY	DRY
4487	11/05/91	DRY	DRY
4487	12/02/91	DRY	DRY
4487	01/03/92	DRY	DRY
4487	02/03/92	DRY	DRY
4487	03/05/92	DRY	DRY 5047 1
4487	04/03/92	3.92	5947.1
4487	05/05/92	5.31	5945.7
4487	06/01/92	DRY	DRY
4487	06/22/92	DRY	DRY FOAF A
4487	07/02/92	5.65	5945.4 5045.4
4487	08/03/92	5.67	5945.4
4487	08/10/92	DRY	DRY

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
4487	09/04/92	DRY	DRY
4487	10/01/92	DRY	DRY
4487	11/02/92	DRY	DRY
4487 4487	12/03/92 01/19/93	DRY DRY	DRY DRY
4487 4487	02/02/93	DRY	DRY
4487	03/26/93	DRY	DRY
4487	04/02/93	DRY	DRY
4487	05/13/93	DRY	DRY
4487	06/17/93	DRY	DRY
4487	07/13/93	DRY	DRY
4587	07/07/87	91.04	5859.8
4587 4587	11/11/87 12/21/87	91 91.4	5859.9 5859.5
4587 4587	01/11/88	91.4	5859.8
4587	02/03/88	91.2	5859.7
4587	02/04/88	90.7	5860.2
4587	03/21/88	91.2	5859.7
4587	04/18/88	91.2	5859.7
4587	05/16/88	91.1	5859.8
4587 4587	06/15/88 07/15/88	91 91	5859.9 5859.9
4587 4587	08/18/88	90.8	5860.1
4587	09/15/88	90.9	5860.0
4587	10/22/88	91	5859.9
4587	11/15/88	90.9	5860.0
4587	12/15/88	91.1	5859.8
4587	01/15/89	91.4	5859.5
4587 4507	02/14/89	91.1	5859.8
4587 4587	03/27/89 04/27/89	91.4 91.5	5859.5 5859.4
4587 4587	05/19/89	91.7	5859.2
4587	06/29/89	91.5	5859.4
4587	07/14/89	91.62	5859.2
4587	08/25/89	91.48	5859.4
4587	01/15/90	89.96	5860.9
4587	04/17/90	91.41	5859.5
4587 4507	06/12/90	90.95	5859.9
4587 4587	07/12/90 09/10/90	91.08 90.87	5859.8 5860.0
4587	10/01/90	90.81	5860.1
4587	10/25/90	90.98	5859.9

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
4587 4587 4587 4587 4587 4587 4587 4587	01/03/91 03/07/91 04/01/91 05/14/91 07/05/91 08/16/91 10/03/91 12/11/91 01/03/92 02/22/92 04/03/92 06/23/92 07/02/92 08/10/92 10/01/92 10/01/92 10/29/92 01/19/93 02/26/93 04/02/93 05/18/93 07/13/93 11/10/87 12/16/87 01/09/88 02/24/88 03/07/88 04/04/88 06/15/88 07/15/88 07/15/88 10/22/88 11/15/88 10/22/88 11/15/88 10/15/89 02/13/89 03/24/89 04/27/89 05/19/89 06/29/89	91.14 91.07 91.06 91.09 91.28 91.34 91.16 91.22 91.18 91.26 91.15 90.80 90.86 90.74 90.88 90.86 91.07 90.86 91.07 90.86 91.07 90.87 DRY DRY DRY DRY DRY DRY DRY DRY	5859.7 5859.8 5859.8 5859.8 5859.6 5859.7 5859.6 5859.7 5860.1 5860.1 5860.0 5860.1 5860.0 5859.8 5860.0 5859.7 5859.5 5876.0 DRY DRY DRY DRY DRY DRY DRY DRY
4787	07/14/89	DRY	DRY

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
4787	07/26/89	DRY	DRY
4787	08/25/89	DRY	DRY
4787	09/13/89	8.2	5876.4
4787	10/20/89	DRY	DRY
4787	01/16/90	6.21	5878.4
4787	02/15/90	8.72	5875.9
4787	04/12/90	8.21	5876.4
4787	05/03/90	8.07	5876.5
4787	07/11/90	DRY	DRY
4787	08/08/90	9.51	5875.1
4787	09/11/90	DRY	DRY
4787	09/12/90	DRY	DRY
4787	10/01/90	DRY	DRY
4787	10/25/90	DRY	DRY
4787	11/07/90	DRY	DRY
4787	12/10/90	DRY	DRY
4787	01/02/91	DRY	DRY
4787	04/01/91	DRY	DRY
4787	05/07/91	DRY	DRY
4787	06/05/91	7.38	5877.2
4787	07/02/91	8.85	5875.7
4787	08/06/91	DRY	DRY
4787	08/19/91	DRY	DRY
4787	09/03/91	DRY	DRY
4787	10/02/91	DRY	DRY
4787	11/05/91	9.64	5875.0
4787	12/10/91	8.18	5876.4
4787	01/10/92	9.45	5875.1
4787	02/05/92	DRY	DRY
4787	02/11/92	DRY	DRY
4787	03/05/92	9.61	5875.0 DRY*
4787 4787	04/06/92	DRY	5879.2
4787 4707	05/05/92	5.43	5878.0
4787 4787	06/10/92	6.64 7.36	5877.2
	07/01/92	8.14	5876.5
4787 4787	08/05/92 08/17/92	8.42	5876.2
4787 4787	09/04/92	7.60	5877.0
4787 4787	10/01/92	8.43	5876.2
4787 4787	10/01/92	8.80	5875.8
4787 4787	11/03/92	9.38	5875.2
4787 4787	12/07/92	DRY	DRY
7/0/	12/0// /2	DICI	DIVI

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
4787	01/20/93	9.37	5875.2
4787	02/02/93	9.22	5875.4
4787	03/26/93	9.21	5875.4
4787	04/02/93	9.05	5875.5
4787 4787	06/16/93 07/02/93	8.40 8.68	5876.2 5875.9
4887	11/10/87	7.8	5903.6
4887	12/16/87	7.6	5903.8
4887	01/08/88	9.6	5901.8
4887	02/04/88	5.93	5905.4
4887	02/24/88	7.5	5903.9
4887	03/07/88	6.1	5905.3
4887 4887	04/04/88	7.2	5904.2
4887	05/02/88 06/15/88	8.1 8.7	5903.3 5902.7
4887	07/15/88	10.2	5901.2
4887	08/18/88	10.6	5900.8
4887	09/15/88	11	5900.4
4887	10/22/88	11.2	5900.2
4887	11/15/88	11.6	5899.8
4887	12/15/88	11.6	5899.8
4887 4887	01/15/89 02/13/89	11.9 12	5899.5 5899.4
4887	03/24/89	10.9	5900.5
4887	04/27/89	10.8	5900.6
4887	05/19/89	7.5	5903.9
4887	06/09/89	6.9	5904.5
4887	06/29/89	8.4	5903.0
4887	07/14/89	9.89	5901.5
4887 4887	07/25/89 08/25/89	9.9 DRY	5901.5 DRY
4887	09/13/89	DRY	DRY
4887	10/20/89	DRY	DRY
4887	01/16/90	DRY	DRY
4887	04/12/90	5.32	5906.0
4887	05/03/90	6.41	5905.0
4887	07/11/90	10.09	5901.3
4887 4887	07/24/90 10/01/90	11.4	5900.0 5899.7
4887	10/01/90	11.68 11.72	5899.7 5899.6
4887	01/02/91	11.72	5899.7
4887	03/14/91	12.02	5899.3

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
4887 4887 4887 4887 4887 4887 4887 4887	04/01/91 07/02/91 08/20/91 10/02/91 01/10/92 04/06/92 05/06/92 05/11/92 07/01/92 08/11/92 10/21/92 10/21/92 01/20/93 03/10/93 03/10/93 04/02/93 11/10/87 12/16/87 01/08/88 02/04/88 02/04/88 02/24/88 03/07/88 04/04/88 05/02/88 06/15/88 06/15/88 10/22/88 11/15/88 10/22/88 11/15/88 11/15/88 11/15/88 11/15/89 02/13/89 03/24/89 04/27/89 06/10/89 06/29/89 07/14/89 07/26/89 08/18/89	DRY 9.00 11.45 DRY 5.08 5.18 5.30 5.80 8.58 7.23 6.17 9.15 5.6 6.06 6.1 5.8 DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	DRY 5902.4 5899.9 DRY DRY* 5906.3 5906.2 5906.1 5905.6 5902.8 5903.5 5902.4 5904.1 5904.8 5905.2 5908.8 5908.2 5908.2 5908.2 5908.1 5908.4 5908.4 5908.4 5908.4 DRY
4987	09/13/89	DRY	DRY

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
4987	10/17/89	DRY	DRY
4987	01/16/90	DRY	DRY
4987	04/12/90	2.70	5911.5
4987	05/03/90	4.10	5910.1
4987 4987	07/11/90 07/23/90	DRY DRY	DRY DRY
4987	10/01/90	DRY	DRY
4987	10/01/90	DRY	DRY*
4987	01/02/91	DRY	DRY*
4987	04/01/91	DRY	DRY
4987	07/02/91	DRY	DRY
4987	10/02/91	DRY	DR*
4987	01/03/92	DRY	DRY
4987	04/06/92	4.86	5909.4
4987 4987	05/11/92 07/01/92	5.78 6.25	5908.4 5908.0
4987 4987	07/01/92	6.25 DRY	DRY
4987	10/01/92	DRY	DRY
4987	01/20/93	DRY	DRY
4987	04/09/93	4.12	5910.1
4987	07/02/93	DRY	DRY
5087	11/10/87	11.5	5923.2
5087	12/16/87	11.1	5923.6
5087	01/08/88	DRY	DRY
5087	02/04/88	DRY	DRY
5087 5087	02/24/88 03/07/88	DRY DRY	DRY DRY
5087	04/04/88	DRY	DRY
5087	06/15/88	DRY	DRY
5087	07/15/88	DRY	DRY
5087	08/18/88	DRY	DRY
5087	09/15/88	DRY	DRY
5087	10/22/88	DRY	DRY
5087	11/15/88	DRY	DRY
5087 5087	12/15/88	DRY	DRY
5087	01/15/89 02/13/89	DRY DRY	DRY DRY
5087	03/24/89	DRY	DRY
5087	04/25/89	DRY	DRY
5087	05/19/89	DRY	DRY
5087	06/09/89	DRY	DRY
5087	06/29/89	DRY	DRY

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date	Water	Water
	Measured	Level(ft)	Elevation(ft)
5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5087 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187 5187		DRY	Elevation(ft)  DRY  DRY  DRY  DRY  DRY  DRY  DRY  DR
5187	02/14/89	15.5	5949.7
5187	03/27/89	15.5	5949.7
5187	04/27/89	15.5	5949.7

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
5187	05/26/89	15.4	5949.8
5187	06/12/89	15.45	5949.7
5187	06/29/89	15.4	5949.8
5187	07/21/89	15.35	5949.8
5187	08/14/89	15.35	5949.8
5187	08/25/89	9.83	5955.3
5187	09/14/89	DRY	DRY
5187	10/27/89	15.4	5949.8
5187	01/18/90	15.6	5949.6
5187	03/23/90	DRY	DRY 5040 7
5187	04/26/90	15.44	5949.7
5187	05/22/90	15.41	5949.8
5187	07/11/90	15.41	5949.8
5187	08/22/90	15.42	5949.8 5949.8
5187 5187	10/03/90 12/13/90	15.42 DRY	DRY
5187	01/04/91	15.56	5949.6
5187	06/12/91	15.43	5949.7
5187	07/03/91	15.44	5949.7
5187	08/08/91	15.38	5949.8
5187	09/03/91	15.43	5949.7
5187	10/02/91	13.49	5951.7
5187	10/17/91	12.36	5952.8
5187	01/07/92	15.51	5949.7
5187	01/20/92	15.53	5949.6
5187	04/06/92	15.47	5949.7
5187	07/01/92	15.49	5949.7
5187	07/29/92	15.51	5949.7
5187	10/09/92	15.57	5949.6
5187	10/12/92	15.57	5949.6
5187	01/14/93	15.64	5949.5
5187	02/23/93	15.67	5949.5
5187	04/01/93	15.62	5949.6
5187	04/26/93	15.55	5949.6
5187	07/02/93	DRY	DRY
5287	01/15/86	15.6	5953.9
5287	11/11/87	9.7	5959.8
5287	12/21/87	9.7	5959.8
5287	01/11/88	9.7	5959.8
5287	02/04/88	10.13	5959.4
5287	02/29/88	9.7	5959.8
5287	03/21/88	9.7	5959.8

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
5287 5287 5287 5287 5287 5287 5287 5287	04/18/88 05/16/88 06/15/88 07/15/88 08/18/88 09/15/88 10/22/88 11/15/88 12/15/88 02/14/89 03/27/89 04/27/89 06/12/89 06/12/89 06/12/89 06/12/89 08/14/89 08/14/89 01/26/89 01/18/90 01/29/90 04/26/90 06/21/90 07/11/90 08/24/90 10/03/90 12/11/90 01/04/91 03/26/91 06/07/91 07/03/91 08/08/91 10/10/92 01/17/92 04/06/92 04/22/92 07/24/92	9.6 9.9 10 9.8 10 9.9 10.3 10.3 9.7 9.5 9.7 9.55 9.48 9.9 9.72 9.70 10.41 9.94 9.72 9.70 10.41 9.97 9.76 10.37 9.79 9.79 9.70 10.37 9.70 10.37 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9	5959.6 5959.5 5959.5 5959.5 5959.6 5959.6 5959.6 5959.8 5959.8 5960.0 5960.0 5960.0 5960.0 5960.1 5959.8 5959.8 5959.8 5959.8 5959.8 5959.8 5959.8 5959.8 5959.8 5959.8 5959.8 5959.8 5959.8 5959.8 5959.8 5959.8 5959.8 5959.8 5959.8 5959.8 5959.8 5959.8 5959.8 5959.8 5959.8 5959.8 5959.8 5959.8
5287	10/09/92	10.42	5959.1

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date	Water	Water
	Measured	Level(ft)	Elevation(ft)
5287 5287 5287 5287 5287 5287 5287 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387 5387	10/14/92 01/14/93 02/24/93 04/01/93 04/26/93 07/02/93 08/04/93 11/10/87 12/16/87 01/09/88 02/04/88 02/24/88 03/07/88 04/04/88 05/02/88 06/15/88 07/15/88 08/18/88 10/22/88 11/15/88 10/22/88 11/15/88 10/22/88 11/15/89 02/14/89 03/24/89 03/24/89 04/27/89 05/19/89 06/08/89 06/29/89 07/25/89 07/25/89 07/25/89 07/25/89 07/25/89 07/25/89 07/25/89 07/25/89 07/25/89 07/25/89 07/25/89 07/25/89 07/25/89 07/25/89 07/25/89 07/25/89 07/25/89 07/25/89 07/25/89 07/25/89 07/25/89 07/25/89 07/25/89 07/25/89 07/25/89 07/25/89	10.42 9.97 10.03 9.27 9.55 10.60 6.4 8.6 8.5 8.16 8.8 7.5 4.8 9.5 10 9.5 9.45 9.7 9.45 9.33 7.93 7.85 3.24 4.55 7.79 8.28 10.72 10.82	5959.1 5959.6 5959.5 5960.3 5960.0 5959.4 5953.2 5953.3 5953.6 5953.8 5953.8 5953.8 5953.8 5953.8 5953.3 5952.3 5952.3 5952.3 5952.3 5952.3 5952.3 5952.3 5952.3 5952.3 5952.3 5953.7 5952.3 5953.9 5953.9 5953.9 5953.9 5953.9

 $[\]star$  Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
5387 5387 5387 5387 5387 5387 5387 5387			

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
5487	09/13/89	2.45	5955.1
5487	10/25/89	5.4	5952.2
5487	01/18/90	5.08	5952.5
5487	01/30/90	4.75	5952.8
5487	04/12/90	2.10	5955.5
5487	05/03/90	2.75	5954.8
5487	07/12/90	3.18	5954.4
5487	07/19/ <del>9</del> 0	4.08	5953.5
5487	08/09/90	4.60	5953.0
5487	09/12/90	4.57	5953.0
5487	10/01/90	4.65	5952.9
5487	10/23/90	5.54	5952.0
5487	11/07/90	5.38	5952.2
5487	12/06/90	4.8	5952.8
5487	01/02/91	5.24	5952.3
5487	04/01/91	4.77	5952.8
5487	05/07/91	2.95	5954.6
5487	05/13/91	3.91	5953.7
5487	06/05/91	3.58	5954.0
5487	07/05/91	4.99	5952.6
5487	08/06/91	3.63	5953.9
5487	08/21/91	4.35	5953.2
5487	09/03/91	6.35	5951.2
5487	10/02/91	4.79	5952.8
5487	11/05/91	4.92	5952.7
5487	11/14/91	3.63	5953.9
5487	12/07/91	2.74	5954.8
5487 5487	01/03/92	3.29	5954.3
5487 5487	02/05/92	2 72	5957.6 5954.9
5487 5487	03/05/92 04/06/92	2.72	5954.9 5954.4
5487 5487	04/06/92	3.20	5953.3
5487	05/05/92	4.28 5.92	5951.7
5487 5487	06/01/92	2.58	5955.0
5487	07/01/92	4.10	5953.5
5487	08/03/92	4.55	5953.0
5487	08/11/92	4.08	5953.5
5487	09/04/92	4.45	5953.1
5487	10/01/92	6.00	5951.6
5487	11/03/92	2.91	5954.7
5487	11/04/92	3.00	5954.6
5487	12/07/92	3.91	5953.7
0107	/ U// JL	J.J.	0500.7

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
5487 5487 5487 5487 5487 5487 5487 5487 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587 5587	01/20/93 02/02/93 03/15/93 03/26/93 04/08/93 05/14/93 05/25/93 06/07/93 07/02/93 11/10/87 12/18/87 01/09/88 02/04/88 02/24/88 03/07/88 04/04/88 05/02/88 06/15/88 07/15/88 07/15/88 10/22/88 11/15/88 10/22/88 11/15/88 01/15/89 02/14/89 03/24/89 04/27/89 05/19/89 06/29/89 07/10/89 07/28/89 08/25/89 09/14/89 10/16/90 04/12/90 05/04/90	4.67 4.93 2.81 4.49 2.79 4.82 3.26 2.10 7.7 8.7 9.38 6.7 7.1 7.5 8.9 9.2 9.2 DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	5952.9 5952.6 5954.8 5953.1 5954.8 5952.8 5954.3 5955.4 5952.5 5852.3 5851.5 5850.9 5852.7 5853.2 5853.3 5853.4 5852.9 5852.9 5852.9 5852.9 5852.0 5851.1 5851.1 5851.1 5851.1 5851.1 5850.8 5850.8 DRY 5850.7 DRY 5850.7 DRY 5850.7 DRY 5850.7 DRY 5850.7 DRY 5853.2 5853.2 5853.2 5853.2 5853.2
5587 5587 5587	07/10/90 07/19/90 08/07/90	7.80 5.94 8.80	5854.1 5851.2

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
5587 5587 5587 5587 5587 5587 5587 5587	Measured  09/12/90 10/01/90 10/29/90 11/07/90 12/06/90 01/02/91 03/18/91 04/01/91 05/07/91 06/05/91 07/02/91 08/06/91 08/19/91 10/02/91 11/05/91 11/14/91 12/02/91 01/03/92 02/03/92 03/05/92 04/01/92 05/07/92 06/01/92 05/07/92 06/01/92 07/01/92 08/03/92 08/17/92 09/04/92 10/01/92 10/20/92 11/03/92 11/03/92 10/01/92 01/19/93 03/04/93 03/29/93 04/07/93	8.70 8.70 8.80 9.36 DRY 9.34 9.32 DRY 9.37 9.30 9.01 8.93 8.94 DRY 9.42 9.42 9.42 9.42 9.42 9.42 9.42 9.42	
5587 5587 5587 5587	05/14/93 05/18/93 06/16/93 07/06/93	9.14 9.12 9.16 9.03	5850.9 5850.9 5851.0

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
B301889 B302089 B302089 B302089 B302089 B302089 B302089 B302089 B302089 B302089		DRY DRY DRY DRY DRY DRY DRY 25.69 25.28 25.2 29.93 25.90 DRY DRY DRY DRY DRY 26.10 DRY 26.11 26.06 26.08 26.06 DRY 15.08 DRY 15.08 DRY 15.08 DRY 15.64 15.64 15.64 15.64 15.63 16.14 16.42 15.45 15.58	DRY DRY DRY DRY DRY DRY DRY DRY DRY 5843.140 5843.550 5843.630 5838.900 5842.930 DRY
B302089	/ /	14.30	5895.250

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3 Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
B302089 B30208	7 / / / / / / / / / / / / / / / / / / /	15.79 14.05 16.20 16.36 16.00 14.54 16.11 15.23 15.82 14.96 14.20 16.44 15.31 15.73 14.18 DRY DRY DRY DRY DRY DRY DRY DRY DRY DRY	5893.760 5895.500 5893.350 5893.190 5893.550 5893.440 5894.320 5894.320 5894.320 5894.590 5894.590 5895.350 5893.110 5894.240 5893.820 5895.370 DRY DRY DRY DRY DRY DRY DRY DRY
07391	01/19/93	9.24	5941.370

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date	Water	Water
	Measured	Level(ft)	Elevation(ft)
D7391 07391 07391 07391 07391 30991 30991 30991 30991 30991 30991 30991 30991 30991 30991 30991 30991 30991 30991 30991 30991 30991 31491 31491 31491 31491 31491 31491 31491 31491 31491 31491 31491 31491 31491 31491 31491 31491 31491 31491 31491 31491 31491 31491 31491 31491 31491 31491 31491 31491 31491 31491 31491			
31791	11/04/91	DRY	DRY
31791	12/02/91	16.11	5863.6
31791	01/09/92	15.91	5863.8

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date	Water	Water
	Measured	Level(ft)	Elevation(ft)
31791 31791 31791 31791 31791 31791 31791 31791 31791 31791 31791 31791 31791 31791 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891 31891	Measured  02/03/92 02/13/92 03/03/92 04/03/92 05/01/92 05/07/92 07/01/92 08/11/92 10/01/92 10/21/92 01/19/93 03/04/93 04/07/93 05/03/93 07/08/93 08/17/93 11/04/91 11/11/91 12/02/91 01/09/92 02/04/92 02/10/92 03/03/92 04/06/92 05/01/92 06/05/92 07/01/92 08/14/92 10/01/92 10/16/92 01/20/93 03/09/93 04/08/93 04/28/93 07/02/93 08/17/93 11/04/91 12/02/91 01/09/92 02/03/92	9.39 9.06 9.08 6.20 8.77 9.20 10.05 10.40 13.36 13.25 13.75 9.42 7.83 9.20 10.40 10.60 18.40 18.36 17.92 18.39 18.38 18.48 18.46 16.14 16.73 16.66 17.42 17.72 17.84 17.54 18.05 16.96 17.42 17.72 17.82 DRY 20.20 18.90 19.03	5870.4 5870.7 5870.7 5870.7 5873.6 5871.0 5870.6 5869.7 5869.4 5866.5 5866.0 5870.3 5871.9 5870.6 5869.4 5869.2 5901.1 5901.1 5901.1 5901.1 5901.0 5901.0 5901.0 5902.7 5902.8 5902.7 5902.8 5902.1 5901.8 5901.8 5901.9 5901.9 5901.7 DRY 5897.2 5898.5 5898.3
32591	03/03/92	18.82	5898.5
32591	04/06/92	18.11	5899.3

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date	Water	Water
	Measured	Level(ft)	Elevation(ft)
32591 32591 32591 32591 32591 32591 32591 32591 32591 32591 32591 33491 33491 33491 33491 33491 33491 33491 33491 33491 33491 33491 33491 33491 33491 33491 33491 33491 33491 33491 33491 33491 33491 33491 33491 33491 33491 33491 33491 33491 33491 33491 33691 33691 33691 33691 33691 33691 33691 33691 33691	05/01/92 05/11/92 07/01/92 08/13/92 10/01/92 10/21/92 01/20/93 03/10/93 04/08/93 04/29/93 07/02/93 08/17/93 11/04/91 12/02/91 01/07/92 02/03/92 03/03/92 03/03/92 03/03/92 04/03/92 05/01/92 06/03/92 07/02/92 08/06/92 01/20/93 02/24/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 01/01/92 10/01/92 10/01/92 10/01/92 10/26/92 01/20/93 04/29/93 04/29/93 04/29/93 04/29/93 04/03/92 05/01/92 06/03/92 06/03/92 06/03/92 07/02/92	18.58 18.37 20.02 17.68 18.55 18.33 18.43 18.04 18.70 18.17 17.99 17.32 DRY DRY DRY DRY DRY DRY 11.32 10.76 10.42 10.15 10.92 10.55 11.06 10.91 10.75 10.85 10.60 11.12 10.82 10.80 DRY 12.92 DRY 12.75 12.24 10.93 10.56 10.35 DRY	5898.8 5899.0 5897.3 5898.8 5899.7 5898.8 5899.0 5898.9 5899.3 5898.7 5899.2 5899.4 5900.0  DRY  DRY  DRY  DRY  DRY  DRY  5917.2 5917.8 5917.6 5918.0 5917.5 5917.6 5918.0 5917.7 5917.7 5917.7 5917.7 5917.7 5917.7 5917.7 5917.7 5917.7 5917.7 5917.7 5917.7 5917.7 5917.7 5917.7 5917.7 5917.7 5917.7 5917.7 5917.7 5917.7 5917.7 5917.7 5917.7 5917.7 5918.3 5918.6 5918.8  DRY*
33691	08/06/92	10.23	5919.0
33691	09/09/92	10.23	5919.0

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
33691 33691 33691 33691 33691 33691 33691 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 33891 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591 34591	09/11/92 10/01/92 12/03/92 01/20/93 02/02/93 03/26/93 04/02/93 05/14/93 05/26/93 06/17/93 07/14/93 11/04/91 12/02/91 01/07/92 02/03/92 03/05/92 04/08/92 05/01/92 06/03/92 07/02/92 08/10/92 10/01/92 10/26/92 01/20/93 02/22/93 04/02/93 04/02/93 06/07/93 07/14/93 08/17/93 11/04/91 01/07/92 02/03/92 03/03/92 03/03/92 04/03/92 05/01/92 06/02/92 07/06/92 08/03/92 09/11/92 10/02/92	DRY 10.31 10.44 10.61 10.62 DRY 10.72 10.73 10.75 10.75 10.72 DRY DRY DRY DRY 11.38 10.63 10.18 10.76 10.37 10.60 10.79 11.11 11.06 12.14 10.94 11.90 11.30 DRY DRY DRY DRY DRY 13.66 13.69 DRY 13.66 13.64 DRY 13.61	5918.9 5918.8 5918.6 5918.6 5918.5 5918.5 5918.5 5918.5 5918.5 DRY DRY* DRY* DRY* DRY* DRY* DRY* DRY*
34591	11/04/92	DRY	DRY

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date	Water	Water
	Measured	Level(ft)	Elevation(ft)
34591 34591 34591 34591 34591 34591 34591 34791 34791 34791 34791 34791 34791 34791 34791 34791 34791 34791 34791 34791 34791 34791 34791 35391 35391 35391 35391 35391 35391 35391 35391 35391 35391 35391 35391 35391 35391 35391 35391 35391 35391 35391 35391 35391 35391 35391 35391 35391 35391 35391 35391 35391 35391	12/07/92 01/19/93 02/02/93 03/30/93 04/07/93 05/13/93 06/17/93 07/14/93 11/04/91 12/16/91 01/07/92 02/10/92 03/03/92 04/03/92 05/01/92 05/20/92 07/06/92 07/06/92 01/19/93 03/10/93 04/07/93 05/19/93 04/07/93 05/19/93 07/14/93 04/03/92 11/04/91 12/16/91 01/07/92 02/25/92 03/03/92 04/06/92 05/01/92 06/22/92 07/01/92 08/10/92 10/26/92 01/20/93 04/08/93	DRY 13.64 13.61 13.63 13.61 13.64 13.94 13.60 7.43 5.65 5.27 5.25 5.76 1.92 3.60 4.61 4.93 4.42 6.41 7.16 7.04 7.80 3.15 5.35 6.46 18.09 11.02 11.13 12.35 10.77 12.74 11.09 10.64 10.43 12.42 11.47 12.49 12.36 DRY 13.13	DRY  5940.9 5941.0 5941.0 5941.0 5940.9 5940.6 5941.0 5948.2 5948.6 5948.6 5948.1 5950.3 5949.3 5949.4 5949.4 5947.5 5946.7 5946.8 5947.4 -18.0 5950.7 5948.5 5950.6 5951.9 5950.2 5950.6 5950.6 DRY 5949.9
35391	05/25/93	DRY	DRY 5949.9
35391	07/02/93	13.12	

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
35691 35691 35691 35691 35691 35691 35691 35691 35691 35691 35691 35691 35691 35691 35691 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991 35991	11/04/91 11/11/91 12/10/91 01/09/92 02/04/92 02/04/92 03/24/92 04/06/92 05/01/92 05/01/92 05/13/92 07/01/92 11/05/92 01/20/93 03/15/93 04/02/93 05/19/93 07/02/93 11/04/91 12/02/91 01/07/92 02/03/92 03/03/92 03/03/92 04/08/92 05/01/92 06/01/92 07/06/92 08/03/92 09/08/92 09/08/92 09/08/92 09/08/92 09/01/92 10/01/92 10/01/92 10/01/92 12/03/92 01/20/93 02/02/93 03/26/93 04/02/93 05/13/93 06/17/93 07/07/93 11/04/91	14.41 14.78 12.05 11.98 17.75 16.31 16.03 16.01 16.45 16.83 17.13 17.41 17.98 18.54 18.85 18.04 17.89 DRY DRY 19.08 18.57 18.03 17.77 17.54 DRY 17.23 DRY 17.24 17.00 17.04 17.06 17.06 17.09 17.08 15.64	5926.9 5926.5 5929.2 5929.3 5929.3 5929.3 5923.6 5925.3 5925.3 5925.3 5925.3 5924.9 5924.5 5924.2 5923.3 5922.8 5922.5 5923.3 5923.4 DRY DRY 5957.3 5957.8 5958.4 5958.6 5958.9 DRY 5959.1 5959.2 DRY 5959.2 DRY 5959.3 5959.3 5959.3 5959.3 5959.3 5959.3 5959.3 5959.3 5959.3 5959.3
36191	11/12/91	15.17	5950.0

 $[\]star$  Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date	Water	Water
	Measured	Level(ft)	Elevation(ft)
36191 36191 36191 36191 36191 36191 36191 36191 36191 36191 36191 36191 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391 36391	12/03/91 01/07/92 02/11/92 03/03/92 04/03/92 05/01/92 06/10/92 07/06/92 08/13/92 10/01/92 10/26/92 01/20/93 02/22/93 04/02/93 04/29/93 01/07/92 02/03/92 03/05/92 04/03/92 05/01/92 06/05/92 07/06/92 08/07/92 10/01/92 10/23/92 01/20/93 02/24/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93 04/29/93	DRY 11.83 7.40 14.42 5.72 4.61 5.20 13.87 8.01 10.37 8.30 6.51 6.54 12.91 5.78 6.90 7.12 DRY 32.08 31.68 29.70 29.06 22.54 25.19 22.09 23.04 23.50 26.09 26.17 27.08 26.72 28.55 27.48 26.97 26.83 DRY 27.95 27.40 25.90 25.90 27.58 26.68 25.25	5953.3 5957.7 5950.7 5959.4 5960.5 5959.9 5951.3 5957.1 5954.8 5958.6 5958.6 5958.2 5958.2 5958.2 5958.2 5958.3 5957.3 5937.3 5937.3 5937.3 5937.3 5937.3 5941.8 5944.9 5943.5 5940.9 5940.8 5940.9 5940.2 5939.9 5940.2 5939.5 5940.1 DRY 5923.5 5924.1 5925.6 5924.9 5924.1

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date	Water	Water
	Measured	Level(ft)	Elevation(ft)
36691 36691 36691 36691 36691 36691 36691 36991 36991 36991 36991 36991 36991 36991 36991 36991 36991 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191 37191	07/06/92 08/13/92 10/01/92 10/26/92 01/20/93 02/22/93 04/02/93 05/05/93 07/14/93 11/04/91 12/02/91 01/07/92 02/06/92 03/02/92 07/09/92 10/09/92 12/07/92 01/14/93 04/01/93 06/09/93 07/02/93 11/04/91 11/12/91 12/02/91 01/07/92 02/04/92 02/10/92 03/05/92 04/03/92 05/01/92 06/24/92 07/02/92 08/11/92 10/01/92 12/09/93 03/01/93 04/02/93 05/05/93 07/14/93 11/04/91	24.96 23.68 25.83 25.04 25.02 24.16 24.88 25.42 25.59 DRY DRY DRY DRY DRY DRY DRY 10.68 DRY 10.55 10.31 10.35 9.94 10.02 10.17 10.18 9.82 5.61 6.64 8.08 8.30 9.15 9.59 10.06 10.26 10.38 10.05 9.72 10.79 13.85	5926.5 5927.8 5926.4 5926.5 5926.6 5926.1 5926.1 5926.1 5925.9 DRY DRY DRY* DRY* DRY* DRY DRY DRY DRY 5961.6 DRY 5937.9 5937.9 5938.1 5938.1 5938.1 5938.1 5938.1 5942.6 5941.6 5940.2 5939.9 5939.1 5938.7 5938.7 5938.2 5938.7 5938.2 5938.7 5938.2 5938.1 5938.2 5938.1 5938.2 5939.9 5939.1 5938.2 5938.5 5937.5 5937.5

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date	Water	Water
	Measured	Level(ft)	Elevation(ft)
37591 37591 37591 37591 37591 37591 37591 37591 37591 37591 37591 37591 37591 37591 37591 37591 37591 37691 37691 37691 37691 37691 37691 37691 37691 37691 37691 37691 37691 37691 37691 37691 37691 37691 37691 37691 37691 37691 37691 37691 37691 37691 37791 37791 37791 37791	Measured  12/09/91 12/16/91 01/07/92 02/04/92 02/25/92 03/03/92 04/03/92 05/01/92 06/10/92 07/06/92 08/13/92 10/01/92 10/28/93 04/08/93 05/03/93 07/07/93 08/19/93 11/04/91 12/09/91 01/07/92 02/03/92 03/03/92 04/03/92 05/01/92 06/22/92 07/06/92 08/13/92 10/01/92 06/22/92 07/06/92 08/13/92 10/01/92 01/20/93 04/08/93 05/03/93 07/07/93 08/17/93 12/18/91 01/07/92 01/20/93 04/08/93	P.32 12.38 10.41 8.91 9.63 12.07 5.73 6.96 7.08 7.64 9.39 9.72 8.00 7.83 8.81 10.68 DRY 18.14 DRY DRY DRY DRY DRY 13.28 17.00 16.90 17.63 18.81 DRY DRY 17.40 19.60 19.60 19.60 19.60 19.60 19.60 19.60 19.60 19.60 19.60 19.60 19.60 19.60 19.60 19.60 19.60 19.60 19.60 19.60 19.60 19.60 19.60 19.60 19.60 19.60	5984.1 5981.0 5983.0 5984.5 5983.8 5987.7 5986.4 5986.3 5985.8 5984.0 5983.7 5982.9 5984.0 5983.7 5985.4 5985.6 5982.7 DRY* DRY* DRY* DRY* DRY* DRY* DRY* DRY* DRY* 5966.4 DRY 5966.4 DRY 5967.6 5966.4 DRY 5967.6 5966.4 DRY 5967.6 5966.4 DRY 5967.6 5966.4 DRY 5968.2 5968.3 5967.6 5966.4 DRY 5968.2 5968.3 5967.6 5966.4 DRY 5968.2 5968.3 5967.6 5966.4 DRY 5968.2 5968.3 5967.6 5968.2 5968.3 5967.6 5968.2 5968.3 5967.6 5968.2
37791	04/21/92	19.39	5984.7
37791	07/01/92	19.07	5985.1

 $[\]star$  Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date	Water	Water
	Measured	Level(ft)	Elevation(ft)
37791 37791 37791 37791 37791 37791 37791 37791 37791 37891 37891 37891 37891 37891 37891 37891 37891 37891 37891 37891 37891 37891 37891 37891 37891 37891 37891 37991 37991 37991 37991 37991 37991 37991 37991 37991 37991 37991 37991 37991 37991 37991			
37991	10/01/92	47.77	5885.7
37991	10/26/92	48.26	5885.2
37991	01/20/93	48.74	5884.8

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3 Groundwater Elevation Data

	ate	Water	Water
	leasured	Level(ft)	Elevation(ft)
37991       0         37991       0         37991       0         38191       0         38191       0         38191       0         38191       0         38191       0         38191       0         38191       0         38191       0         38191       0         38191       0         38191       0         38191       0         38191       0         38291       0         38291       0         38291       0         38291       0         38291       0         38291       0         38291       0         38291       0         38291       0         38291       0         38291       0         38291       0         38291       0         38591       0         38591       0         38591       0         38591       0         38591       0         38591       0	2/22/93 4/02/93 95/03/93 97/14/93 2/02/91 91/07/92 93/05/92 94/03/92 97/06/92 99/04/92 90/01/92 91/20/93 95/14/93 95/14/93 97/14/93 1/07/92 93/05/92 94/03/92 96/01/92 97/02/92 98/03/92 99/04/92 99/11/92 99/11/92 99/11/92 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93 97/14/93	48.89 48.97 47.97 48.54 10.30 10.29 9.83 7.68 8.20 9.22 9.10 11.19 9.83 9.34 9.30 9.70 11.58 DRY DRY DRY DRY DRY DRY DRY DRY	5884.6 5884.5 5885.5 5885.0 5916.1 5916.1 5916.5 5918.2 5917.1 5917.3 5917.3 5917.0 5917.1 5916.7 5914.8 DRY DRY* DRY* DRY* DRY* DRY* DRY* DRY* DRY* DRY* DRY* DRY DRY DRY DRY DRY S916.0 5916.0 5916.6 5916.6 5916.6 5916.6 5916.6 5916.6 5916.6 5916.6 5916.6 5916.6 5916.6 5916.6 5916.6 5916.6 5916.6 5916.6 5916.6 5916.6 5916.6 5916.6 5916.6 5916.6 5916.6 5916.6 5916.6 5916.6 5916.6 5916.6 5916.6 5916.6 5916.6 5916.6 5916.8 5916.8

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date	Water	Water
	Measured	Level(ft)	Elevation(ft)
38591 38591 38591 38591 38591 38591 38591 38591 38591 38891 38891 38891 38891 38891 38891 38891 38891 38891 38891 38891 38891 38891 38891 38891 38891 38891 38891 38891 38891 38891 38891 38891 38891 38891 38891 38891 38891 38891 38891 38891 38891 38891 38891 38891 38891 38891 38891 38891 38891 38891 38891 38891 38891 38891 38891	Measured  05/08/92 07/01/92 08/18/92 10/01/92 10/20/92 01/19/93 03/08/93 04/07/93 04/28/93 07/08/93 12/09/91 01/09/92 02/03/92 03/03/92 04/06/92 05/01/92 06/01/92 07/08/92 10/01/92 11/03/92 12/07/92 01/20/93 02/02/93 03/26/93 04/02/93 05/14/93 06/17/93 07/02/93 01/09/92 03/03/92 04/06/92 05/01/92 04/06/92 05/01/92 05/01/92 01/09/92 03/03/92 04/06/92 05/01/92 07/08/92 10/01/92	8.48 8.89 9.22 9.13 8.96 8.57 8.39 7.83 8.25 9.09 9.66 DRY	Elevation(ft)  5858.1 5857.7 5857.4 5857.4 5857.6 5858.0 5858.2 5858.7 5858.3 5857.5 5856.9  DRY  DRY*  DRY*  DRY*  DRY*  DRY*  DRY*  DRY*  DRY*  DRY  DRY
38991	01/20/93	19.17	5876.2
38991	04/02/93	17.32	5878.1
38991	05/14/93	17.94	5877.5

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date	Water	Water
	Measured	Level(ft)	Elevation(ft)
Location  38991 38991 38991 39191 39191 39191 39191 39191 39191 39191 39191 39191 39191 39191 39191 39191 39191 39191 39291 39291 39291 39291 39291 39291 39291 39291 39291 39291 39291 39291 39291 39291 39291 39291 39291 39291 39291 39291 39291 39291 39291 39291 39291 39291 39291 39291 39291 39291 39291 39291 39291 39291 39291 39291 39291 39291 39291 39291			5876.9 5879.4 5878.7 5884.0 5880.4 5880.3 5881.4 5889.0 5888.3 5886.2 5884.5 5883.7 5882.0 5883.7 5882.0 5883.7 5882.0 5883.7 5882.0 5883.7 5882.5 5878.0 5878.0 5878.0 5878.0 5878.0 5878.0 5881.3 5890.8 5888.3 5885.9 5884.4 5881.8 5880.9 5883.8 5880.9 5883.8 5882.3 5883.7 5883.0 5998.1 5998.0 6000.1 5999.0
39691	05/11/92	9.65	5998.7
39691	07/06/92	10.59	5997.7
39691	08/06/92	10.92	5997.4

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

39691       10/01/92       12.88       5995.4         39691       01/20/93       10.60       5997.7         39691       04/02/93       10.64       5997.7         39691       05/03/93       9.10       5999.2         39691       07/07/93       10.36       5998.0         39691       09/18/93       10.36       5998.0	Location	Date Measured	Water Level(ft)	Water Elevation(ft)
39991 10/15/92 11.78 5920.58 39991 10/15/92 11.62 5920.74 39991 10/21/92 11.70 5920.66 39991 10/29/92 23.17 5909.19 39991 11/06/92 12.52 5919.84 39991 11/19/92 24.31 5908.05 39991 11/19/92 24.31 5908.05 39991 11/19/92 24.31 5908.05 39991 12/04/92 24.78 5907.58 39991 12/16/92 24.78 5907.58 39991 12/16/92 24.46 5907.90 39991 12/16/92 24.46 5907.90 39991 12/216/92 24.46 5907.90 39991 01/20/93 23.17 5909.19 39991 01/20/93 23.17 5909.19 39991 01/20/93 10.57 5921.79 39991 03/05/93 10.57 5921.79 39991 03/05/93 10.57 5921.79 39991 03/05/93 10.57 5921.79 39991 03/05/93 10.65 5921.86 39991 04/02/93 10.66 5922.30 39991 04/16/93 10.00 5922.30 39991 04/16/93 10.00 5922.30 39991 04/16/93 10.11 5922.25 39991 04/30/93 10.11 5922.25 39991 04/30/93 10.11 5922.25 39991 05/07/93 10.48 5921.88 39991 05/07/93 10.48 5921.88 39991 05/07/93 10.63 5921.73 39991 05/07/93 10.63 5921.73 39991 05/07/93 10.63 5921.73 39991 05/07/93 11.98 5920.96 39991 06/18/93 11.00 5921.36 39991 06/18/93 11.29 5921.07 39991 06/18/93 11.12 5921.24 39991 07/15/93 11.98 5920.38 39991 07/15/93 11.98 5920.38 39991 07/15/93 11.98 5920.38 39991 07/15/93 11.98 5920.38 39991 07/15/93 11.98 5920.38 39991 07/15/93 11.98 5920.38 39991 07/15/93 11.98 5920.38 39991 07/15/93 11.98 5920.38 39991 07/15/93 11.98 5920.38	39691 39691 39691 39691 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 39991 45391 45391 45391 45391 45391 45391 45391 45391 45391 45391 45391 45391 45391 45391 45391 45391 45391 45391 45391 45391 45391	01/20/93 04/02/93 05/03/93 07/07/93 08/18/93 10/01/92 10/15/92 10/21/92 10/29/92 11/06/92 11/19/92 11/19/92 12/04/92 12/11/92 12/16/92 12/29/92 01/20/93 03/05/93 03/12/93 03/12/93 03/12/93 03/12/93 04/16/93 04/16/93 04/16/93 04/16/93 05/07/93 05/07/93 05/14/93 05/21/93 06/04/93 06/11/93 06/11/93 06/11/93 06/11/93 06/11/93 06/11/93 06/11/93 07/02/93 07/02/93 07/02/93 07/15/93 10/01/92 10/15/92 10/21/92 10/29/92	10.60 10.64 9.10 10.36 10.95 11.78 11.62 11.70 23.17 12.52 24.31 24.31 24.31 24.46 24.22 23.17 10.57 10.92 10.86 10.00 10.11 10.31 10.48 10.76 10.63 10.63 10.63 11.00 11.12 11.53 11.98 11.98 11.98 11.98 11.98 11.98 11.98 11.98 11.98 11.98 11.98 11.98 11.98 11.98 11.98 11.98	5997.7 5997.7 5999.2 5998.0 5997.4 5920.58 5920.74 5920.66 5909.19 5919.84 5908.05 5907.58 5921.59 5907.58 5921.59 5921.69 5921.79 5921.44 5921.50 5922.36 5922.36 5922.36 5922.36 5922.36 5922.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36 5921.36

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
45391	11/19/92	11.20	5883.04
45391	12/04/92	10.89	5883.35
45391	12/11/92	24.54	5869.70
45391	12/17/92	10.74	5883.50
45391	12/29/92	10.91	5883.33
45391	01/20/93	10.57	5883.67
45391	01/28/93	10.75	5883.49
45391	02/19/93	23.11	5871.13
45391	02/25/93	23.12	5871.12
45391	03/05/93	DRY	DRY
45391 45301	03/12/93	25.33	5868.91
45391 45391	03/26/93 04/02/93	25.32 25.34	5868.92 5868.90
45391 45391	04/16/93	23.24	5871.00
45391	04/23/93	DRY	DRY
45391	04/30/93	22.43	5871.81
45391	05/07/93	22.09	5872.15
45391	05/14/93	21.87	5872.37
45391	05/21/93	21.92	5872.32
45391	05/28/93	22.02	5872.22
45391	06/04/93	22.13	5872.11
45391	06/10/93	22.10	5872.14
45391	06/18/93	24.99	5869.25
45391	06/25/93	24.56	5869.68
45391	07/02/93	23.59	5870.65
45391	07/09/93	22.92	5871.32
45391	07/15/93	22.71	5871.53
45391 45301	07/23/93	24.28	5869.96
45391 45391	07/30/93 08/06/93	25.58 23.32	5868.66 5870.92
45391 45391	08/13/93	23.32 22.97	5871.27
45391	08/20/93	22.76	5871.48
45391	08/27/93	22.64	5871.60
45391	09/03/93	22.54	5871.70
45391	09/10/93	22.46	5871.78
45391	09/17/93	22.35	5871.89
45391	09/22/93	22.34	5871.90
45391	10/01/93	24.61	5869.63
45391	10/08/93	24.02	5870.22
45391	10/15/93	23.59	5870.65
45391	10/21/93	23.41	5870.83
45391	10/29/93	24.94	5869.30

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
45391	11/05/93	24.28	5866.8
45391	11/11/93	23.46	5867.7
45391	11/19/93	24.60	5866.5
45391	12/03/93	DRY	DRY
45391	12/10/93	DRY	DRY
45391	12/16/93	22.30	5868.8
45391 45301	12/21/93	22.30	5868.8 5866.7
45391 45391	12/29/93 01/07/9 <b>4</b>	24.41 24.35	5866.8
45391 45391	01/07/94	24.35	5866.8
45391	01/20/94	24.34	5866.8
10092	09/15/92	20.10	5880.370
10092	09/18/92	20.10	5880.370
10092	09/24/92	22.34	5878.130
10092	10/01/92	22.33	5878.140
10092	10/09/92	22.30 22.31	5878.170
10092	10/15/92	22.31	5878.160
10092	10/21/92	22.33	5878.140
10092	10/28/92	22.33	5878.140
10092	11/06/92	22.61	5877.860 5877.870
10092 10092	11/19/92 12/04/92	22.60 22.62	5877.850
10092	12/11/92	22.61	5877.860
10092	12/16/92	22.63	5877.840
10092	12/29/92	DRY	DRY
10092	01/20/93	DRY	DRY
10092	02/19/93	DRY	DRY
10092	03/05/93	DRY	DRY
10092	03/12/93	22.94	5877.530
10092	03/26/93	22.95	5877.520
10092	04/02/93	22.96	5877.510 5877.510
10092 10092	04/16/93 04/23/93	22.96 DRY	DRY
10092	04/23/93	DRY	DRY
10092	05/07/93	DRY	DRY
10092	05/14/93	DRY	DRY
10092	05/21/93	DRY	DRY
10092	05/28/93	DRY	DRY
10092	06/04/93	DRY	DRY
10092	06/11/93	DRY	DRY
10092	06/18/93	DRY	DRY
10092	06/25/93	DRY	DRY

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
10092 10092 10092 10092 10092 10092 10092 10192 10192 10192	07/02/93 07/09/93 07/15/93 07/23/93 07/30/93 08/06/93 08/13/93 08/20/93 09/17/92 09/18/92 09/24/92	DRY DRY DRY DRY DRY DRY DRY DRY DRY 18.81 18.81 21.00	DRY DRY DRY DRY DRY DRY DRY DRY DRY 5905.490 5903.300
10192 10192 10192 10192 10192 10192 10192 10192 10192 10192 10192 10192 10192 10192 10192	10/01/92 10/09/92 10/15/92 10/21/92 11/06/92 11/19/92 12/04/92 12/11/92 12/11/92 12/17/92 12/29/92 01/20/93 02/19/93 03/05/93 03/12/93 03/26/93 04/02/93	DRY	DRY
10192 10192 10192 10192 10192 10192 10192 10192 10192 10192 10192 10192 10192 10192 10192 10192	04/16/93 04/23/93 04/30/93 05/07/93 05/14/93 05/21/93 05/28/93 06/04/93 06/11/93 06/18/93 06/25/93 07/02/93 07/15/93 07/23/93	DRY	DRY

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
Location  10192 10192 10192 10192 10292 10292 10292 10292 10292 10292 10292 10292 10292 10292 10292 10292 10292 10292 10292 10292 10292 10292 10292 10292 10292 10292 10292 10292 10292 10292 10292 10292 10292 10292 10292 10292 10292 10292 10292 10292 10292 10292 10292 10292 10292 10292 10292 10292 10292 10292 10292			
10292	07/09/93	DRY	DRY

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
Location  10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392 10392		Level(ft)  28.78  28.95  DRY  DRY  DRY  DRY  DRY  DRY  DRY  DR	Elevation(ft)  5903.270  5903.100  DRY  DRY  DRY  DRY  DRY  DRY  DRY  D
10492	10/09/92	30.15	5902.660

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
Location  10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492 10492			
10492 10592 10592 10592 10592 10592	08/20/93 09/18/92 09/21/92 09/24/92 10/01/92 10/09/92	18.53 18.34 26.37 25.49 24.55	5902.250 5919.400 5919.590 5911.560 5912.440 5913.380

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592 10592	Measured  10/15/92 10/21/92 10/27/92 11/06/92 11/19/92 11/19/92 12/04/92 12/11/92 12/17/92 12/29/92 01/20/93 01/28/93 02/19/93 02/25/93 03/12/93 03/12/93 03/12/93 03/12/93 04/16/93 04/16/93 04/23/93 04/30/93 05/07/93 05/14/93 05/21/93 05/21/93 05/21/93 05/21/93 05/21/93 06/11/93 06/11/93 06/11/93 06/11/93 06/11/93 06/11/93 07/02/93 07/02/93 07/02/93 07/02/93 07/03/93 07/30/93 08/06/93 08/13/93	Level(ft)  24.00 23.49 23.02 26.13 24.86 25.45 24.80 24.23 25.40 23.50 22.97 24.52 24.06 25.83 25.23 24.56 24.31 DRY 24.54 23.65 22.85 22.30 21.14 20.33 19.56 18.78 18.13 27.16 26.10 25.22 24.42 23.88 25.82 25.16 24.50 23.98	
10592 10692 10692 10692 10692	08/20/93 09/18/92 09/21/92 09/24/92 10/01/92	23.46 5.04 5.03 5.20 5.34	5938.560 5938.570 5938.400 5938.260

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692 10692	10/09/92 10/15/92 10/21/92 10/26/92 11/06/92 11/19/92 11/30/92 12/04/92 12/11/92 12/11/92 12/17/92 12/29/92 01/20/93 01/28/93 02/19/93 02/25/93 03/12/93 03/12/93 03/12/93 03/19/93 04/02/93 04/16/93 04/23/93 04/30/93 05/07/93 05/21/93 05/21/93 05/21/93 06/10/93 06/10/93 06/10/93 06/10/93 07/02/93 07/02/93 07/02/93 07/02/93 07/15/93 07/15/93 07/15/93 07/15/93 07/15/93 07/15/93 07/15/93 07/15/93 07/15/93 07/15/93 07/15/93 07/15/93 07/15/93 07/15/93 07/15/93 07/15/93 07/15/93 07/15/93 07/15/93 07/15/93 07/15/93 07/15/93 07/15/93 07/15/93 07/15/93 07/15/93 07/15/93 07/15/93 07/15/93 07/15/93 07/15/93 07/15/93 07/15/93 07/15/93 07/15/93 07/15/93	5.21 5.26 5.58 7.70 5.75 5.81 5.82 5.40 5.53 5.47 5.51 5.77 5.20 4.53 4.15 4.24 4.35 4.62 4.81 4.86 5.36 5.32 5.42 5.36 6.09 6.58 23.04 23.04	5938.390 5938.340 5938.020 5935.900 5937.790 5937.790 5937.780 5938.200 5938.450 5938.070 5938.070 5938.130 5938.090 5937.780 5938.320 5938.320 5938.320 5938.320 5938.320 5938.320 5938.320 5938.320 5938.320 5938.500 5939.450 5939.360 5939.450 5939.450 5939.450 5939.450 5939.450 5939.360 5939.360 5939.360 5939.360 5939.360 5939.360 5939.360 5939.360 5939.350 5938.820 5938.820 5938.820 5938.790 5938.790 5938.790 5938.790 5938.790 5938.790 5938.790 5938.790 5938.790 5938.790 5938.790 5938.790 5938.790 5938.790 5938.790 5938.790 5938.790 5938.790 5938.790 5938.790 5938.790 5938.790 5938.790 5938.790 5938.790 5938.790 5938.790 5938.790 5938.790 5938.790 5938.790 5938.790 5938.790 5938.790 5938.790
10792	09/24/92	25.20	5891.900

 $[\]star$  Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792 10792	10/01/92 10/09/92 10/15/92 10/21/92 10/27/92 11/06/92 11/19/92 11/30/92 12/04/92 12/11/92 12/11/92 12/17/92 12/29/92 01/20/93 01/28/93 02/25/93 03/05/93 03/12/93 03/12/93 03/12/93 04/02/93 04/30/93 04/30/93 05/07/93 05/07/93 05/14/93 05/21/93 05/21/93 06/10/93 06/10/93 06/10/93 06/10/93 06/10/93 07/02/93 07/02/93 07/02/93 07/02/93 07/03/93 08/06/93 08/13/93 08/20/93 09/17/92	24.49 23.89 23.64 23.46 23.29 24.46 23.93 24.68 24.15 23.81 24.03 23.08 23.07 23.53 23.53 24.52 24.04 23.68 23.32 24.22 DRY 23.36 23.18 23.16 23.12 23.10 23.14 24.72 24.20 23.89 23.68 23.56 24.66 24.26 23.99 23.87 DRY	5892.610 5893.210 5893.460 5893.640 5893.810 5892.640 5893.170 5892.420 5892.950 5893.290 5893.290 5893.570 5894.030 5893.570 5893.570 5893.770 5893.770 5893.770 5893.770 5893.770 5893.770 5893.740 5893.780 5893.780 5893.780 5893.920 5893.780 5893.920 5893.940 5893.940 5893.940 5893.940 5893.940 5893.940 5893.940 5893.940 5893.940 5893.940 5893.940 5893.940 5893.940 5893.940 5893.940 5893.940 5893.940 5893.940 5893.940 5893.940 5893.940 5893.940 5893.940 5893.940 5893.940 5893.940 5893.940 5893.940 5893.940 5893.960 5893.960 5893.960 5893.960 5893.960 5893.960 5893.960 5893.960 5893.960 5893.960 5893.960 5893.960 5893.960 5893.960 5893.960 5893.960 5893.960 5893.960 5893.960 5893.960 5893.960 5893.960 5893.960 5893.960 5893.960 5893.960 5893.960 5893.960 5893.960 5893.960 5893.960 5893.960 5893.960 5893.960 5893.960 5893.960 5893.960 5893.960 5893.960
10892	09/18/92	DRY	DRY

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892 10892	09/24/92 10/01/92 10/09/92 10/15/92 10/15/92 11/06/92 11/19/92 12/04/92 12/11/92 12/17/92 12/29/92 01/20/93 02/19/93 03/05/93 03/12/93 03/26/93 04/16/93 04/16/93 04/23/93 04/30/93 05/07/93 05/21/93 05/21/93 05/21/93 05/21/93 06/04/93 06/11/93 06/11/93 06/11/93 06/11/93 06/11/93 07/02/93 07/02/93 07/02/93 07/02/93 07/03/93 07/15/93 07/23/93 07/30/93 08/06/93 08/13/93 09/15/92 09/18/92 10/01/92 10/01/92 10/09/92	DRY	DRY
10992	10/15/92	30.96	5867.600

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992 10992	10/21/92 10/27/92 11/06/92 11/19/92 12/04/92 12/11/92 12/16/92 12/29/92 01/20/93 01/28/93 02/19/93 02/25/93 03/12/93 03/12/93 03/12/93 03/12/93 04/02/93 04/02/93 04/16/93 04/23/93 04/30/93 05/21/93 05/21/93 05/21/93 05/21/93 06/10/93 06/10/93 06/10/93 06/10/93 07/02/93 07/02/93 07/02/93 07/02/93 07/03/93 07/03/93 07/15/93 07/23/93 07/30/93 08/13/93 08/13/93 08/13/93 09/15/92 09/18/92 10/01/92 10/01/92 10/09/92	30.84 30.70 32.62 32.13 32.42 32.16 32.90 32.56 31.77 31.61 31.98 31.81 32.63 32.33 32.05 32.15 DRY 32.40 DRY 31.83 31.68 31.44 31.23 30.98 30.78 31.65 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32.26 32 32 32 32 32 32 32 32 32 32 32 32 32	5867.720 5867.860 5865.940 5866.430 5866.140 5866.560 5866.790 5866.790 5866.750 5866.750 5866.750 5866.750 5866.750 5866.750 5866.750 5866.750 5866.750 5866.750 5866.750 5866.750 5866.750 5866.700 5866.700 5867.780 5867.780 5867.780 5867.780 5867.780 5867.780 5867.780 5867.780 5867.780 5867.780 5867.780 5866.300 5866.300 5866.300 5866.300 5866.300 5866.300 5866.300 5866.300 5866.300 5866.300 5866.300 5866.300 5866.300 5866.300 5866.300 5866.300 5866.300 5866.300 5866.300 5866.300 5866.300 5866.300 5866.300 5866.300 5866.300 5866.300 5866.300 5866.300 5866.300 5866.300 5866.300 5866.300 5866.300 5866.300 5866.300 5866.300 5866.300
11092	10/15/92	21.02	5874.290

^{*} Indicates water level may have been measured even though records indicate well was dry.

Table B-3
Groundwater Elevation Data

Location	Date Measured	Water Level(ft)	Water Elevation(ft)
11092 11092 11092 11092 11092 11092 11092 11092 11092 11092 11092 11092 11092 11092 11092 11092 11092 11092 11092 11092 11092 11092 11092 11092 11092 11092 11092 11092 11092 11092 11092 11092 11092 11092 11092 11092 11092	10/21/92 10/28/92 11/06/92 11/19/92 12/04/92 12/11/92 12/16/92 12/29/92 01/20/93 01/28/93 02/19/93 02/25/93 03/05/93 03/12/93 03/26/93 04/02/93 04/16/93 04/23/93 04/30/93 05/14/93 05/21/93 05/21/93 05/21/93 06/10/93 06/10/93 06/10/93 06/10/93 07/02/93 07/02/93 07/02/93 07/02/93 07/02/93	Level(ft)  20.96 20.92 21.85 21.66 22.38 22.32 22.48 22.31 22.30 22.42 22.40 22.66 22.64 22.63 22.68 DRY 22.68 DRY 22.49 DRY 22.49 DRY 22.28 22.16 22.28 22.28 22.28 22.36 22.36 22.38 22.38	5874.350 5874.390 5873.460 5873.650 5872.930 5872.990 5873.040 5872.830 5873.010 5872.890 5872.650 5872.660 5872.660 5872.630 DRY 5872.630 DRY 5872.820 DRY 5872.950 5873.150 5873.150 5873.260 5873.380 5873.730 5872.730 5872.950 5872.950 5872.950 5872.950 5872.950 5872.950 5872.950 5872.950 5872.950 5872.950 5872.950
11092 11092 11092	08/06/93 08/13/93 08/20/93	22.24 22.10	5873.070 5873.210

^{*} Indicates water level may have been measured even though records indicate well was dry.

Attachment B3-2 Well Hydrographs

> Phase III RFI/RI Report





































































































Preliminary Assessment Memorandum
Hydrogeology and Ground Water Contamination
at the Western Terminus
of the French Drain

Rocky Flats Plant 881 Hillside Area (Operable Unit No. 1)

U.S. Department of Energy Rocky Flats Plant Golden, Colorado

September 1992

# TABLE OF CONTENTS

Secti	<mark>ion</mark>	Page
1.0	INTRODUCTION	1
2.0	HYDROGEOLOGY	1
3.0	ORGANIC CONTAMINANTS IN UPPER HSU GROUND WATER IN WESTERN OUI	4
4.0	CURRENT INFORMATION ON THE HYDROGEOLOGICAL IMPACTS OF FRENCH DRAIN OPERATION	7
5.0	IM/IRA FRENCH DRAIN MONITORING PROGRAM AND ROUTINE GROUND WATER SAMPLING PROGRAM	10
6.0	<u>SUMMARY</u>	12
7.0	REFERENCES	12

# LIST OF TABLES

Tab	<u>ble</u>	<u>Page</u>
1	Monthly Water Level Measurements for Monitoring Wells in the Western Portion of OU1	8

# LIST OF FIGURES

Figu	<u>ire</u>	Page
1	Upper Hydrostratigraphic Unit Water Table Elevation Map, First Quarter 1992	2
2	Upper Hydrostratigraphic Unit Saturated Thickness Map, First Quarter 1992	3
3	Organic Compounds Detected in Ground Water, Fourth Quarter 1991	5
4	Organic Compounds Detected in Ground Water, First Quarter 1992	6
5	Upper Hydrostratigraphic Unit Water Table Elevation Map, Second Quarter 1992	9
6	Sampling Locations for Interim Measure/Interim Remedial Action French Drain Monitoring Program and the Routine Ground Water Monitoring Program	11

### 1.0 INTRODUCTION

This memorandum presents the most recent evaluation of hydrogeologic conditions and potential ground water contamination near the western terminus of the french drain located south of Building 881. The conditions depicted in this memorandum were assessed using data from the recent Phase III RCRA (Resource Conservation and Recovery Act) Facility Investigation/Remedial Investigation (RFI/RI) and the Interim Measure/Interim Remedial Action (IM/IRA) french drain monitoring program for Operable Unit No. 1 (OU1). The intent of this evaluation is to illustrate that any potentially contaminated ground water in the upper hydrostratigraphic unit (HSU) in the western portion of OU1 will be intercepted by the french drain and that potentially contaminated ground water originating from sources further west of OU1 can be evaluated under the IM/IRA french drain monitoring program and the routine ground water monitoring programs. If contaminated ground water is detected in the colluvium during these monitoring programs, the possibility of adding additional monitoring wells or piezometers may be evaluated.

### 2.0 HYDROGEOLOGY

In the vicinity of the western terminus of the french drain, the upper HSU is comprised of colluvium and fill material. In general, the upper HSU in this area is apparently uniformly saturated, as illustrated by the water table map (Figure 1), which shows the configuration of the upper HSU water table during January 1992 prior to completion of the french drain. Figure 2 presents the saturated thickness of the upper HSU. Based on the water table contours and the saturated thicknesses presented for this period, ground water in the upper HSU in this area flows to the south and east, predominantly constrained by channel-like features occurring within the low-permeability bedrock surface. The westernmost flow path (Figure 1) intersects the french drain in the vicinity of the drain's western terminus. This indicates that any potentially contaminated ground water in the westernmost portion of OU1 would be intercepted by the french drain even before the effects of drawdown increase the capture zone.





Appendix A of the IM/IRA French Drain Performance Monitoring Plan (DOE 1992) presents ground water modeling results that illustrate the impact of drawdown in the upper HSU due to operation of the french drain. Qualitative evaluation of the modeling results indicate that water table contours will bend around the terminus of the french drain, in response to changes in hydraulic gradient caused by the constant head discharge boundary represented by the french drain, directing ground water flow paths originating west of the french drain toward the french drain. Time series modeling results, also presented in Appendix A, show that as the french drain continues to operate, the localized drawdown around the western terminus of the french drain will increase and cause the lateral extent of the capture zone to increase. Therefore, as operational time increases, colluvial ground water residing further and further west of the western terminus will be drawn toward the french drain and ultimately captured.

3.0 ORGANIC CONTAMINANTS IN UPPER HSU GROUND WATER IN WESTERN OU1 Figures 3 and 4 illustrate the analytical results of ground water sampling conducted during the OU1 Phase III RFI/RI and subsequent sampling in the vicinity of the western terminus of the french drain. These results indicate that organic contaminants occur at very low concentrations upgradient of the western terminus at wells 0187, 5187, 35391, and 37791. These detections do not exceed contaminant specific Maximum Contaminant Levels and were not repeated in subsequent sampling events. Also, the distribution and concentrations of organics detected do not indicate a continual source of contamination, nor do they indicate the presence of a plume of contaminated ground water. As the ground water upgradient of the french drain migrates down the hillside, degradation and dilution of organic compounds is expected to occur primarily due to low average horizontal ground water flow velocities (calculated at only 30 to 60 feet per year) and from fresh water recharge events (precipitation). Ground water flow directions and predicted drawdown in the upper HSU indicate that the french drain will ultimately intercept ground water from these wells as it migrates down the hillside.





# 4.0 <u>CURRENT INFORMATION ON THE HYDROGEOLOGICAL IMPACTS OF</u> FRENCH DRAIN OPERATION

Water levels have been reported for the OU1 Phase III RFI/RI monitoring wells and piezometers since the french drain was completed in February 1992 (Table 1). Water levels have dropped approximately 4 feet upgradient of the french drain at monitoring well 35691 since the french drain became operational, even during the wetter spring and summer months. Water levels further upgradient of the french drain (monitoring wells 0187, 5387, and 5487) have not decreased as dramatically. The localized lowering of the water table near monitoring well 35691 can be attributed to the loss of ground water recharge to this area from the Building 881 footing drain system. Water from the Building 881 footing drain system was historically discharged to the skimming pond located south of Building 881. Upon completion of the french drain, this discharge was piped directly into the french drain and is no longer a source of recharge to the upper HSU. Figure 5 illustrates the lowered water table in the western portion of OU1 during the high water table conditions of spring. The lowered water table confirms, in part, the drawdown effect of the completed french drain system.

Field observations of the western terminus area made September 18, 1992 indicate that the water table in the colluvium south of Building 850, west of the western terminus area, is near the surface. This was evident based on high water levels in the south interceptor ditch west of the french drain and based on the presence of seeps along the break in slope above the south interceptor ditch in this area. Recharge to this area occurs from surface water run off observed in ditches eminating from culverts and discharge pipes near the rim of the valley and under flow of groundwater from the Rocky Flats Alluvium.

The high water table south of Building 850 confirms that a significant groundwater gradient exists toward the western terminus where groundwater elevations and water levels in the south interceptor ditch are lower.

•	A Lance Towns of Street	Mention of OUI	Aonitoring Wells	in the Western P	ortion of OU1		Page 1 of 1
Table 1 Mont	11y Water Level II	FEB '92	MAR '92	APR '92	MAY '92	JUNE '92	JULY '92
Location	27 1105			•		l	1
4986	5918.67	Well destroyed d	stroyed during french drain construction	n construction	1		
7910	5986.09	5984.16	l	5986.16	5984.48	1	5982.80
/910	غ	!	ļ	Dry	i	1	Dry
5187	r i			\$960.04*	1	l	5959.52*
5287	5959.98*	1					5054.46
5387	5956.82	1	1	5956.45*	1	İ	01:1000
5487	5954.33	Dry	5954.90	5953.88*	Dry	5955.04	5953.52
21701	Drv	5870.58*	5870.72	5873.60	5870.82*	1	5869.75
16/16		2	Dry	Dry	Dry	Dry	Dry
35391	y d		5036.03	5975 33	5925.24	١	5924.91
35691	5929.31	5926.50*	3943.03			ć	Č
35991	Dry	Dry	Dry	Dry	Dry	C _T	Sign 1
26101	5953.34	<i>5957.77</i>	5950.75	5959.45	5960.56	5959.97	5951.30
36191	Drv	Dry	Dry	i	l	1	Dry
37701	5982.98	1	5983.82	5984.72•	1	1	5985.11
39691	Dry	Dry	Dry	6000.12	Dry	1 .	Dry

Average of 2 measurements collected
No data available
Water level below bottom of screen or bedrock contact ΙŽ



5.0 IM/IRA FRENCH DRAIN MONITORING PROGRAM AND ROUTINE GROUND WATER SAMPLING PROGRAM

To confirm the pre-operational interpretation of ground water flow path directions and

effectiveness of the french drain during its operation, additional monitoring wells were installed

during August 1992 under the IM/IRA french drain monitoring program. Figure 6 shows the

locations of six wells in the vicinity of the western terminus. The capture zone around the

western terminus of the french drain will be evaluated using water levels from these monitoring

wells located south and west of the french drain.

The newly installed IM/IRA french drain monitoring program wells will be sampled quarterly.

Field parameters such as pH, specific conductivity, and temperature will be measured. Samples

collected will be analyzed for Contract Laboratory Program (CLP) Target Compound List

organics including volatiles, semivolatiles, and pesticides/polychlorinated biphenyls, and CLP

Target Analyte List metals, radionuclides, and other inorganics. Samples of surface water runoff

from the west parking lot at Building 850 will be collected quarterly and analyzed for the same

suite of analytes called for by the IM/IRA french drain monitoring program. Surface water

samples from the South Interceptor Ditch will be collected and analyzed as part of the routine

ground water sampling program (Figure 5).

Wells sampled during the OU1 Phase III RFI/RI will continue to be sampled each quarter under

the routine ground water monitoring program.

The water level data collected under the OU1 Phase III RFI/RI, the IM/IRA french drain

monitoring program and the routine ground water monitoring program at and near the OU1 site

will continue to be evaluated to determine the hydrological conditions upgradient and around the

western terminus of the french drain. Any potential ground water contamination detected at

monitoring wells FD05A and FD04A will also be evaluated. Potential source areas will be

identified by comparing the types and concentrations of analytes detected. If potential source

areas cannot be determined using the existing array of wells and sampling locations, it may be

10

Preliminary Assessment Memorandum Western Terminus of French Drain September 1992

881/0090 9/22/92 8:15 am ap



recommended that additional monitoring wells or piezometers be installed upgradient or west of monitoring wells FD05A and FD04A. These wells or piezometers could be installed under the existing IM/IRA french drain monitoring Program if necessary.

#### 6.0 **SUMMARY**

Based on the data presented, no cohesive or distinct plumes of contaminated ground water exist downgradient of the western portion of OU1. Likewise, it is unlikely that potentially contaminated ground water originating within the western boundaries of OU1 could bypass the western terminus of the french drain. Additional monitoring wells have been installed west of the western terminus as part of the IM/IRA french drain monitoring program to evaluate the effectiveness of the french drain. Quarterly sampling of ground water and surface water will be performed under the IM/IRA program as well as the routine ground water monitoring program. Analytical results from these programs will be evaluated to determine the presence or absence of other potential ground water contamination sources west of OU1. Based on the results of these sampling programs, additional monitoring wells or piezometers may be installed under the IM/IRA french drain monitoring program.

## 7.0 REFERENCES

DOE. 1992. Final Interim Measure/Interim Remedial Action French Drain Performance Monitoring Plan, Rocky Flats Plant, 881 Hillside Area (Operable Unit No. 1), May 1992.

Appendix B5
Surface Water Flow Data

LOCATION	SAMPLE DATE	FLOW RATE (cfs)
SW029	20-AUG-86	
SW029	26-MAY-87	
SW029	10-NOV-87	
SW029	23-JUN-88	
SW029	28-MAR-89	
SW029 SW029	24-may-89 22-jun-89	
SW029	22-35N-69 20-JUL-89	
SW029	11-AUG-89	
SW029	25-SEP-89	
SW029	20-OCT-89	
SW029	09-NOV-89	
SW029	08-DEC-89	
SW029	16-JAN-90	
SW029	08-FEB-90	0.20
SW029 SW029	10-MAY-90 06-JUN-90	0.38 NO FLOW
SW029	17-JUL-90	NO FLOW
SW029	09-AUG-90	NO FLOW
SW029	12-SEP-90	NO FLOW
SW029	03-OCT-90	NO FLOW
SW029	08-NOV-90	NO FLOW
SW029	05-DEC-90	NO FLOW
SW029	09-JAN-91	NO FLOW
SW029	20-FEB-91	NO FLOW
SW029 SW029	04-APR-91 09-MAY-91	0.246
SW029	13-JUN-91	NO FLOW
SW029	11-JUL-91	NO FLOW
SW029	08-AUG-91	0.2885
SW029	26-SEP-91	NO FLOW
SW029	09-OCT-91	NO FLOW
SW029	13-NOV-91	NO FLOW
SW029	09-JAN-92	NO FLOW
SW029	02-APR-92 04-NOV-92	NO FLOW NO FLOW
SW029 SW029	24-MAR-93	NO FLOW
SW031	20-AUG-86	NO 1 DON
SW031	26-MAY-87	
SW031	28-JUN-88	
SW031	30-MAR-89	
SW031	17-MAY-89	
SW031	27-JUN-89	
SW031	21-JUL-89	
SW031	22-AUG-89	
SW031	26-SEP-89 24-OCT-89	
SW031 SW031	17-NOV-89	
SW031	14-DEC-89	
SW031	11-JAN-90	
SW031	20-FEB-90	
SW031	14-MAR-90	
SW031	15-MAY-90	NO FLOW
SW031	11-JUN-90	
SW031	19-JUL-90	
SW031 SW031	15-AUG-90 13-SEP-90	NO FLOW
SW031	13-SEP-90 10-OCT-90	NO FLOW NO FLOW
SW031	27 <b>-</b> NOV-90	NO FLOW
SW031	11-DEC-90	NO FLOW
SW031	10-JAN-91	<del></del> - <del></del> - ·-
SW031	20-FEB-91	
SW031	21-MAR-91	

Appendix B5

## Surface Water Flow Data

LOCATION	SAMPLE DATE	FLOW RATE (cfs)
SW031	09-APR-91	
SW031	14-MAY-91	NO FLOW
SW031	20-JUN-91	NO FLOW
SW031	09-JUL-91 12-AUG-91	NO FLOW NO FLOW
SW031 SW031	26-SEP-91	NO FLOW NO FLOW
SW032	20-3EF-91 20-AUG-86	NO FLOW
SW032	26-MAY-87	
SW032	30-JUL-87	
SW032	11-NOV-87	
SW032	21-JUN-88	
SW032	05-APR-89	
SW032	24-MAY-89	
SW032 SW032	21-JUN-89 19-JUL-89	
SW032	04-AUG-89	
SW032	19-SEP-89	
SW032	13-OCT-89	
SW032	15-DEC-89	
SW032	16-JAN-90	
SW032	20-FEB-90	
SW032	23-MAR-90	0.00
SW032	10-MAY-90	0.28
SW032 SW032	07-JUN-90 16-JUL-90	NO FLOW
SW032 SW032	09-AUG-90	.104
SW032	13-SEP-90	.125
SW032	04-OCT-90	0.14
SW032	07-NOV-90	NO FLOW
SW032	04-DEC-90	NO FLOW
SW032	07-JAN-91	NO FLOW
SW032	20-FEB-91	
SW032	04-APR-91	NO ELON
SW032	09-MAY-91	NO FLOW 0.22250
SW032 SW032	13-JUN-91 10-JUL-91	NO FLOW
SW032	07-AUG-91	NO FLOW
SW032	26-SEP-91	NO FLOW
SW032	10-OCT-91	NO FLOW
SW032	13-NOV-91	NO FLOW
SW032	15-JAN-92	NO FLOW
SW032	02-APR-92	NO FLOW
SW033	21-AUG-86	
SW033	01-JUL-88 04-APR-89	
SW033 SW033	24-MAY-89	
SW033	21-JUN-89	
SW033	19-JUL-89	
SW033	04-AUG-89	
SW033	19-SEP-89	
SW033	13-OCT-89	
SW033	15-DEC-89	
SW033	16-JAN-90	
SW033 SW033	20-FEB-90 23-MAR-90	
SW033	23-MAR-90 10-MAY-90	0.21
SW033	07-JUN-90	.29
SW033	16-JUL-90	.24
SW033	13-SEP-90	.07
SW033	04-OCT-90	
SW033	07-NOV-90	NO FLOW
SW033	04-DEC-90	NO FLOW
SW033	07-JAN-91	NO FLOW

Appendix B5

## Surface Water Flow Data

LOCATION	SAMPLE DATE	FLOW RATE (cfs)
SW033	20-FEB-91	
SW033	04-APR-91	
SW033	13-MAY-91	NO FLOW
SW033	13-JUN-91	NO FLOW
SW033	10-JUL-91	NO FLOW
SW033	07-AUG-91	NO FLOW
SW033	26-SEP-91	NO FLOW
SW033	10-OCT-91	NO FLOW
SW033	13-NOV-91	NO FLOW
SW033	15-JAN-92	NO FLOW
SW033	06-APR-92	NO FLOW
SW033	04-NOV-92	NO FLOW
SW033	24-MAR-93	NO FLOW
SW034	20-AUG-86	
SW034	01-JUL-88	
SW034	05-APR-89	
SW034	24-MAY-89	
SW034	21-JUN-89	
SW034	12-JUL-89	
SW034	04-AUG-89	
SW034	19-SEP-89	
SW034	13-OCT-89	
SW034	10-NOV-89	
SW034	15-DEC-89	
SW034	15-JAN-90	
SW034	20-FEB-90	
SW034	23-MAR-90	
SW034	10-MAY-90	0.06
SW034	07-JUN-90	.008
SW034	16-JUL-90	•000
SW034	13-AUG-90	NO FLOW
	13-K0G-90 13-SEP-90	NO FLOW
SW034	04-OCT-90	NO FLOW
SW034 SW034	07-NOV-90	NO FLOW
		NO FLOW
SW034	04-DEC-90	NO FLOW
SW034	07-JAN-91	NO FLOW
SW034	20-FEB-91	
SW034	04-APR-91	No ELON
SW034	09-MAY-91	NO FLOW
SW034	13-JUN-91	NO FLOW
SW034	10-JUL-91	NO FLOW
SW034	08-AUG-91	NO FLOW
SW034	26-SEP-91	NO FLOW
SW034	10-OCT-91	NO FLOW
SW034	18-NOV-91	NO FLOW
SW034	15-JAN-92	NO FLOW
SW034	06-APR-92	NO FLOW
SW034	04-NOV-92	NO FLOW
SW034	24-MAR-93	NO FLOW
SW035	20-AUG-86	
SW035	26-MAY-87	
SW035	29-JUL-87	
SW035	11-NOV-87	
SW035	28-JUN-88	
SW035	30-MAR-89	
SW035	18-MAY-89	
SW035	27-JUN-89	
SW035	21-JUL-89	
SW035	11-AUG-89	
SW035	25-SEP-89	
SW035	20-OCT-89	
SW035	17-NOV-89	
SW035	08-DEC-89	
5,1055	00 DEC-09	

Appendix B5
Surface Water Flow Data

LOCATION	SAMPLE DATE	FLOW RATE (cfs)
SW035	11-JAN-90	
SW035	08-FEB-90	
SW035	14-MAR-90	
SW035	14-MAY-90	
SW035	11-JUN-90	
SW035 SW035	19-JUL-90 16-AUG-90	NO FLOW
SW035	17-SEP-90	NO FLOW
SW035	03-OCT-90	NO FLOW
SW035	27-NOV-90	NO FLOW
SW035	11-DEC-90	NO FLOW
SW035	15-JAN-91	
SW035	20-FEB-91	
SW035	08-APR-91	NO ELON
SW035 SW035	14-MAY-91 25-JUN-91	NO FLOW NO FLOW
SW035	10-JUL-91	NO FLOW
SW035	13-AUG-91	NO FLOW
SW035	05-SEP-91	NO FLOW
SW035	06-NOV-91	NO FLOW
SW035	02-JAN-92	NO FLOW
SW035	08-APR-92	NO FLOW
SW035	10-AUG-92	NO FLOW
SW036 SW036	20-AUG-86 27-JUN-88	
SW036	03-APR-89	
sw036	24-MAY-89	
SW036	28-JUN-89	
SW036	14-JUL-89	
SW036	11-AUG-89	
SW036	22-SEP-89	
SW036	19-OCT-89	
SW036 SW036	09-NOV-89	
SW036	14-DEC-89 12-JAN-90	
sw036	09-FEB-90	
SW036	14-MAR-90	
SW036	14-MAY-90	NO FLOW
SW036	07-JUN-90	
SW036	19-JUL-90	
SW036	08-AUG-90	NO FLOW
SW036	16-AUG-90	
SW036 SW036	13-SEP-90 02-OCT-90	
SW036	20-NOV-90	NO FLOW
sw036	06-DEC-90	No 120W
SW036	15-JAN-91	
SW036	20-FEB-91	
SW036	08-APR-91	
SW036	16-MAY-91	NO FLOW
SW036	25-JUN-91	NO FLOW
SW036	17-JUL-91 13-AUG-91	NO FLOW NO FLOW
SW036 SW036	13-AUG-91 11-SEP-91	NO FLOW NO FLOW
SW036	07-NOV-91	NO FLOW
SW036	02-JAN-92	NO FLOW
SW036	08-APR-92	NO FLOW
SW036	25-AUG-92	NO FLOW
SW038	15-AUG-86	
SW038	15-OCT-90	
SW038	05-NOV-90	NO BY OU
SW038 SW038	11-DEC-90 08-JAN-91	NO FLOW
3#030	OG-OMN-91	

Appendix B5

### Surface Water Flow Data

LOCATION	SAMPLE DATE	FLOW RATE (cfs)
sw038	20-FEB-91	
SW038	09-APR-91	
SW038	16-MAY-91	NO FLOW
SW038	20-JUN-91	NO BLOW
SW038	25-JUL-91	NO FLOW
SW038	28-AUG-91	NO FLOW
SW038	18-SEP-91	NO FLOW NO FLOW
SW038	23-OCT-91	NO FLOW
SW038 SW038	07-NOV-91 20-JAN-92	NO FLOW NO FLOW
SW038	07-APR-92	NO FLOW
SW038	10-AUG-92	NO FLOW
SW039	15-AUG-86	NO 120W
SW039	27-JUN-88	
SW039	06-APR-89	
SW039	26-MAY-89	
SW039	16-JUN-89	
SW039	19-JUL-89	
SW039	04-AUG-89	
SW039	05-SEP-89	
SW039	11-OCT-89	
SW039	17-NOV-89	
SW039	20-DEC-89	
SW039	17-JAN-90	
SW039	08-FEB-90	
SW039	21-MAR-90	0 10
SW039	09-MAY-90	0.12
SW039	07-JUN-90	.42
SW039	16-JUL-90	.25 0.249
SW039	15-AUG-90 13-SEP-90	NO FLOW
SW039 SW039	02-OCT-90	NO FLOW
SW039	08-NOV-90	NO TECH
SW039	04-DEC-90	NO FLOW
SW039	10-JAN-91	
SW039	20-FEB-91	
SW039	28-MAR-91	
SW039	03-MAY-91	NO FLOW
SW039	04-JUN-91	NO FLOW
SW039	08-JUL-91	NO FLOW
SW039	05-AUG-91	NO FLOW
SW039	05-SEP-91	NO FLOW
SW039	02-OCT-91	NO FLOW
SW039	18-NOV-91	NO FLOW
SW039	16-JAN-92	NO FLOW
SW039	15-APR-92	NO FLOW
SW044	26-MAY-87	
SW044	28-JUN-88	
SW044	03-APR-89	
SW044	17-MAY-89	
SW044	30-MAY-89	
SW044	21-JUN-89	
SW044	18-JUL-89 16-AUG-89	
SW044	22-SEP-89	
SW044 SW044	19-OCT-89	
SW044 SW044	19-0C1-89 10-NOV-89	
SW044 SW044	08-DEC-89	
SW044 SW044	17-JAN-90	
SW044 SW044	19-FEB-90	
SW044 SW044	17-MAR-90	
SW044 SW044	22-MAY-90	NO FLOW
SW044	13-JUN-90	
~···········		

Appendix B5
Surface Water Flow Data

LOCATION	SAMPLE DATE	FLOW RATE (cfs)
SW044	19-JUL-90	
SW044	21-AUG-90	NO FLOW
SW044	17-SEP-90	NO FLOW
SW044	03-OCT-90	
SW044	28-NOV-90	NO FLOW
SW044	07-DEC-90	NO FLOW
SW044	10-JAN-91	
SW044	20-FEB-91	
SW044	19-MAR-91	
SW044	08-APR-91	
SW044	14-MAY-91	NO FLOW
SW044	25-JUN-91	NO FLOW
SW044	09-JUL-91	NO FLOW
SW044	13-AUG-91	NO FLOW
SW044	05-SEP-91	NO FLOW
SW045	26-MAY-87	
SWO45	17-NOV-87	
SWO45	28-JUN-88	
SW045	04-APR-89 18-MAY-89	
SW045 SW045	18-MAY-89 30-MAY-89	
SW045	21-JUN-89	
SW045	18-JUL-89	
SW045	16-AUG-89	
SW045	22-SEP-89	
SW045	19-OCT-89	
SW045	10-NOV-89	
SW045	08-DEC-89	
SW045	16-JAN-90	
SW045	19-FEB-90	
SW045	17-MAR-90	
SW045	22-MAY-90	NO FLOW
SW045	13-JUN-90	
SW045	19-JUL-90	
SW045	21-AUG-90	NO FLOW
SW045	18-SEP-90	
SW046	26-MAY-87	
SW046	27-JUN-88	
SW046	04-APR-89	
SW046	18-MAY-89	
SW046	30-MAY-89	
SW046	21-JUN-89	
SW046	18-JUL-89	
SW046	16-AUG-89	
SW046	22-SEP-89 19-OCT-89	
SW046 SW046	19-0C1-89 10-NOV-89	
SW046 SW046	08-DEC-89 16-JAN-90	
SW046	19-FEB-90	
SW046	17-MAR-90	
SW046	16-MAY-90	
SW046	13-JUN-90	
SW046	19-JUL-90	
SW046	21-AUG-90	
SW046	19-SEP-90	
SW046	16-OCT-90	
SW046	28-NOV-90	NO FLOW
SW046	07-DEC-90	NO FLOW
SW046	10-JAN-91	· · · · <del>- ·</del>
SW046	20-FEB-91	
SW046	08-APR-91	NO FLOW
SW046	22-MAY-91	NO FLOW
	• • •	

Appendix B5

### Surface Water Flow Data

LOCATION	SAMPLI	E DATE F	LOW RATE (cfs)
SW046	25 <b>-</b> JUI		O FLOW
SW046	25-301 09 <b>-</b> JUI		O FLOW
SW046	07-501 014-80		O FLOW
SW046	05-SE		O FLOW
SW066	29-JU		
SW066	29-MAI		
SW066	17-MA		
SW066	23-JUI	1–89	
SW066	20-JUI	<b>L-89</b>	
SW066	22-AU		
SW066	26-SE1		
SW066	24-OC		
SW066	17-NO		
SW066	14-DE		
SW066	11-JA		
SW066	08-FE		
SW066	14-MAI 15-MAI		
SW066 SW066	15-MA 12-JUI		O FLOW
SW066	12-301 19-JU		O PLOW
SW066	21-AU		O FLOW
SW066	18-SE		0 120
SW066	17-OC		O FLOW
SW066	27-NO		
SW066	11-DE		
SW066	15-JA		
SW066	20-FE	3-91	
SW066	21-MA	R-91	
SW066	14-MA		O FLOW
SW066	20-JU		O FLOW
SW066	03-JU		O FLOW
SW066	12-AU		O FLOW
.SW066	11-SE		O FLOW
SW067	29-JU		
SW067	04-AP		
SW067	17-MA		
SW067	23-JU		
SW067	20-JU		
SW067	21-AU 26-SE		
SW067	24-0C		
SW067 SW067	16-NO		
SW067	14-NO		
SW067	11-JA		
sw067	08-FE		
SW067	15-MA		
SW067	16-MA		O FLOW
SW067	12-JU		O FLOW
SW067	19-JU		
SW067	21-AU	G-90 N	O FLOW
SW067	18-SE		
SW067	17-OC	T-90 N	O FLOW
SW067	27-NO		
SW067	10-DE		
SW067	09-JA		
SW067	20-FE		
SW067	09-AP		IO ELON
SW067	14-MA		O FLOW
SW067	19-JU		IO PIOW
SW067	03-JU 12-AU		O FLOW O FLOW
SW067 SW067	12-AU 11-SE		O FLOW
SW068	11-SE 29-JU		IC FLOW
24000	29-00	., 00	

Appendix B5
Surface Water Flow Data

LOCATION	SAMPLE DATE	FLOW RATE (cfs)
SW068	29-MAR-89	
SW068	17-MAY-89	
SW068	23-JUN-89	
SW068	20-JUL-89	
SW068	21-AUG-89	
SW068	26-SEP-89	
SW068	24-OCT-89 16-NOV-89	
SW068 SW068	14-DEC-89	
SW068	11-JAN-90	
SW068	07-FEB-90	
SW068	15-MAR-90	
SW068	16-MAY-90	NO FLOW
SW068	13-JUN-90	
SW068	19-JUL-90	
SW068	21-AUG-90	NO FLOW
SW068	18-SEP-90	NO FLOW
SW068	16-OCT-90	
SW068	19-NOV-90	NO FLOW
SW068	10-DEC-90	
SW068	09-JAN-91	
SW068	20-FEB-91 04-APR-91	
SW068 SW068	13-MAY-91	NO FLOW
SW068	19-JUN-91	NO FLOW
SW068	10-JUL-91	NO FLOW
SW068	08-AUG-91	NO FLOW
SW068	17-SEP-91	NO FLOW
SW068	10-OCT-91	NO FLOW
SW069	29-JUN-88	
SW069	29-MAR-89	
SW069	05-APR-89	
SW069	16-MAY-89	
SW069	23-JUN-89	
SW069	20-JUL-89	
SW069	21-AUG-89	
SW069	26-SEP-89	
SW069 SW069	23-OCT-89 16-NOV-89	
SW069	13-DEC-89	
SW069	11-JAN-90	
SW069	07-FEB-90	
SW069	15-MAR-90	
SW069	16-MAY-90	NO FLOW
SW069	12-JUN-90	
SW069	19-JUL-90	
SW069	20-AUG-90	
SW069	19-SEP-90	
SW069	16-OCT-90	NO FLOW
SW069	19-NOV-90	NO FLOW
SW069	10-DEC-90	NO FLOW
SW069	09-JAN-91	
SW069	20-FEB-91	
SW069 SW069	04-APR-91 13-MAY-91	NO FLOW
SW069	19-JUN-91	NO FLOW
SW069	10-JUL-91	NO FLOW
SW069	08-AUG-91	NO FLOW
SW069	17-SEP-91	NO FLOW
SW069	10-OCT-91	NO FLOW
SW070	29-JUN-88	
SW070	29-MAR-89	
SW070	16-MAY-89	

Appendix B5

### Surface Water Flow Data

LOCATION	SAMPLE DATE	FLOW RATE (cfs)
SW070	23-JUN-89	
SW070	20-JUL-89	
SW070	14-AUG-89	
SW070	26-SEP-89	
SW070	23-OCT-89	•
SW070	16-NOV-89	
SW070	13-DEC-89	
SW070	11-JAN-90	•
SW070	07-FEB-90	
SW070	15-MAR-90	NO ELON
SW070	15-MAY-90 12-JUN-90	NO FLOW
SW070 SW070	12-30N-90 18-JUL-90	
SW070 SW070	16-30L-90 16-AUG-90	NO FLOW
SW070	12-SEP-90	NO I LOW
SW070	12-SEF-90 16-OCT-90	NO FLOW
sw070	15-NOV-90	110 1 12011
SW070	10-DEC-90	NO FLOW
SW070	08-JAN-91	NO FLOW
SW070	20-FEB-91	
SW070	04-APR-91	
SW070	13-MAY-91	NO FLOW
SW070	19-JUN-91	NO FLOW
SW070	10-JUL-91	NO FLOW
SW070	08-AUG-91	NO FLOW
SW070	17-SEP-91	NO FLOW
SW070	10-OCT-91	NO FLOW
SW070	05-NOV-91	NO FLOW
SW070	02-JAN-92	NO FLOW
SW070	08-APR-92	NO FLOW
SW070	20-JUL-92	NO FLOW
SW071	01-JUL-88	
SW071	17-APR-89	
SW071	10-MAY-89	
SW071	09-JUN-89	
SW071	14-JUL-89	
SW071	11-AUG-89	
SW071	12-SEP-89	
SW071	04-OCT-89 10-NOV-89	
SW071 SW071	01-DEC-89	
SW071	05-JAN-90	
SW071	02-FEB-90	
SW071	15-MAR-90	
SW071	17-MAY-90	
SW071	14-JUN-90	
SW071	19-JUL-90	
SW071	27-AUG-90	
SW071	20-SEP-90	
SW071	22-OCT-90	
SW071	15-NOV-90	
SW071	19-DEC-90	
SW071	30-JAN-91	
SW071	20-FEB-91	
SW071	21-MAR-91	
SW071	29-APR-91	
SW071	20-MAY-91	NO FLOW
SW071	26-JUN-91	NO FLOW
SW071	25-JUL-91	NO FLOW
SW071	26-AUG-91	NO FLOW
SW071	25-SEP-91	NO FLOW
SW072	28-MAY-87	
SW072	29-JUL-87	

Appendix B5
Surface Water Flow Data

LOCATION	SAMPLE DATE	FLOW RATE (cfs)
SW072	01-JUL-88	
SW072	17-APR-89	
SW072	10-MAY-89	
SW072	09-JUN-89	
SW072	14-JUL-89	
SW072	11-AUG-89	
SW072	12-SEP-89	
SW072	04-OCT-89	
SW072	10-NOV-89	
SW072	01-DEC-89	
SW072	05-JAN-90	
SW072	02-FEB-90	
	15-MAR-90	
SW072		
SW072	17-MAY-90 14-JUN-90	
SW072		
SW072	19-JUL-90	
SW072	27-AUG-90	
SW072	20-SEP-90	
SW072	22-OCT-90	
SW072	14-NOV-90	
SW072	19-DEC-90	
SW072	30-JAN-91	
SW072	20-FEB-91	
SW072	21-MAR-91	
SW072	29-APR-91	VO. 77.011
SW072	20-MAY-91	NO FLOW
SW072	26-JUN-91	NO FLOW
SW072	25-JUL-91	NO FLOW
SW072	26-AUG-91	NO FLOW
SW072	25-SEP-91	NO FLOW
SW125	16-OCT-90	
SW125	15-NOV-90	
SW125	18-DEC-90	NO FLOW
SW125	30-JAN-91	
SW125	20-FEB-91	
SW125	21-MAR-91	
SW125	29-APR-91	
SW125	20-MAY-91	NO FLOW
SW125	26-JUN-91	NO FLOW
SW125	25-JUL-91	NO FLOW
SW125	26-AUG-91	NO FLOW
SW125	25-SEP-91	NO FLOW
SW125	05-NOV-91	NO FLOW
SW125	02-JAN-92	NO FLOW
SW126	15-OCT-90	
SW126	28-NOV-90	
SW126	11-DEC-90	
SW126	10-JAN-91	
SW126	20-FEB-91	
SW126	19-MAR-91	
SW126	09-APR-91	
SW126	14-MAY-91	NO FLOW
SW126	20-JUN-91	NO FLOW
SW126	09-JUL-91	NO FLOW
SW126	12-AUG-91	NO FLOW
SW126	11-SEP-91	NO FLOW
<del></del>		

SHEET / of 2

ASK DESCRIPTION					,			
REPARED BY			<u>DScc</u> DAT			API	ROVEL	, 61
MATH CHECK BY			82 DAT				DATE	
METHOD REV. BY	MAD	_ DEPT	82 DAT	E 70//2/	Z_ [DEP			
						÷	alex	TUC.
			gre	ale Ra	r for *	e Sor	btech	dominal
foc*	= 5A 200 (K	0.84		by	organis	na	chron	
	200 (K	ou)	(11 -		<i>1</i>	~/ )		
			(Mc G	arm pet	ol. 3 19	8')		
aker:								
	e – c	1 14.1	of Tec					
	= Contect	e alla	of me.	44 66				
	= Suifo: - Octono	1-4.04.	Dartita	n coette	cent			
	OCK!	y ware	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
( He wind / Allin	i. Class	Con lant	- 389	6 (Test	6 5-4)			
Collerial/Allow Onit surface	ase and	Cuerte	tes 750	m 2/9m	(Tas6	, 5-4	()	
one solve				1				
Smackte Use placedo	iden-maddlan	· Le ) com	tent of	clau	troche	n cn	knows	n - 50 -
USD She so	ind sout	1 / 20	and so 9			i i i i i i i i i i i i i i i i i i i		
		7				ļ		
Herefore.								
	SA= = 3	3)(.20)(	750 M3/	(gm) =	= 57.	m 2/g	سار	
	5A20 = (.32 5A60 = (.32	8)(.80)	750 mil	an) =	228	m 4/9	7-	
Kow endp	oints in c	ou 100	-s ore	2 : Cas	ton Ta	trock	inde	=437
				Cis	12 DCE		i :	
								CTable 5
foct for the	ce two con	tu nuna	节二					
					(			
			for.*	05	foc*		1	
		11 1	0.00:10	7	0.007			
Cur	ton Tetrock GSIZDCE	lunde	0,00,	<del></del>	0-29		†	



			W.O. NO. <u>202</u>	
ASK DESCRIPTION	Calculation of	Critical head 7	TOC TASK NO	×040
REPARED BY	KAN DE	PT <u>Geosco</u> DATE 10 fo	APPROVE	D BY
ATH CHECK BY		PT <u>582</u> DATE <u>10/1</u>		
ETHOD REV. BY	MAD DE	PT <u>582</u> DATE <u>10/12</u>	193 DEPTDAT	E
Given 41 mo	an To value o	1 0.0022 (Table	5=3) for Allovius	س/حالى
				/
tle for x is	not exceede	ed for any comp	ound (Vocantain	renonts)
and the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o	the comment of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the co		-1	e procesione en en en en en en en en en en en en e
onder any a	issuptions (s	Smedite Content of	OUI down) WY	le
and the second of the second of the second of	ar an a an af annani an andanan afasar a		44	
exception of	Carbon Tet	rachleride and Pti	Fassing 20% Swe	cht
			0	
content of	our days.			
Rufore	Sorbte	in of vac @ o	07 is dominat	دی
by the inoug	jonic paction	f the ogui	for meetuse'	
	'			
				1 1 1
			,	
Cululation	for * )	la all our voca	entame non 5:	
Cululotea	for * )	les all our voca	entaminant:	
Colubate à	J for * j	fatzo	contame acont:  foc+so	
Compound	Kow	fa=*20	foc×80	
Compound  111 TCA	Kow 316	fα. *20 0.00ZZ	foc×80	
Compound  111 TCA  112 TCA	Kow 316 295	fa==20 0-0022 0-0023	foc* 80 0.009 0-01	
Compound  111 TCA  112 TCA  11 DCE	Kow 316 295- 69	fa=20 0-00ZZ- 0-00Z3 0-008	foc*s0 0.009 0.01 0.033	
Compound  111 TCA  112 TCA  11 DCE  CLS 12 DCE	Kow 316 295	fa=20 0.0022- 0.0023 0.008 0.014	foc* 80 0.009 0.01 0.033 0.29	
Compound  111 TCA  112 TCA  11 DCE  125 12 DCE  TCE	Kow 316 295- 69 5	fa=20 0.0022- 0.0023 0.008 0.004	foc* 80 0.009 0.01 0.033 0:29 0.0114	
Compound  111 TCA  112 TCA  11 DCE  CLS 12 DCE  TCE  TCE	Kow 316 295 69	fatzo  0.0022  0.0023  0.008  0.0019  0.0019	foc* 80 0.009 0.01 0.033 0.29 0.0114 0.6075	
Compound  111 TCA  112 TCA  11 DCE  CLS 12 DCE  TCE  TCE  TCE	Kow 316 295 69 5 240 398	fa *20 0.0022 0.0023 0.008 0.004 0.0029 0.0019 *	foc* 80 0.009 0.01 0.033 0:29 0.0114	
Compound	Kow 316 295 69 5 240 398 437	fatzo  0.0022  0.0023  0.008  0.0019  0.0019	foc+80 0.009 0.01 0.033 0.29 0.0114 0.6075 0.0069	

SHEET ____ of ____

CLIENT/SUBJECT <u>E646 001</u> W.O. NO. 2029 - 74-01 TASK DESCRIPTION Re Colculations TASK NO. ________ PREPARED BY _____ __ DEPT <u>Geosci</u> DATE <u>(0/9/93</u> **APPROVED BY** MATH CHECK BY___ DEPT 582 DATE 10/12/93 DEPT 582 DATE 10/12/93 DEPT_ Assuming compound is insurand by partitioning to but organic corbor ad energenic super, then Total Extention Coefficient 13 He sem of pertitioning due to lock wederon and ex deplessed os Kd (Total) = (for x Koc) + (fox Ks) (1)  $K_{5} = \frac{54}{200} \left( K_{0W} \right)^{0.16} \left( z \right)$ 61. h. 21. Lo = Tital Describited Conferment for frotian or pure Carbon (0-0022) - From Tasto 5-3 fice 1 100 115 - actor (0-998) = 1- foc in Organi Carrie Partition Coeffects Ks = Surfect prince untiller Coefficent SA - Surface area of Marix Solide Rose - Demont Wate Portion Coefficet A 17 re Total ; Retodota Fecta Expers. 1 00 = Rf = 1 + P Kd (TOTTILE (3) where : AL RECOGE TASIF P - Eck 21 of 500/ (1.77 gar/cm -11 = Total Possit ( .374 average for allowed feelloved materials from Tas( 5-4) Kd = Total Destibute - Conficer 1 (1) McCarty et al, 1981; Korickett, 1984 (2) Mc Corky et al., 1981 3) Mohran et al., 1987 RFW 10-05-003/A-5/85

CLIENT/SUBJECT _	E646 00	/				w.c	). NO. <u>-2</u>	029-74-01
TASK DESCRIPTION	1 Rt Colou	ation				TA	SK NO	0040
PREPARED BY	EN	DEPT Gee	500	ATE <u></u>	17/12		APPRO	VED BY
MATH CHECK BY_		DEPT 5				.		
METHOD REV. BY _	MAD	DEPT <u>58</u>	2_0	ATE Zo	1/2/93	DEPT.	D	ATE
The Contain	ution to k	d Croth	12) J	han	orges	uc c	orbone	=Kdo
	fee x	Koc		(4)				
Compound	for-	*Koc		Kdo				
PLE	0.0022	<b>૩</b> ૯મ	0.80	2				
TCE		126	0.29	5				
III TCA		152	0-3	3				
112 TCG		56	0-12					
Cis 12 DCE		49	0-11					
11 DCA		65	0.14					
11 DCE		30	0.07					
12 DCA		14	0.03					
Chlorgform	V	47	0.10					
Corbon Tet		439	0-97	<u> </u>				· · ·
** freches	m Schwille ( organic c pllivial/allian ground to	arbonial sau	: V=	colle	L GH,	from 6		
4) Lyman of	04,1962							



CLIENT/SUBJECT	E6+60	<u> </u>				w.o.	NO. <u>2029 - 7</u>	4-01
TASK DESCRIPTION Rf Calculations TASK NO. 0040								
PREPARED BY <u>V</u>	FN	DEPT	Geosci	_ DATE	10/7/93		APPROVED E	3Y
MATH CHECK BY_	MAD				10/12/93			
METHOD REV. BY					10/12/93	i .	DATE	
The Contra	المالية المالية							
The Conta	Survice	d d	7					
	K	c = 5A		8.16	(5)			
		S = <u>5A</u> Z(16)	( Kow)					
sh- sur	jour oni	† mai	· - 5	ر در ا	is in m	/gm:	-	
1% day contri	+ ) ( % Tren	tion smeste	te)/Sauc	ictite	surface a	rea pe	onit ma	n)
	Λ	. /		_ ~/	· (- ),	_ \		
Mean Clay Cort	ert Aller	im Collur	vm=	38 /0	(7able	5-4)	, , ,	
% fraction in	4 C 4 C 4	20% /80	> % ( U	Cou	n - use pl	ause fle	en pointo	)
Swewett Son	jeth alug	= 750M	-/am	Table	5-6)			,
38	-20)(75	0) = 57	w 2/2					
(-28)	80) (75t	7) = 228	w / 2	- 40				
			, 6					
Ks for V	ac cont	aminants						
Compared	Kow	KS 20	145 8	(2)				
PCE	398	0.74	12-97					
TCE	240	0.68	2.74					
III TCA	316	0.72	2.86					
112 TCH	295	0.71	2.83		Tuble 5-	Z		
asizace	5-01	0.37	1.48					
11 DOM	69.2	0.56	2.25					
11 DUE	] ]	0.55 0.49	2.2					
12 DCF	30-2 93.3	0.49	2.36					
Carbon Tet		0.75	3.02					
WI WO				-	+ Date from	1.05r-D4	4 (1986)	
RFW 10-05-003/A-5/85	/ N	1. Carty et	al, 19	81		V		

CLIENT/SUBJECT ELLE QUI

W.O. NO. 72079 - 74-01

TASK DESCRIPTIO	ON REC	deule	Han							TASK	NO	004	<u>'U</u>	
PREPARED BY			DEPT	Geo						AF	PRO	VED B	Υ	
MATH CHECK BY_	MAD			582										
METHOD REV. BY	MAD			58					DEP	Τ	D/	ATE _		
V. G	otal). fellous	C~~	c.den		Sonbol	7.6-	to o	7 40x	u isa	ond	L.			
Fa CI	( - Negro	- CV)		~9	Υ.			(				(		
	je vou													
														: : : : : : : :
Kd (TOTAL) =	= (froc. i	( Kw	) +	٠. ــــــــــــــــــــــــــــــــــــ	~ X	لاء	)							
	(foc x	Ker)	+ (	(i - fo	) ( ٍ	ĹĽş	2							
	<b>J</b>			3										
<del>.</del> .	ار سیستان کی داشت	: 	× 1											
Compound	Kd 20	Kde												
	70		0	-										
PCE	1-54	3.77												ļ
TCE	0.96	3.02												
111 TCA	1.05	3.19												
112 TCA	0.83	2.95												
CUS 12 KE	0,46	1.59												
IIDCA	0.70	2.39				ļ ļ.								
11DCE	0.62	2.27	<u>.</u>											
12 DC4	0.52	2.00												! !
Interoform.	0.69	2.46	1									: : :		
crown Tat	1.72	3.99					·i							
			; ;											
* Assures 2														i
ky Assore E		Cari	+1,1.4	T. 6	رج .	- 660 +	، سولا	1						
		ļ												ļ
						<u> </u>								
														i
														ļ



SHEET 5 of 5

CLIENT/SUBJECT <u>F6+6 001</u> W.O. NO. <u>7629-74-01</u>

TASK DESCRIPTION R	Calculation	TASK NO
PREPARED BY KEN	DEPT 6-20500 DATE 10/7/93	APPROVED BY
MATH CHECK BY MAD	DEPT 582 DATE 10/12/93	

MATH CHECK BY_	MAD	DEPT <u>5 8 2</u> DA	TE (0//2/93			
METHOD REV. BY_	MAD	DEPT <u>582</u> DA	TE 10/12/93	DEPT	DATE _	
Pr - 00	cidorian	supplied to come	mics and	elan m	1020	
7 0	7	souther to enga				
	V =	1+0 Kd1-	N_=	poresity	= ,374	
		1+ P Kd CTOTALS		1.77 su	7 -	
			Ç	· ·		
Gripound	Rezo	Rjso				
7	1 70					
PCE	8.3	18.8				
TCE	3.5	15.3				
MITCH	6.0	16-1				
112 TCA	4.9	15.0				
CESIZ DEC	3.3	8.5				
HDCF	4.3	12.3				
11 PCE	3.9	1.7				
12 PCA	3.5	10.5				
Chlorojera	4.3	12.6				
Corpor Teter	9.1	19.9				

Horizon tel TASK DESCRIPTION (co. PREPARED BY KAN		Georic DA			APPROVED BY
MATH CHECK BY MA		582 DA		1	
METHOD REV. BY	4D DEPT_	582 DA	TE 10/12/93	DEPT	DATE
C. II DOG COUL S	Entren Tetraci	Monde.	esknakd	trivel a	estance
assuming g	mere water files	+ consec	ted in	1968 (2º	year frave
V =	Vs/Rf				
	Pf				
a hear V	= contanioner	+ Veloce	<i>L</i> .		
/_	ر او مامر برمره من او	Jalier, Feld			
Rc =	Contaminant	5 Maria	Retorda	tur Fac	for
		/ (		(see RE	Colde Intim
V- = Kc.					
Vs = Ki	$\mathscr{D}$				(Range of K from Slug.
			2	1.454/Aug	
ake Ke	hydroche com	becturts.	.166-5 +0 2EE-6 +0 5	EE 4 cm/se	c of IHSS 115
$i = \lambda$	ydraule Gra	durit	0-154	(Mex sured +	between wells.
	Hecker Derese		0.10 (		
	pp in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second				
Rorge of S	= 8.866-3	to 2.2	feet Ido		
- 1 6 5				4	
laye Ve					
Contaminant	Volon to St /	day			
· · · · · · · · · · · · · · · · · · ·	high	100.			
for the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s					
DIE	0.27 0.00	×5			
	9.2				
TOE		06			



CLIENT/SUBJECT EG+G -OUI

W.O. NO. 2029-74-01

PREPARED BY <u>K</u>			Geosci				APPROVED	ВҮ
MATH CHECK BY_ METHOD REV. BY_			582 582			DEPT	DATE	
WETHOD REV. BT		DEFI		DATE	,	DELL		
				. 10/0-				
loted tra	iel distance	OSSUM	1768	- N. O.O.				
Contamina	art	Troval De	itorice 7	Fred	(2	s years.	365.25 clu	y /40)
		gh	1			= 9	365.25 clu 7, 131 days	
							U	
PCE		165	4.6					
TCE	ا	52	5.5					
4-20		13	7.3					
CC4		7.1	3.7					

SHEET /_ of ____

PREPARED BY	KFN	_ DEPT <u>Ge</u>	Sec DATE 14/93	<u>:</u>   A	APPROVED BY
MATH CHECK BY_	MAD	DEPT <i>5</i>	82 DATE 10/12/9		
METHOD REV. BY _		DEPT	DATE	_ DEPT	DATE
Restinate of	Vertical mu	gration d	istonce Cadrective urb water first u	tronsput	ulno
12 torcan	n-) acur	ning gro	ord water first c	mpacted.	m 1968 (25-4
troval	rine).	\ 0			
			., , , , ,	~	<b>)</b> ,
V, V C	= Ki/p		Vvs = Vertical	يده د بعد	Velcerte:
			K = Vertice	perneosed	cty from
			lab te	0 <del>1</del> 0	
			i = Vertical d = Effective	MORNA	$C \circ C \circ$
			Q - EH C. 3.	Diose	
		V	- ronge com 7-80	= < tr	4205-9 cm (se
					1-2EE-5 H/day
					from wees unents
				whin	near IHES 119.1
V _{V5} =	2.0 5-1	Jan to	1-185-4 81/20	7	1 near IHES 119.1, See Table 3-12)
V.5		۲ .	۵,	(	
= 730	#/4-	to c	o-04 dt/gr		
			The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s		
	year				
Assuming a 2	5 trivel ten	e rovis o	f prosection was	rodier dir	
	The second of the second	and the state of the state of	The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa		
18,250	cut to	1.0 900-			
	L. n. 1-		760 100		concerten A
n conducted	in anapo	and co	18 EE-5 cm/ce	Sound of	the nine values
a possible t	(Union a) L	awan Heu	Pertical section.  ) are in the rom.	10-8	+0 10-9 cm (cer
Ten bre an	alternativ	P maximum	m tovel delonce  J 3.8 EE - 8 cm  FFW/MAD	and soint	is again
	1		1 0		5 275GL





CLIENT/SUBJECT _					D. <u>2029- 74-01</u>
TASK DESCRIPTION	Colculate	west	ica Migratian	Roles TASK	NO. 0040
PREPARED BY	5-	_ DEPT <u>G-4050</u>			PROVED BY
MATH CHECK BY	MAD	DEPT <del>5</del> _8	2_ DATE 10/12/9	13	
METHOD REV. BY _	····	_ DEPT	DATE	DEPT	DATE
9.5	440/MAD				
K=38	EE-8 Cu	-sec			
= 40 269	8 GE-4 8 1 44 / WAD	r/day			
2,0,1	140/1/149	0			
	· /				
	= Ke/D				
	144/11/40 148EE-	3 1+/da	n		
	= <del>9.04</del> se	- 125 years			
	= 9.04 /6 164/23 1840	,			
Likely 1	large of	tweet death	en co ever 25	year per	cod:
		KM	114D		
	1-0	to 9.0 fe	in a cre 25 MAD ut T		



SHEET ____ of ____

			W.O. NO	2029-14-01
TASK DESCRIPTION HORZ & Vest .	Se Migrator R	ate in Groundva	TASK N	10. 0040
PREPARED BY (CA)	DEPT <u>GeoSci</u>	DATE 10/18/93	AP	PROVED BY
MATH CHECK BY		_ DATE		
METHOD REV. BY	. DEPT	_ DATE	DEPT	DATE
Purpose: Determine hoursont	el and vertice	1 contaminant	tronspor	t rates
Purpose: Determine houseant	se) Compound	do an He IHSS	119.1 an	ea our
Methoas: Use publish	ed values	for Se destrit	ution co	· Hecients,
applied with	sik speafed	e date on 7	hysical	prestes
of the agrifer	mediun,	t cleteraine	a retard	dateon
facta, K, Chi	encotenzing	odsoptimfic	m-lychu	72
illetteas: Use publish applied with of the agrifu factor, R, che of se to agri.	fer solidisi.			
		d (1)		
	T			
where p = dry &	SUIK donsity	of aguifa sol	hds	
n = 700 se	ty of oge	yer (total)		
Kd = destri	nha cut	ecent for the	solute a	ne the the
Soil/a	gu fer	yer (total) ecut for He		
The retordation of transport sile	acturis c	sed to ma	by care	ctive
honsport 126	city, Vs, o	f consaminion	73	
The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon			
<i>√ y</i>	= Ki/ne			
when "				
	ic anducte	evity		
i = hydroul	c gredien	<i>t</i> /		
K = hydroxl i = hydroxl Ne = stectise	my soud			
to obtain contaminar	t trasqut	· Veleaty,		
1/ =	Vela	(3)		
Vc 3	V5/R			
RFW 10-05-003/A-5/85				



CLIENT/SUBJECT F6+6 OUL	MANAGERS DES			2029-74-01								
TASK DESCRIPTION House + Vert	se Migratia	Rate in Ground	udetask n	0. 0.40								
PREPARED BY KGO	_ DEPT <u>Geosci</u>	DATE 10/18/4 3	APPROVED BY									
MATH CHECK BY												
METHOD REV. BY	_ DEPT	_ DATE	DEPT	_DATE								
Combining Eg 1, 2 and 3	gives											
Vc = Kij	no (1+ 7/n_	Kel) (4	[/] )									
The relative mobilities	af so co a	quis oqu	iser a	lunction.								
The relative mobility of:		0	0									
1) He redox jotentia	l ad pH	of the agents	r eurico	rment								
1) He redox jotentia which dectares he	predomina	t agrecus;	grecies of	so; and								
2) Le presence or	obscerce o	f organic con	ton, or	ghinas 💮								
2) Le presence er oxides of Fe, Sc, Chemical Attenuation Les chate Myrotism	and Al, a	dos day	CEPRI,	1984.								
Chemical Attenuation	Kates, (	setterenti, or	d Consta	ets en								
CA -3356, Sol. 2,	Project.	2198-1, Febru	ery 1989	<i>(</i> )								
A renge of distute to with the redox potent the oquifer environmen	had ad the	Condutions	surm seg	for								
the aguifu environmen	t, has telen	provided by	1									
	Kel = 8-6 A											
Browse of the whate	very high o	by content,	(at took	the unconsolidated								
and consolidated formations	at out)	on organic con	Hent, on	d Chencun								
ind consolidated formations amphorous oxide cont. hus been selected. (To	ses 5-1 and 5-	z)		rong C								
	€ Kd ≤ 6.	0 1										
		<i>' 0</i>										
RFW 10-05-003/A-5/85												
510 EC 10												

CLIENT/SUBJECT EGHG OUI	et Design		W.O. NO	). <u>2029-74-01</u>
TASK DESCRIPTION Horiz + Vest	- Se Myration	· Rates in bound	<u>uele</u> TASK	NO
PREPARED BY	DEPT Geosco	DATE 10/18/77	AF	PROVED BY
MATH CHECK BY	DEPT	. DATE		
METHOD REV. BY	DEPT	propriéte variables inte Equateuri 4:		
Other parameters is	بردان .			
5.7EE-3 < K < 1.41	Hrday (r	ange of K deri	red from	Slug and pucker
N _T = 0.374 (Table 5	-21)	•	tests .	for borings Ils in and
i = 0.154 (measure	d tetween	nells	Jour-d	rochent of
43	87 ore) 558	7)	and the second second second	
$i = 0.154$ (Measure 43) $\ell = 1.77 \text{ gm/cm}^3$			3-6 cm	J 3-7 )J
Incorporating the Fon	ges of app	ropriete vori	alles in	te Equateuri 4:
High contamina	nd transport	- velocity:		
Vc = (1.41 (+/)oy)	(0.154)/	[0.10(1+ ].	<del>77</del> (3.7	~\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
= 0.12 ft	/20g			
Low contam	inant trans	port velocity	1.7	1 (
Vc = (5.7 EE -3 /1/	Jag ) (0.154	10.10	.37	[ (6.1 mx/g))
$\sqrt{c} = 0.003 \text{ J}$	gard			



ARED BI	DEPT (secso	DATE 10/18	/ <del>43</del> A	APPROVED BY								
H CHECK BY	DEPT	DATE										
HOD REV. BY	DEPT	DATE	DEPT	DATE								
Zange of horizontal	2 velocitie	á										
0   1												
	- (											
0.0003 ≤ /2.	= 0.12  Hz	Song										
You a siliaso	in 1968 (2	s com tron	sel Line									
iven a release estimated ronge of	migration	di tences:										
	0											
Moximum =	2.7 feet											
Minimum =												
· vertical Megiatic	ui Pules											
i = 0.92 H/st=		. )										
# n = 0.374 (To	wy 5 -4)											
Ne = 0.1 (T	EE-9 (Dori	wed land made	sure ments	Vin or near								
7.8 EE-5≥ K≥ 4.2 2.2 EE-1≥ K≥ 1.2	EE-54A. I	1155 119.1 , Ta	ble 3-12)									
	3,-2											
0.11 ft/day < Vc =	6.18 EE - 7 f	+/day										
suming a 25 year t	moved time, r	sonde of boz	sible migra	in								
distances.												
	- a-( [L											
1004 feet to 0.0	2020 PL											



SHEET 5 of 5

CLIENT/SUBJECT E6+6 OUI PS	MANAGERS CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION OF THE SECOND CONSTRUCTION	W.O. NO. 2029-74-01
TASK DESCRIPTION Vest + Horrz	So Augration Rete in Ground	EMASK NO. 0040
		APPROVED BY
MATH CHECK BY	. DEPT DATE	
METHOD REV. BY	. DEPT DATE	DEPTDATE
than conductivity but	point of 17.8 EE-5 cm/se	c is not
considered a Plouseible Vo	hue for the entire vertical	section. Seven
of the wine values for	tedrock Copper and Lower	Hsu) ore in
The range 10 5 to 10 9	entsee. Thujoe, on al	Hernotive
maximum travel destine	e enopoint is colupla	tel for a
perventility of 3 8 E	e enopoint is colupled = 39191 = -8 culsec (Boring = 78)	77 Table 3-12).
9.5 KEV/WAD		
K= 3-FEE-8 c		
= 1-07 EE	1 ft / 20g	
V _C = 8.9 EE		
Vc = ***********************************	Jr / Song	
= 6.081 St 0.2 KAU/N	/20 years	
//v	(D	

Additional Ryleren co



ΓAS	K	DES	CR	IP	ΓΙΟΙ	N														TASK NO										
PRE	P/	RE	рΒ	Υ.							DEI	PT _			_ D	ATI	E				APPROVED BY									
VΑ.	rн	CHE	CK	В	Υ_						DEI	PT _			_ D	ATI	≣			_										
											DE									_   ,	DEP	т		D.	ATE	:				
				-							-																			
													2											:						
. 1	Ŋ	hi	01	1	M	٠,	0	150	n,	R.	4 ; 5		rec	tor	,	SM	ز	19	6	アノ	G	100	nd	W	ich-	n		1.		
, l	0		2 2	7	1	<b>l</b> a .	3	-	P	6	5	- 7	<b>'</b> Z													ļ		i.,		
																											: :::	: : :		
																												ļ.		
									,											-						ļ,				
											:  -				- :															
													:													<u></u>				
											: : :		ļ																	
											: 		: 														! !			
																										ļ		1		
								:			:															ļ				
													:												:	: :				
			·																							<u>.</u>	:			
																	:									<u>.</u>	: : :	1		
												:														ļ 				
			:	:																										
											1 · · · · · · · · · · · · · · · · · · ·								:			:					:			
											itani i T		1														:			
					- * - 1				:		.1							: :: : : : : : : : : : : : : : : : : :		] [			: :							
																			:		 !									
											i					:		:					:		:					
																		ļ ļ			!······					† 	!······			
																			] 								-			
								<u></u>											i i											
								-	ļ										1						:					
										1						i	į							:						
									1	ļ	.1			· · · · · · · · · · · · · · · · · · ·		I	ļ						ļ							
								i								: :	ļ			ļ				: :	ļ					
							 			ļ			<b></b> .	į		:						ļ		:	l					
								i	i	: :	i Pers					! !				ļ	<u>.</u>		ļ			.i				
									:		:				:				<u>.</u>				.i			<u>.</u>				

## **NOTICE:**

"BEST AVAILABLE COPY"

# PORTIONS OF THE FOLLOWING DOCUMENT ARE ILLEGIBLE

